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Abstract
This research presents a comprehensive study on predicting the compressive strength (CS) of PET-fiber-reinforced concrete 
(PFRC) using three decision tree-based machine learning models: Decision Tree (DT), Random Forest (RF), and Gradient 
Boosting Machine (GBM) regressors. To enhance the predictive capabilities of these models, the hyperparameters were 
optimized using the novel metaheuristic Dolphin Echolocation Optimization (DEO) technique. The input features considered 
for the models include the Binder content, W/B ratio, coarse and fine aggregate content, and PET fiber volume fraction. 
The target variable is the compressive strength of the concrete samples. Extensive experimentation was used to analyze and 
compare the effectiveness of each model. The results demonstrate that the DEO-tuned Random Forest outperformed its other 
counterparts, achieving improved accuracy in predicting the CS of PFRC. SHAP (Shapley Additive Explanations) and Sobol 
sensitivity analysis were conducted to explore the sensitivity of the input features toward compressive strength prediction. 
The Sobol sensitivity analysis assessed the significance of the input features and their interactions, whereas the SHAP values 
revealed the specific effects of each feature on the output of the model. The findings from the sensitivity analyses identified 
the Binder content, fiber volume fraction, and W/B as the most influential factors in determining the compressive strength.
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Introduction

Due to its special qualities and prospective advantages, 
PET fiber-reinforced concrete (PFRC) has received a lot 
of interest in the field of civil engineering. In PFRC, con-
crete mixtures are infused with PET fibers, which enhances 
the mechanical and durability characteristics of the result-
ing composite material (Marthong & Marthong, 2016). 
Enhancing the tensile strength and toughness of concrete 
is one of the main benefits of PET fiber reinforcing. Con-
crete, although strong in compression, is inherently weak 
in tension (Weckert et al., 2011). The inclusion of PET fib-
ers helps to bridge micro-cracks that occur during the early 

stages of loading, effectively distributing the stress and 
preventing crack propagation (Benkharbeche et al., 2021). 
This property makes PFRC particularly suitable for applica-
tions, where enhanced crack resistance is desired, such as 
pavements, industrial floors, and precast elements. Another 
significant benefit of PFRC is its impact on the durability 
and service life of concrete structures. PET fibers act as a 
barrier against the ingress of water, chloride ions, and other 
harmful substances that can cause the corrosion of reinforc-
ing steel or deteriorate the concrete matrix (Naidu Gopu & 
Joseph, 2022). By mitigating the potential damage caused by 
chemical attacks, PFRC offers improved resistance to envi-
ronmental factors and can extend the lifespan of structures, 
reducing maintenance and repair costs. PFRC contributes 
to sustainable construction practices by utilizing recycled 
PET materials. The incorporation of PET fibers in concrete 
provides an environmentally friendly solution to the growing 
issue of plastic waste (Rao et al., 2022, 2023). By divert-
ing PET bottles and other plastic waste from landfills and 
repurposing them into construction materials, PFRC offers 
a valuable avenue for recycling and waste reduction. The 
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procedure to develop PET fiber of various aspect ratio (AR) 
is illustrated in Fig. 1.

Strength is an important characteristic of any cementi-
tious material (Parhi et al., 2023; Pradhan et al., 2022c). 
Higher strength is generally an indicator of good durability 
(2022b; Pradhan et al., 2022a). The prediction of compres-
sive strength plays a vital role in the evaluation and optimi-
zation of construction materials, in particular, PET fiber-
reinforced concrete. PET fiber-reinforced concrete is gaining 
increasing attention in the construction industry due to its 
improved mechanical properties and environmental ben-
efits. Making informed judgments throughout the planning, 
design, building, and management of infrastructure projects 
requires accurate prediction of the CS of PFRC (Nafees 
et al., 2023). Machine learning algorithms have proven their 
potential in accurately predicting material properties, includ-
ing compressive strength, by learning from historical data 
and identifying complex relationships (Kaveh & Khalegi, 
1998; Kaveh & Khavaninzadeh, 2023; Parhi & Patro, 2023; 
Singh et al., 2023; Parhi & Panigrahi, 2023). Developing 
reliable prediction models empowers engineers to optimize 
mixture proportions, select suitable reinforcement strategies, 
and meet strength specifications. This optimization enhances 
structural performance, durability, cost-effectiveness, and 
sustainability of construction projects.

To predict the CS of PFRC, three decision tree-based 
machine learning models: Decision Tree, Random Forest, 
and Gradient Boosting Machine regressors were utilized in 
this study. The hyperparameters of all the models were opti-
mized using the metaheuristic Dolphin echolocation optimi-
zation technique. SHAP and Sobol sensitivity analysis was 
used to access the feature sensitivity toward compressive 
strength. All the models were developed in Google Colab’s 
Python interface.

