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Abstract
The present work presents hybrid machine learning paradigms built with nine widely used optimization algorithms in deter-
mining the compressive strength (CS) of ultrahigh performance concrete (UHPC). Nine hybrid artificial neural network 
(ANN) models were constructed using nine meta-heuristic algorithms such as Ant Lion Optimization (ALO), Grey Wolf 
Optimization (GWO),Slap Swarm Algorithm (SSA), Whale Optimization Algorithm (WOA), Dragonfly Algorithm (DA), 
Particle Swarm Optimization (PSO), Harish Hawk Optimization (HHO) Slime Mould Optimization (SMO), Gorilla Troops 
Optimization (GTO). A total number of 308 observations were acquired and modelled to estimate the CS of UHPC concrete 
produced with manufactured sand. The developed hybrid model of ANN and Gorilla Troop Optimization (i.e., ANN-GTO) 
achieved the most accurate prediction of the CS with R2 = 0.9629, VAF = 96.28, RMSE = 0.0518 in the model construction 
stage and R2 = 0.9578, VAF = 95.78, RMSE = 0.0540 in the testing phase. The outcomes of the sensitivity analysis show that 
the developed ANN-FF accurately captures the strength of the relationship between influential variables and the CS concrete. 
The assessment of results was investigated based on the Taylor diagram, accuracy matrix, and uncertainty analysis. Overall, 
the built ANN-GTO secured the first rank in terms of uncertainty analysis. According to the results, the built ANN-GTO 
can be a new option for assisting engineers in civil engineering projects.

Keywords Ultrahigh performance concrete · Artificial neural network · Gorilla troops optimization · Uncertainty analysis · 
Accuracy matrix

Introduction

The practical applications of concrete depend on its rheo-
logical, mechanical, and durability properties. Several fac-
tors that influence these properties, includes cementitious 
materials, chemical admixtures, aggregate type and grad-
ing, water-to-binder (w/b) ratio, fibres and other inclusions, 
curing conditions (temperature and relative humidity), etc. 
(Wang et al., 2015; Yoo & Banthia, 2016). The development 

of ultrahigh performance concrete (UHPC) aims to provide 
materials with high compressive strength, improved duc-
tility and durability properties. Its mechanical properties 
are highly influenced by the mixture's ingredients and the 
curing conditions (Dingqiang et al., 2018; Yoo & Banthia, 
2016). UHPC with extremely high compressive strength and 
a low w/b ratio is made using fine powders (quartz, silica 
fume, etc.), well-graded aggregates, and water-reducing 
admixtures of high range. These ingredients produce supe-
rior particle packing density and the lowest porosity whilst 
ensuring adequate flow and consolidation. The most practi-
cal method to considerably reduce emissions of greenhouse 
gases may involve the use of supplementary cementitious 
materials (SCMs).Industrial by-products like Fly Ash (FA), 
Silica Fume (SF) and Ground Granulated Blast Furnace Slag 
(GGBS) are cementitious and pozzolanic, making them a top 
choice amongst researchers as a potential substance to blend 
with cement in order to reduce carbon emissions. (Megat 
Johari et al., 2011; Nodehi & Mohamad Taghvaee, 2021).
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UHPC is a composite made from SCMs containing 
cement, fine aggregate, superplasticizer, and a low water-
to-cement material ratio (w/cm). According to some pub-
lished research (Soliman & Tagnit-Hamou, 2016; Yang 
et al., 2017), SCMs have distinct effects on the properties 
of concrete, including cement hydration, the development 
of mechanical properties, and durability properties. In 
the recent years, several researchers have looked into the 
mechanical and durability properties of UHPC made with 
different SCM and different amounts of each SCM (Yu et al., 
2014; Zhou et al., 2018).