Research significance

This study implements three decision tree-based machine 
learning regressors, i.e., Decision tree, Random Forest, 
and Gradient Boosting machine to predict the CS of PFRC. 
Decision trees offer easy interpretability as their decision-
making process can be visualized in a tree-like structure 
with clear if–else rules. They can handle both numerical 
and categorical data without requiring extensive normaliza-
tion or scaling. Moreover, decision trees are less sensitive to 
outliers in the data and provide faster training and prediction, 
especially for smaller data sets. They also make minimal 
assumptions about the data distribution, making them suit-
able for non-linear scenarios. Random forests, on the other 
hand, construct multiple decision trees and combine their 
predictions, resulting in improved accuracy and reduced 
overfitting compared to a single decision tree. They effec-
tively mitigate the impact of noisy data and offer valuable 
insights into feature importance, aiding feature selection in 
the data set. In addition, the training of individual decision 
trees in a random forest can be easily parallelized. Gradient 
Boosting Machines (GBMs) achieve high predictive accu-
racy by combining the predictions of multiple weak learners, 
typically decision trees. They handle missing data effectively 
without extensive imputation and can accommodate various 
data types, including numerical and categorical variables. 
GBMs also work well with a variety of loss functions, mak-
ing them suitable for regression tasks. These are some of the 
advantages of these ML methods.

There are some limitations to these methods. Such deci-
sion trees tend to overfit, particularly when they become 
deep and complex, resulting in poor generalization and per-
formance on unseen data. In addition, the discrete splits used 
by decision trees may not effectively capture the continuous 

Fig. 1  Generation of PET fiber (Meza et al., 2021)
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nature of certain data sets or variables. Moreover, the mod-
el’s instability can be attributed to the production of differ-
ent trees with slight variations in the training data. Random 
forests, consisting of multiple decision trees, can pose chal-
lenges in terms of interpretation and understanding due to 
their ensemble nature. They also require more computational 
resources and time compared to individual decision trees, 
especially when handling large data sets or numerous trees. 
Moreover, the storage of multiple decision trees leads to 
higher memory consumption. Gradient boosting machines 
(GBMs) can be sensitive to noisy data as the boosting 
process attempts to fit the noisy samples during training, 
thereby increasing the risk of overfitting. GBMs with a large 
number of iterations or deep trees can be computationally 
expensive and demand more memory. Furthermore, proper 
tuning of GBMs, including learning rate, number of itera-
tions, and tree depth, can be a non-trivial task, necessitating 
careful parameter optimization.

To overcome these limitations, a novel metaheuristic Dol-
phin echolocation optimization method was used for hyper-
parameter optimization. Its adaptability, efficient explora-
tion, and robustness increase the prediction accuracy of the 
models. A database was developed from published literature 
and pre-processed. Tenfold cross-validation was used for 
training and testing to obtain the best-performing model. 
Two sensitivity methods used in this study.

Machine learning algorithms

Decision tree (DT)

A Decision Tree Regressor is a machine learning algo-
rithm used for regression tasks, aiming to predict continu-
ous numerical values. This algorithm utilizes a hierarchical 
structure of decision nodes and leaf nodes to make predic-
tions based on the input features (Gu et al., 2021). Recur-
sively splitting the data based on the values of the input 
features is how the Decision Tree Regressor functions (de 
Ville, 2013). It identifies the most informative feature at each 
decision node by maximizing the reduction in variance or 
another suitable metric. The goal is to split the data into 
subsets that are as homogeneous as possible in terms of the 
target variable. Each leaf node in the decision tree repre-
sents a prediction value for the target variable. When new 
data points are encountered, they traverse the tree from the 
root node to a specific leaf node based on the feature val-
ues, and the prediction value associated with that leaf node 
is assigned as the output. One of the key advantages of a 
Decision Tree Regressor is its interpretability. The resulting 
tree structure gives us insights into the correlations between 

features and the target variable, helping us to comprehend 
the decision-making process. In addition, decision trees can 
handle both numerical and categorical features and can han-
dle missing values without requiring extensive pre-process-
ing. The Decision Tree Regressor is a versatile algorithm for 
regression tasks. Its hierarchical structure, interpretability, 
and ability to handle various feature types make it a popular 
choice in the field of machine learning. Figure 2 represents 
the flow chart of decision tree regressor algorithm.

Random forest (RF)

A potent and popular machine learning method known as 
the Random Forest Regressor excels at predicting tasks 
requiring continuous numerical variables (Chen & Ish-
waran, 2012). Multiple decision trees are combined as part 
of an ensemble learning technique to produce a reliable 
and precise predictive model (Sagi & Rokach, 2018). A 
random forest integrates the concepts of bagging and ran-
dom feature selection to help alleviate these problems, in 
contrast to a single decision tree, which can be vulnerable to 
overfitting and instability. The technique generates a variety 
of models by selecting random subsets of the training data 
and characteristics for each tree. Each decision tree in the 
forest autonomously gains knowledge from the chosen fea-
tures and data, producing a variety of distinct but individu-
ally flawed forecasts. During prediction, the random forest 
aggregates the predictions from all the decision trees by 
averaging (for regression tasks) or voting (for classification 
tasks). This ensemble approach helps to reduce the vari-
ance and bias of the final prediction, resulting in improved 
generalization and robustness. The strength of the random 
forest regressor lies in its ability to handle complex relation-
ships and interactions among variables. It can capture non-
linearities, handle high-dimensional data, and effectively 
deal with missing values and outliers. Moreover, random 
forests are less sensitive to the choice of hyperparameters 
compared to other machine learning algorithms, making 
them relatively easy to use and tune. Random forests pro-
vide valuable insights into feature importance. This infor-
mation aids in feature selection, dimensionality reduction, 
and understanding the underlying factors influencing the 
outcome. Due to their robustness, accuracy, and interpret-
ability, random forest regressors have found applications 
in various domains. Figure 3 depicts the flow chart of the 
random forest regression algorithm.

Gradient boosting machine (GBM)

Gradient Boosting Machine Regressor, a powerful algorithm 
in machine learning, is widely used for regression tasks due 
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to its exceptional predictive capabilities (Zhou et al., 2021). 
It is a member of the ensemble learning family, which brings 
together several weak learners to produce a reliable and precise 
predictive model. The Gradient Boosting Machine Regressor 
algorithm works in a sequential manner, where weak learn-
ers, typically decision trees, are trained in an additive fashion 
(Badirli et al., 2020). Each subsequent tree focuses on reduc-
ing the errors made by the previous trees. By iteratively fitting 
new trees to the residuals of the previous trees, the algorithm 
gradually improves its predictive performance. One of the key 
strengths of the Gradient Boosting Machine Regressor lies 
in its ability to handle complex relationships and non-linear 
interactions within the data. It automatically captures intri-
cate patterns and nonlinearities by leveraging the hierarchi-
cal structure of decision trees. This makes it highly effective 
in capturing both local and global dependencies in the data, 
leading to accurate predictions. The algorithm incorporates 
regularization techniques, such as shrinkage and tree pruning, 
to prevent overfitting and improve generalization. Shrinkage 
reduces the impact of each tree, allowing for a more con-
servative and robust model. Tree pruning, on the other hand, 
removes unnecessary branches and nodes, simplifying the 

model and enhancing its interpretability. Figure 4 illustrates 
the flow chart of gradient boosting method.

Metaheuristic optimization

Dolphin echolocation optimization (DEO)

Dolphin Echolocation Optimization (DEO) is an innova-
tive optimization algorithm inspired by the remarkable 
echolocation abilities of Dolphins (Kaveh, 2017a). This 
nature-inspired algorithm mimics the biological behavior 
of Dolphins in using echolocation to locate objects and 
navigate their surroundings effectively (Kaveh & Farhoudi, 
2016b). DEO has gained attention in the field of optimiza-
tion due to its ability to solve complex problems and find 
near-optimal solutions (Kaveh, 2017b). The DEO algo-
rithm employs a multi-objective approach, where multi-
ple solutions are generated simultaneously to explore the 
search space efficiently (Kaveh & Farhoudi, 2013). Simi-
lar to how Dolphins emit sound waves and listen to the 
echoes to perceive their environment, the DEO algorithm 

Fig. 2  Flow chart of decision 
tree algorithm (Gajowniczek & 
Ząbkowski, 2021)
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uses a set of candidate solutions and evaluates their fitness 
based on predefined objectives (Kaveh et al., 2018). By 
iteratively refining these solutions through a combination 
of exploration and exploitation, DEO aims to converge 
toward optimal or near-optimal solutions. One key advan-
tage of the DEO algorithm lies in its ability to balance 
exploration and exploitation effectively. Like Dolphins that 
continuously adapt their echolocation strategies to chang-
ing environmental conditions, DEO dynamically adjusts 
its search process. This adaptability enables the algorithm 
to escape local optima and explore diverse regions of the 
search space, ultimately improving the quality of the solu-
tions obtained. DEO exhibits robustness and versatility, 
allowing it to handle various types of optimization prob-
lems. Its ability to handle both single-objective and multi-
objective optimization tasks makes it applicable to a wide 
range of real-world scenarios. Whether it is used in engi-
neering design, financial modeling, or data analysis, DEO 
showcases its potential in finding optimal or near-optimal 
solutions efficiently. Its unique characteristics, including 
the balance between exploration and exploitation, adapt-
ability, and versatility, make it a valuable tool for solving 

complex optimization problems across different domains. 
Figure 5 shows the echolocation of Dolphins in nature.

Hyperparameter optimization

Hyperparameter optimization is a critical step in developing 
accurate regression models that can effectively capture and 
model the underlying relationships within a data set (Feurer & 
Hutter, 2019). Regression models rely on various hyperparam-
eters, which are adjustable settings that determine the model's 
behavior and performance. Optimizing these hyperparameters 
is essential to improve the model’s predictive capabilities and 
ensure optimal performance. The process of hyperparameter 
optimization involves systematically searching through dif-
ferent combinations of hyperparameter values to identify the 
configuration that yields the best results. The objective is to 
identify the set of hyperparameters that maximizes the per-
formance metric of the model or minimizes its inaccuracy. By 
carefully tuning the hyperparameters of regression models, 
researchers and practitioners can unlock their full potential and 
improve the model’s ability to accurately predict outcomes. 
This optimization process allows for better generalization, 

Fig. 3  Flow chart of random forest model (Singh et al., 2021)
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and increased model robustness, and ultimately enhances the 
model's performance in real-world applications.