Ultrafine particle size of SF, results in enhanced poz-
zolanic reactivity and denser particle packing, which helps 
in the development of UHPC (Rougeau & Borys, 2004; 
Siddique & Iqbal Khan, 2011). Owing to its pozzolanic 
nature, SF has mechanical and long-lasting properties 
that enhance concrete strength. Moreover, SF in UHPC 
decreases its fluidity. The utilization of GGBS, pulverized 
fly ash (PFA), metakaolin, RHA, and other materials along 
with SF in UHPC has been reported (Shi et al., 2015; Yazici 
et al., 2008; Yazıcı et al., 2010). It has been proven that 
GGBS, a by-product of blast furnace iron manufacturing, 
is a highly appropriate possible replacement for cement in 
UHPC (Yazıcı et al., 2010). It has been reported by many 
researchers that increasing the percentage of GGBS used as 
a replacement for cement can significantly reduce the price 
of concrete and create opportunities for more cost-effec-
tive, environmentally friendly concrete (Khatib & Hibbert, 
2005; Siddique, 2014). The addition of SF, which contains 
a high concentration of responsive silica, combined with 
GGBS helps to accelerate the hydration process because it 
is known that the rate of hydration caused by GGBS is slow 
(Mohan et al., 2020). Moreover, it has been reported that 
GGBS when added to SF concrete the fluidity of SF concrete 
increases. The primary cause of UHPC's high functionality 
is that each component actively participates in the pozzo-
lanic reaction (Prakash et al., 2022).

Artificial intelligence (AI)-based modelling has seen 
many research activities recently. Although artificial neu-
ral networks (ANNs) were a popular alternative for solving 
prediction problems. Since AI approaches have proven more 
effective than traditional modelling techniques, they have 
some limitations. There is a lack of insight into the relative 
value of the parameters in ANN. Neural networks are often 
criticised for the wide variety of training they need to func-
tion. As the information gained during model training is 
implicitly retained, it is challenging to interpret the total net-
work structure logically. In addition, ANN has several inher-
ent flaws such slow convergence, poor generalization, hitting 
minimum local, and over-fitting issues. Hence, to overcome 
the above limitations, gorilla troop optimization coupled 
with ANN were adopted by few authors (Wu et al., 2022) 
to predict concrete's mechanical and durability properties.

Soft computing techniques have been widely utilised to esti-
mate a variety of concrete parameters, including compres-
sive strength (Kaveh & Khalegi, 1998; Velay-Lizancos et al., 
2017) and splitting tensile (Behnood et al., 2015). This is 
because they are effective at processing knowledge, making 
predictions and forecasting.

Contrarily, ANNs and other Tradational machine learn-
ing (TML) algorithms are regarded as Blackbox models, 
which may produce unfavourable outcomes, especially for 
new datasets, despite their higher performance. However, 
their use is constrained by overfitting-related issues, con-
sidered the main drawbacks of TML approaches (Hossein 
et al., 2010; S et al., 2014). Thus, to overcome the limita-
tions of TML models, modern researchers have turned to 
hybrid computational modelling as an effective alterna-
tive for estimating the desired result (Kaveh et al., 2021; 
Tien Bui et al., 2018). When meta-heuristic optimization 
algorithms (MOAs) and TML algorithms are combined, 
high-dimensional models are produced that balance the 
exploration and exploitation (E&E) phases during optimi-
zation, providing a successful method for addressing a chal-
lenging issue. Particle swarm optimization (PSO), artificial 
bee colonies (ABC), genetic algorithms (GA), Slap Swarm 
Algorithm (SSA), imperialist competitive algorithms (ICA), 
grey wolf optimizers (GWO), Harish Hawk Optimization 
(HHO), Whale Optimization Algorithm (WOA), Ant Lion 
Optimization (ALO), Dragonfly algorithm (DA), biogeog-
raphy-based optimization (BBO) etc. are a few optimiza-
tion algorithms (OAs) that have been widely used to solve 
numerous problems by optimizing the learning parameters 
of the TML algorithm (Golafshani et al., 2020; Koopialipoor 
et al., 2019). In a recent study, Ojha et al. (2017) showed 
that ANN-based MOA models, including as ANN-PSO (Roy 
et al., 2022), ANN-GA (Li et al., 2021), ANN-BBO (Fattahi 
& Bayatzadehfard, 2018), ANN-ICA, ANN-ABC (Koopial-
ipoor et al., 2019), ANN-GWO (Raja & Shukla, 2021) and 
ANN-HHO (Nourani et al., 2021) are increasingly being 
used in complicated process modelling. However, a thorough 
review of the literature reveals that, with the exception of a 
few studies, the applicability of hybrid models for predicting 
the compressive strength of UHPC has not been investigated.