In this study, the hyperparameters of all the decision tree-
based algorithms were optimized using the DEO algorithm. 
The pseudo-code of the optimized regression models is 
shown in Tables 1, 2, and 3.

Data set preparation

A robust and well-organized database is of utmost impor-
tance in the field of machine learning. Machine learning 
models heavily rely on data to learn patterns, make accurate 

predictions, and provide meaningful insights (Asteris et al., 
2021). A good database serves as the foundation for success-
ful machine-learning models. The accuracy and usefulness 
of the data have a direct bearing on how well these models 
work. A good database facilitates efficient data preprocess-
ing and feature engineering. Data preprocessing involves 
tasks, such as cleaning, normalization, and handling miss-
ing values, while feature engineering involves transforming 
raw data into meaningful features that capture relevant infor-
mation (Ahmed & Iqbal, 2023). A well-structured database 
simplifies these processes, enabling researchers and practi-
tioners to prepare the data effectively and extract valuable 
insights.

Fig. 4  Flow chart of GBM model (Zhang et al., 2021)

Fig. 5  Echolocation of Dolphin 
(Kaveh & Farhoudi, 2016a)
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To predict the CS of PFRC a database was constructed 
from published literature (Adnan & Dawood, 2020; Foti, 
2011, 2013; Fraternali et  al., 2011; Irwan et  al., 2013; 
Kim et al., 2010; Marthong, 2015; Marthong & Sarma, 
2016; Mohammed & Rahim, 2020; Mohammed Ali, 2021; 
Nibudey et al., 2013; Ochi et al., 2007; Pelisser et al., 2012; 
Rahmani et al., 2013). The database consisted of a total of 
120 data points. The small number of data was due to the 
minimal study in the field of PET fiber-reinforced concrete. 
The data set contained Binder (mostly cement), Water-to-
Binder ratio (W/B), fine aggregate (FA), coarse aggregate 
(CA), and fiber volume fraction (FVF) as input features, 
while the compressive strength was taken as output. The 
statistics of the data set are shown in Table 4.

The Pearson correlation matrix as shown in Fig. 6, is a 
statistical tool that provides valuable insights into the rela-
tionships between variables in a data set. It measures the 
strength and direction of the linear association between 
pairs of variables. The matrix displays the correlation coef-
ficients, which range from − 1 to 1, where − 1 represents a 
perfect negative correlation, 1 represents a perfect positive 

correlation, and 0 indicates no linear correlation. By the 
Pearson correlation matrix, researchers can identify the 
degree of association between different variables. A high 
positive correlation between two variables suggests that they 
tend to increase or decrease together, while a high negative 
correlation indicates an inverse relationship. On the other 
hand, a correlation close to zero suggests no linear relation-
ship between the variables. Here, the input features were at 
the non-correlation-to-medium co-relation stage.

Figure 7 represents a density distribution plot, also known 
as a kernel density plot, which is a visual representation of 
the distribution of a continuous variable. It provides valuable 
insights into the shape, spread, and concentration of data 
points along the range of the variable. This type of plot is 
widely used in data analysis and statistics to understand the 
underlying distribution of a data set. The density distribu-
tion plot is constructed by estimating the probability density 
function (PDF) of the data. It smooths out the individual 
data points and presents a continuous curve that represents 
the overall distribution. The curve is derived by placing a 
kernel function, such as a Gaussian kernel, on each data 

Table 1  Hyperparameter optimization of DT

Pseudo code of DEO-DT

Procedure DEO_Optimized_Decision_Tree_Regressor(X, y, population_size, max_iterations):
Initialize population P with random forest structures

Evaluate the fitness of each individual in P using R2 and RMSE
Set the best_individual to the one with the lowest RMSE and maximum R2

For iteration = 1 to max_iterations:
For each individual in P:

Perform dolphin echolocation optimization to update the decision tree structure
Evaluate the fitness of the updated individual using R2 and RMSE

If the fitness of the updated individual is better than their previous fitness:
Replace the previous individual with the updated individual

If the fitness of the updated individual is better than the best_individual:
Update the best_individual with the updated individual

Perform crossover and mutation operations on P to create new offspring
Evaluate the fitness of the offspring using R2 and RMSE

For each offspring:
If the fitness of the offspring is better than the worst individual in P:

Replace the worst individual with the offspring

If the fitness of the offspring is better than the best_individual:
Update the best_individual with the offspring

Return the best_individual

End Procedure
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point and summing up the contributions to create a smooth 
density estimate.