In this context, the motive for this study was the need 
to fill the informational gaps in the existing literature. It's 
worth noting that many new OAs have been implemented in 
the intervening years, including GWO (ZorarpacI & Özel, 
2016), ABC(Karaboga & Basturk, 2007), ICA (Ojrulwkp 
et  al., 2007), Slime mould algorithm (SMA) (Li et  al., 
2020), HHO (Heidari et al., 2019),Marine predators algo-
rithm (MPA) (Faramarzi et al., 2020) and so on. However, a 
literature review suggests that very little research was done 
using ANNs with other hybrid ANNs such as (ANN-GTO 
(Gorilla troops optimization), ANN-SMO, ANN-WOA. 
ANN-SSA, ANN-ALO, ANN-HHO, ANN-PSO, ANN-DA, 
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ANN-GWO) for predicting compressive strength of UHPC. 
The study's primary purpose is to examine the effectiveness 
of various optimization techniques on ANN models. There-
fore, many ANN combinations are employed.

Artificial gorilla troop optimization (AGTO) is an 
advanced meta-heuristic technique used to solve optimi-
zation problems (Ginidi et al., 2021).A technique named 
gorilla troops optimization technique (GTOT) proposed by 
(Benyamin Abdollahzadeh et al.) is developed in this article 
for evaluating the compressive strength of UHPC. The litera-
ture reviewed the application of Gorilla Troops Optimization 
(GTO) confirms that no study has been conducted to predict 
the Compressive strength, Flexural Strength etc. for UHPC. 
Taylor (2001) invented a diagram in the form of a 2D graph 
in his study to give a statistical overview of how well pat-
terns fit one another in terms of their correlation, RSME, 
and the ratio of their variance.The objective of the present 
research was to evaluate the Compressive Strength of ternary 
blended UHPC subjected to an elevated temperature rang-
ing from 28℃ to 120℃ and varying the curing days. In this 
paper, a practically new model based on the ANN-GTO is 
proposed to predict Compressive Strength using the experi-
mental data conducted in the lab (Prakash et al., 2022).

Methodology

Material properties

The cementitious materials employed were ordinary Port-
land cement (OPC) grade 53, SFand GGBS. Various labo-
ratory studies (IS 4031:1996 (Part 1 to 15) n.d.) were used 

to assess the physical and chemical properties of cement. 
In this study, GGBS and SF were both used as pozzolanic 
materials. Both SF and GGBS sample satisfied the require-
ments of IS: 15,388 (IS:, 15388 2003) and IS 10289:1987 
(IS:12,089–1987 1987) respectively. SF is provided by 
Elkem South Asia Pvt. Ltd and GGBS was obtained from 
L&T Ltd.,India. Ordinary riverbed sand with a fineness 
modulus of 2.60 was used as the fine aggregate. The water 
absorption rate and specific gravity were found to be 1.1% 
and 2.51, respectively.After sieve analysis, the sand sample 
conforms to zone III as per IS 383–2016 (IS383, 2016 2016). 
Locally available crushed Pakur stone of size 12.5 mm was 
used as coarse aggregate. The Water absorption and Specific 
gravity were obtained as 0.4% and 2.82, respectively. UHPC 
mixes are prepared by using Structuro 203 (FOSROC), a 
polycarboxylic ether-based superplasticizer that reduces 
water content (Should).The chemical admixture had a spe-
cific gravity of 1.077.

Mixture proportion

Initially, the ACI 211–1(ACI 211 1998) approach was used 
to design the UHPC mixtures. The preliminary mix propor-
tions for UHPC with 1.2% superplasticizers by weight of the 
binder were calculated using a constant water-binder ratio 
(w/b) of 0.20 and a constant total binder content of 740 kg/
m3. The initial estimate of the amount of trapped air in the 
mixture was 0.5%. The ratio of coarse and fine material is 
calculated using the absolute volume method. Table 1 illus-
trates the mix proportions for UHPC mixes.