Metrics for model evaluation

Several criteria are frequently employed to judge the 
accuracy, precision, and generalizability of regression 
machine learning models. These metrics shed light on 
the model's capability to forecast continuous numerical 
values. R2 measures the percentage of the target vari-
able's variance that the regression model accounts for. 
The value, which runs from 0 to 1, denotes the goodness 
of fit. A better fit of the model to the data is indicated by 
a higher R2 score. The percentage of variance in the target 
variable that is explained by the model is measured by the 
explained variance (EV) score. A higher score denotes a 
better model fit and spans from 0 to 1. The average abso-
lute difference between the expected and actual values is 
measured by MAE. The average percentage difference 

between the predicted and actual values is calculated 
using MAPE. It is very helpful when we want to assess 
the relative accuracy of the model's predictions and the 
target variable has a wide range of values. The average 
magnitude of the prediction mistakes is measured by 
RMSE, which is the square root of MSE. It helps inter-
pret the error metric in the target variable's original scale. 
Below are the equations for the evaluation metrics.

(1)R2 = 1 −

∑
i

�
yi − ŷi

�2

∑
i

�
yi − y�

�2

(2)MAE =
1

n

∑n

i=1
|y − y�|

(3)MAPE =
1

n

n∑

i=1

||||
y� − y

y

||||
× 100

Table 2  Hyperparameter optimization of RF

Pseudo code of DEO-RF

class DEOOptimizedRandomForestRegressor:
Initialize population P with random forest structures
Evaluate the fitness of each individual in P using R2 and RMSE
Set the best_individual to the one with the lowest RMSE and maximum R2

For iteration = 1 to max_iterations:
For each individual in P:

Perform dolphin echolocation optimization to update the decision tree structure
Evaluate the fitness of the updated individual using R2 and RMSE

If the fitness of the updated individual is better than their previous fitness:
Replace the previous individual with the updated individual

If the fitness of the updated individual is better than the best_individual:
Update the best_individual with the updated individual

Perform crossover and mutation operations on P to create new offspring
Evaluate the fitness of the offspring using R2 and RMSE

For each offspring:
If the fitness of the offspring is better than the worst individual in P:

Replace the worst individual with the offspring

If the fitness of the offspring is better than the best_individual:
Update the best_individual with the offspring

Return the best_individual

End Procedure
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(4)RMSE =

√√√√1

n

n∑

i=1

(y� − y)
2

(5)EV =

(
1 −

var(y − y�)

var(y)

)
× 100

Results and discussion

Model training and hyperparameter optimization

For the training and testing of all the models, a tenfold 
cross-validation method was utilized. Tenfold cross-vali-
dation is a commonly used technique in machine learning 
for assessing the performance and generalization ability of 

Table 3  Hyperparameter optimization of GBM

Pseudo code of DEO-GBM

Initialize the DEO parameters
Initialize the population of dolphins

Repeat for each generation:
Evaluate the fitness of each dolphin

Repeat until the stopping criterion is met:
Select parent dolphins based on fitness

For each parent dolphin:
Generate offspring dolphin through crossover and mutation

Evaluate the fitness of the offspring dolphin

Replace the parent dolphin if the offspring is better

Update the population of dolphins

Select the best dolphin as the final solution

Initialize the GBM parameters
Initialize the GBM model with the best dolphin’s hyperparameters

Split the dataset into training and testing sets

Train the GBM model on the training set

Evaluate the GBM model on the testing set

Return the trained GBM model and evaluation results

Table 4  Statistical details of the 
database

Feature Count Mean STD Min 25% 50% 75% Max

Binder 120 391.41 79.92 243.5 345 379.6 448 588
W/B 120 0.53 0.088 0.3 0.49 0.5 0.60 0.7
FA 120 779.40 111.81 556.6 677.5 788 816.25 973
CA 120 924.28 111.77 642 857.5 927 982 1152
FVF 120 0.81 0.70 0 0.5 0.5 1 3
Compressive 

strength
120 35.14 13.62 14.44 25.975 33.635 39.6025 94.36
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a model. It involves dividing the data set into ten equal-
sized subsets or “folds”. The model is trained and evalu-
ated ten times, with each iteration using nine folds for 
training and onefold for validation. This process ensures 
that every sample in the data set is used for both training 
and validation exactly once. The results from each fold are 
then averaged to provide an overall assessment of the mod-
el's performance. Tenfold cross-validation helps to reduce 
the impact of data partitioning on model evaluation and 
provides a more robust estimation of its effectiveness on 
unseen data. It is a valuable tool for selecting models, tun-
ing hyperparameters, and comparing different algorithms 
while avoiding overfitting and optimizing generalization.

Hyperparameter optimization of all the models was done 
using DEO. By emulating the adaptive and exploratory 
nature of Dolphin echolocation, DEO aims to enhance opti-
mization processes in machine learning tasks. It potentially 
incorporates mechanisms to dynamically adjust search strat-
egies, detect relevant cues or patterns, and adapt to changing 

problem landscapes. Table 5 shows the optimum hyperpa-
rameters of the three ML models.