Table 1  Mix proportions Mix Cement SF GGBS SP CA FA Water

Control Mix 740 0 0 8.88 1102 519 158
G10 666 0 74 8.88 1098 518 158
G20 592 0 148 8.88 1095 516 158
G30 518 0 222 8.88 1091 514 158
G40 444 0 296 8.88 1088 513 158
G50 370 0 370 8.88 1084 511 158
SF6 696 44 0 8.88 1089 513 158
SF8 681 59 0 8.88 1085 511 158
SF10 666 74 0 8.88 1081 509 158
SF12 651 89 0 8.88 1076 507 158
SF15 629 111 0 8.88 1070 504 158
SF18 607 133 0 8.88 1063 501 158
G10/SF12 577 89 74 8.88 1073 506 157
G20/SF12 503 89 148 8.88 1069 504 157
G30/SF12 429 89 222 8.88 1066 502 157
G40/SF12 355 89 296 8.88 1062 501 157
G50/SF12 281 89 370 8.88 1059 499 157
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Compressive strength test methods

For the uniaxial compressive strength test, concrete cube 
samples of 150 mm were cast. After normal water curing 
for 1, 3, 7, 28, and 56 days following Indian Standard 
Code IS: 516–1976, the tests were carried out (IS:516, 
2004). The compressive strength of cube specimens were 
the average values of three specimens for each age. The 
specimens are molded and kept in a safe environment at 
room temperature for 24 h. One set of samples was taken 
out of the mold after 24 h and put in the oven for 48 h 
to undergo high temperature curing at 60 °C, 90 °C, and 
120 °C. After 72 h, when they had reached thermal equi-
librium, the compressive strength test was carried out.

Compressive strength test results

Compressive strength test results show that the compres-
sive strength values of UHPC ranged between 83 and 
153 MPa for all samples at 28 days. Due to the partial 
replacement of cement with GGBS and SF, all the mixes 
had lower cement content than the control mix.The early 
age of UHPC mixes with GGBS was less when compared 
to UHPC mixes with SF. According to Nevelle and Aitcin 
(Mehta & Aitcin, 1990; Neville, 2011) “the initial hydra-
tion of GGBS is slow as it depends upon the breakdown 
of the glass by the hydroxyl ions released during the 
hydration of Portland cement”. Due to the progressive 
release of alkalis by GGBS and with the formation of 
Ca(OH)2 with the Portland cement,the UHPC mixes with 
GGBS was observed to show a gain in strength in later 
ages.The compressive strength of GGBS and SF slightly 
decreased above their optimal replacement levels of 40% 
and 12%, respectively.

When compared to binary blended UHPC mixes with 
SF, the compressive strength of the ternary blended 
mixes with GGBS and SF was 17% higher. The highly 
reactive nature of SF particles further contributed to the 
acceleration of the hydration process by SF leading to an 
early age gain in strength for ternary mixes. The syner-
getic effect is also evident from the Scanning Electron 
Microscope(SEM) image present in Fig.  1. The SEM 
image clearly shows the formation of ettringite and cal-
cium silicate hydrate (C–S–H) gel at 28 days.

The data set for the present study has been taken from 
the authors previous research (Prakash et al., 2022). In 
the present study a total of 308 test data points with nine 
input features and one output features have been employed 
in the final data set. For one set of temperature and curing 
variation a total of 22 data sets were used.

Applied machine learning methods

Artificial neural network (ANN)

ANN are composed of many highly interconnected process-
ing elements (neurons) working together (Adeli, 2001). Each 
node receives a signal from neurons attached to it and is 
fully connected through connection weights. The outputs 
of the nodes in each layer serve as the inputs for the nodes 
in the layer above them, whilst the nodes in succeeding lay-
ers get input from those in the layer before. The perceptron 
is the simplest type of ANN design. It was developed by 
(Rosenblatt, 1958) and comprises of one neuron with two 
inputs and one output (Kaveh & Khavaninzadeh, 2023). Per-
ception is defined as a four-tuple entity (i.e., sensors that 
(i) receive inputs and (ii) multiply them by weights, (iii) a 
function collecting all the weighted data to produce a meas-
urement on the impact of the observed phenomenon, and (iv) 
a constant threshold). 'Training' is the process by which the 
network learns, and it entails changing these weights to cre-
ate a specific output. Figure 2 shows a schematic illustration 
of the perceptron structure.