Decision tree (DT)

DEO (Differential Evolution Optimization) tuned decision 
tree regressor was employed to predict the CS of PFRC. The 
goal was to investigate the effectiveness of this approach 
in accurately estimating the compressive strength based 
on the selected input features. The data set used for this 
study consisted of a wide range of concrete mixtures with 
varying proportions of PET fibers. The results indicated that 
the model achieved a moderate level of accuracy. In train-
ing the optimized model was found to have an accuracy of 
94%, while the accuracy fell to 83% in training. While this 
drop in accuracy may initially seem concerning, it is not 
uncommon in machine learning models. It suggests that 
the optimized model might have become slightly overfit-
ted to the training data, leading to a slight decrease in its 

Fig. 6  Co-relation matrix
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generalization capabilities. The regression plot in training 
is shown in Fig. 8 and that of testing is shown in Fig. 9. 
Table 6 shows the details about the metric scores of both 
training and testing.

Random forest (RF)

The performance of the DEO (Differential Evolution Opti-
mization) tuned random forest regressor in predicting the CS 
of PFRC was investigated. The accuracy of the random for-
est model is influenced by the number of decision trees and 
the maximum voting, as the prediction of the random forest 
is the average of the predictions of its constituent trees. Dur-
ing the training phase, the random forest regressor demon-
strated strong predictive capabilities in forecasting the values 
of compressive strength with an accuracy of 97% and the 

model also predicted with an accuracy of 91% in the testing 
phase. These high values indicate that the model captured 
a significant portion of the variance in the training data set. 
To visually assess the model's performance, regression plots 
comparing the actual and predicted values were generated 
for the training and testing data sets, as shown in Figs. 8 and 
9, respectively. These plots provided a visual representation 
of how closely the predicted values aligned with the actual 
values. Additional performance metrics of the model are 
presented in Table 6.

Gradient boosting machine (GBM)

The prediction accuracy of the DEO-tuned gradient boost-
ing machine regressor was evaluated in predicting the 
CS of PFRC. In the training phase, the model showed an 

Fig. 7  Density distribution plot
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impeccable accuracy of 96% (Fig. 8) but in the testing stage 
the accuracy dropped to 87% (Fig. 9). The high accuracy 
achieved during the training phase indicates that the DEO 
tuning process effectively optimized the GBM regressor to 
capture the underlying patterns and relationships between 
the input features and the compressive strength of the con-
crete samples. The model successfully learned from the 
training data, resulting in accurate predictions within that 
specific data set. The drop in accuracy observed during 
the testing stage suggests that the optimized GBM regres-
sor might have slightly overfitted the training data. When a 
model becomes overly complicated and begins to memorize 
training instances rather than recognizing underlying pat-
terns, overfitting takes place. As a result, its performance on 

data that has not been seen may be affected. It is important 
to note that due to the complexity of the material and several 
contributing factors, predicting concrete strength with high 
precision is a difficult process. Table 6 represents additional 
details about model metrics.

Comparison among models

Further to compare and visualize all the optimized models 
in detail six different plots were used. The error distribution 
plot, Bland–Altman plot, Error comparison plot, cumula-
tive distribution plot (CDF), Quantile plot (QQ), and box 
plots were implemented. The models were compared in the 
testing phase.

The error distribution histogram plot (Fig. 10) was uti-
lized to analyze the performance of all the optimized models 
in predicting the CS of PFRC. This plot provides valuable 
insights into the distribution and magnitude of errors made 
by the model. The histogram plot displayed the frequency of 
errors across different ranges or bins. The x-axis represented 
the error intervals, while the y-axis depicted the frequency 
or count of samples falling within each interval. Analyzing 
the error distribution histogram plot, it was observed that the 
RF and GBM errors exhibited a roughly symmetric distri-
bution. This indicates that, on average, the DEO-tuned RF 
and GBM regressor achieved predictions that were relatively 
close to the actual compressive strength values of the PET 
fiber-reinforced concrete samples.

In this study, the Bland–Altman plot (Fig. 11) was uti-
lized to assess the agreement between two measurement 
methods or assess the level of agreement between a measure-
ment method and a reference standard. The Bland–Altman 
plot provides valuable insights into the bias and variability 
of the measurements, offering a visual representation of the 

Table 5  Optimum hyperparameters of the models

Model Hyperparameter Value of 
hyperpa-
rameter

DT n_estimators 100
Max_features sqrt
Min_samples_split 20
Min_samples_leaf 2

RF n_estimators 100
Bootstrap true
Max_depth 30
Min_samples_split 20
Min_samples_leaf 4

GBM Max_depth 8
Subsample 0.7
Min_samples_split 10
Min_samples_leaf 4

Fig. 8  Regression plot in training: a DT, b RF, c GBM
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agreement between the two methods. A deviation from zero 
in DT and GBM models suggests a systematic difference 
between the methods, indicating the presence of a consistent 
bias in the measurements.

The line plot (Fig. 12) provided a clear and concise rep-
resentation of how the compressive strength varied in actual 
and predicted values for all the models. The trend can be 
found to be more consistent for the RF model compared to 

the other two models. In the RF model, a close association 
can be seen between actual and predicted values.

The cumulative distribution function (CDF) plot (Fig. 13) 
was employed to analyze the distribution of error in this 
study. This plot provides valuable insights into the prob-
ability distribution of the error and allows for a better under-
standing of its characteristics. The CDF plot revealed that 
the compressive strength of PET fiber-reinforced concrete 

Fig. 9  Regression plot in testing: a DT, b RF, c GBM

Table 6  Model training and 
testing metric score

Model Phase R2 EV MAE MAPE RMSE

DT Train 0.94 94.2 2.30 7.22 3.41
Test 0.83 83.4 3.86 10.70 4.70

RF Train 0.97 97.5 1.89 3.84 2.31
Test 0.91 91.2 2.85 7.98 4.21

GBM Train 0.96 96.8 2.04 4.94 2.67
Test 0.87 87.8 3.38 9.55 4.43

Fig. 10  Error distribution plot in testing: a DT, b RF, c GBM
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Fig. 11  Bland–Altman plot in testing: a DT, b RF, c GBM

Fig. 12  Error line plot in testing: a DT, b RF, c GBM

Fig. 13  CDF plot in testing: a DT, b RF, c GBM
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follows a relatively normal distribution. This is evidenced 
by the smooth and gradually increasing curve observed in 
the plot. The majority of the compressive strength values 
tend to cluster around the zero in the RF model, indicating 
a central tendency in the distribution.

The QQ plot of errors (Fig. 14) was used to assess the 
distributional assumptions and the goodness-of-fit of the 
regression model for predicting the CS of PFRC. The QQ 
plot provides a visual comparison between the observed 
errors and the expected errors under a theoretical distribu-
tion, typically a normal distribution in regression analy-
sis. In this study, the QQ plot was generated by plotting 
the quantiles of the observed errors against the quantiles of 
the standard normal distribution. The goal was to evaluate 
whether the errors followed a normal distribution, which is 
a common assumption in regression models. Upon analyzing 
the QQ plot of errors, it was observed that the majority of 
the data points fell relatively close to the expected line for 

the RF model, indicating a reasonably good fit to a normal 
distribution. However, there were slight deviations in the 
tails of the QQ plot for the other two models, suggesting that 
the errors did not perfectly adhere to the normal distribution 
assumption.

To gain further insights into the performance of the DEO-
tuned models in predicting the CS of PFRC, a box plot of 
errors (Fig. 15) was constructed. This analysis aimed to pro-
vide a visual representation of the distribution and character-
istics of the errors made by the model. The box plot of errors 
provides a summary of the distribution of errors, including 
measures, such as the median, quartiles, and potential outli-
ers. Upon analyzing the box plot of errors, several observa-
tions can be made. The median of the errors displays the 
central tendency and illustrates the typical size of the mod-
el's errors. A lower median value of RF and GBM suggests 
that these models tend to have smaller errors on average. The 
quartiles displayed in the box plot provide insights into the 

Fig. 14  QQ-plot in testing: a DT, b RF, c GBM

Fig. 15  Box-plot of error in testing: a DT, b RF, c GBM
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spread of the errors. The interquartile range (IQR), defined 
as the difference between the first quartile (Q1) and the third 
quartile (Q3), indicates the spread of the errors around the 
median. A narrower IQR of RF suggests a more consistent 
performance, whereas a wider IQR of the other two models 
indicates greater variability in the errors made by the model. 
By examining the box plot of errors, it was observed that 
the RF model exhibited a relatively low median error. This 
suggests that, on average, the model's predictions were close 
to the actual compressive strength values.

From the above evaluation, it can be concluded that the 
DEO-tuned RF shows maximum accuracy, robustness, and 
generalizability in predicting CS of PFRC compared to the 
other two models.

Sensitivity analysis (SA)

SHAP sensitivity analysis

SHAP (Shapley Additive Explanations) sensitivity analysis 
is a powerful technique used to understand the contribution 
of different features in a machine learning model toward its 
predictions. This analysis provides insights into the impor-
tance and impact of individual features on the model's out-
put. Unlike traditional feature importance methods that con-
sider features in isolation, SHAP offers a unified framework 
based on cooperative game theory, specifically the concept 
of Shapley values (Lundberg & Lee, 2017). It takes into 
account the interaction and dependence between features 
when attributing importance to each feature. By applying 
SHAP sensitivity analysis, we gain a comprehensive under-
standing of how changes in input features affect the model's 
predictions. This analysis can uncover complex relationships 
and interactions that may not be apparent through simple 
feature importance ranking. For each occurrence in the data 
set, SHAP gives each feature a distinct value to indicate 
how much it contributed to the prediction. Positive SHAP 
values represent a feature's favorable influence on the pre-
diction, while negative values represent a detrimental influ-
ence. The sum of SHAP values for all features equals the 
difference between the model's output and the average output 
of all possible feature combinations. The most important 
features can be found and their effects on the model’s pre-
dictions can be understood by interpreting SHAP values. 
This knowledge helps in building trust in the model, iden-
tifying potential biases or confounding factors, and making 
informed decisions based on the model's insights. SHAP 
sensitivity analysis enables us to perform feature-level expla-
nations, attributing the model's output to specific features. 
This not only enhances interpretability but also enables the 
identification of critical features that significantly influence 
the model's predictions. It aids in building trust in machine 

learning models, identifying influential features, and gain-
ing insights into the decision-making process. By leveraging 
SHAP, we can unlock the potential for enhanced transpar-
ency and interpretability in machine learning applications.

Sobol sensitivity analysis

Sobol sensitivity analysis is a powerful and widely used 
method for quantifying the relative importance of input 
variables in a mathematical or computational model. It pro-
vides valuable insights into the behavior and interactions of 
variables, enabling researchers to understand the factors that 
significantly influence the output of the model. The Sobol 
technique is a variance-based method that breaks down the 
overall variance of the model's output into contributions 
from the many input variables and their interactions (Sal-
telli et al., 1999). Sobol analysis determines the sensitiv-
ity indices, such as the first-order and total-order indices, 
by methodically changing the values of each input variable 
while maintaining others constantly. The total-order sensi-
tivity index additionally takes into account the contributions 
from interactions with other variables, whereas the first-
order sensitivity index just indicates the impact of a single 
input variable on the output. These sensitivity indices have 
values between 0 and 1, with values closer to 1 indicating 
a greater influence on the model output. Sobol sensitivity 
analysis offers several advantages. First, it provides a quan-
titative assessment of the importance of input variables, 
allowing researchers to prioritize their efforts in further 
understanding and refining the influential factors. Second, 
it enables the identification of non-linear and interaction 
effects, which may not be evident from simple correlation 
analysis. Third, it assists in reducing the dimensionality of 
the problem by identifying and eliminating non-influential 
variables, thus improving computational efficiency.

Sensitivity analysis result

SHAP SA aimed to gain insights into the relative impor-
tance of these features and understand their influence on 
the model's predictions. The SHAP analysis was done on 
the optimized RF model which was found to be more accu-
rate. A violin plot as shown in Fig. 16 shows the impact 
of features on the model, while in Fig. 17, average impact 
of features on the model output can be visualized through 
a bar plot. The results of the sensitivity analysis revealed 
that the Binder content had the most significant impact on 
the model's predictions of compressive strength followed 
by FA and CA.

The total order SA was calculated using the Sobol 
method, as shown in Fig. 18. The total-order sensitivity takes 
into account both the direct and indirect effects, including 
interactions with other variables, and provides more accurate 
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information. Based on the results, it was found that the FVF 
and W/B ratio were the most influential factors in deter-
mining the compressive strength of PET fiber-reinforced 
concrete. These variables had high total-order sensitivity 
indices, indicating their significant individual contributions 
to the model's output.

There is a significant deviation that can be seen in the 
result of both sensitivity analyses. SHAP shows binder con-
tent and aggregate content as more sensitive features, while 
Sobol SA shows fiber volume fraction and W/B ratio as 
more sensitive parameters. The SHAP method is a local SA 
method that relies on model and variation in the database, 

Fig. 16  Violin plot of SHAP SA

Fig. 17  Bar plot of SHAP SA

Fig. 18  Sobol total order SA



994 Asian Journal of Civil Engineering (2024) 25:977–996

1 3

while the Sobol method is a global SA method (Zhang et al., 
2015). The Sobol method is a Monte-Carlo simulation-based 
method that highlights the importance of considering the 
interactions between input variables. The interaction effects 
were captured by the total-order sensitivity indices. It was 
observed that the interaction between the water–binder ratio 
and fiber volume fraction had a notable impact on the com-
pressive strength. This suggests that the combined influence 
of these variables is greater than their contributions alone. 
Other input features, such as the binder content and aggre-
gate content, were found to have relatively lower sensitiv-
ity indices compared to these. The SHAP analysis provides 
more information about the model behavior, while the Sobol 
method can be confirmed to be showing more accurate infor-
mation on features that affect the CS of PFRC.

Conclusion

This study successfully implements a DEO-tuned decision 
tree-based machine learning algorithm to predict the CS 
of PFRC. Following conclusions can be drawn from the 
research study.

• Three decision tree-based machine learning models, 
namely, Decision tree, Random Forest, and Gradient 
Boosting Machine regressors, were applied for predict-
ing the compressive strength of PET fiber-reinforced 
concrete.

• The hyperparameters of all models were optimized using 
the Dolphin echolocation optimization technique, a 
metaheuristic algorithm known for its efficiency in solv-
ing complex optimization problems.

• SHAP and Sobol sensitivity analysis were employed 
to evaluate the feature sensitivity concerning the CS of 
PFRC.

• The Dolphin echolocation optimization technique effec-
tively optimized the hyperparameters of the machine 
learning models, enhancing their predictive capabilities.

• The optimized Random Forest model showed the highest 
accuracy in both the training and testing phase compared 
to other models.

• The results obtained from the SHAP analysis provided 
insights into the individual feature contributions and their 
impact on the predicted compressive strength.

• The Sobol sensitivity analysis helped quantify the rela-
tive importance of input variables and identified the key 
drivers influencing compressive strength.

• Binder content, fiber volume fraction, and W/B ratio 
were found to be the most sensitive.

• Further research and validation using independent data 
sets are recommended to confirm the applicability and 
generalizability of the proposed methodology.
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