Each neuron has an input link, which is represented by 
the vector xi = (x1, x2). Inputs and a bias are both added to 
the neuron. The weights for each input are represented by 
this equation: Wi = (w1, w2). The net input that approaches a 
neuron is computed using the weighted sum function. Equa-
tion 1 is used to determine the weighted sums of the input 
components (also known as the sum function).

(1)Vj =

n∑

i=1

WijXi + b

Fig. 1  Formation of C–S–H gel after ternary blended with GGBS 
&SF
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where  vj is the weighted sum of the jth neuron for the input 
received from the preceding layer, with n neurons,  wij is 
the weight between the jth neuron and the ith neuron in the 
preceding layer; xi is the output of the ith neuron in the 
preceding layer and b is a constant.The architecture of a two-
hidden layer MLP with back propagation is schematically 
represented in Fig. 3.

Ant lion optimization (ALO)

A new algorithm inspired by nature called Ant Lion Opti-
mizer (ALO) was introduced by Mirjalili (2015). The ALO 
emulates how ant lions in the wild execute their hunting. 
An ant lion larva excavates a cone-shaped hole in the sand 
by marching in a circle and tossing sand with its enormous 
jaw. The larva hides underneath the cone's bottom after 
digging the trap and waits for insects to fall into the pit. 
Insects can readily fall to the bottom of the trap because 
the cone’s edge is sharp. The ant lion tries to capture its 
victim after realizing it is trapped. It is then dragged into 
the soil and eaten. Ant lions prepare the pit for the subse-
quent hunt by discarding the leftover prey outside the pit 
after eating it.

Grey wolf optimization (GWO)

A nature-inspired optimization system called GWO (Mir-
jalili et al., 2014) mimics the strict hierarchy of grey wolves, 
which are known for their predominantly hunting behaviour.
GWO consists of a few males and females, with the α (alpha) 
group making essential decisions like hunting, being recog-
nised as the best solution. The second level of wolves are 
the β (beta) wolves, who make decisions and obey the alpha 
wolves. The best candidates to replace a dead or elderly 
alpha wolf are the beta, which can be female and helps in 
flock adjustment. δ (Delta) wolves are the third level of 
wolves; they serve as scouts and sentinels are used in hunt-
ing. ω (omega), the last group of animals and considered the 
weakest level, is in charge of keeping an eye on the younger 
wolves. Three levels of grey wolf hunting were described 
by Muro et al. (2011): (a) locating, pursuing, and closing in 
on the target; (b) encircling the target; and (c) rushing the 
target. The GWO algorithm takes into account these two dif-
ferent social behaviours. The best solution for the mentioned 
algorithm's modelling step is α (alpha), followed by β (beta), 
δ (delta), and ω (omega) suitable solutions in the subsequent 
steps. Refer to the original work by Mirjalili et al. (Mirjalili 
et al., 2014) for thorough descriptions of GWO.

Slap swarm algorithm (SSA)

By modelling SSA after swarming, translucent water inver-
tebrates known as salps, or salp chains, Mirjalili et al. (2017) 
proposed SSA. This algorithm is built on a leader–follower 
relationship, where the leader moves to the best food and the 
follower stays put. The SSA mathematical model is divided 
into three phases: the initial allocation of salps is at random; 
the next phase designates the salp closest to the food supply 
and with the lowest fitness value as the leader, with the other 
salps designated as followers. Finally, the position is updated 
in the third and final phase.The leader changes his stance on 
the ideal global resolution and considers better alternatives. 
Until the termination condition or the maximum number 
of iterations is achieved, the loops continue. The follower 
changes their position in the leader’s hierarchy.

Whale optimization algorithm (WOA)

A recently developed optimization algorithm called WOA 
imitates the hunting behaviour of humpback whales in their 
natural habitat (Kaveh & Ghazaan, 2017).The most incred-
ible aspect of humpback whales, according to Watkins and 
Schevill (Watkins & Schevill, 1979), is their unique hunt-
ing approach, known as the bubble-net feeding technique. 
Humpback whales are the small fish seen near the surface. 
When numerous distinctive bubbles appear in a nine or cir-
cular-shaped pattern, the hunting procedure is completed. 

Fig. 2  Schematic diag ram of perceptron structure

Fig. 3  Schematic representation of the architecture of a two-hidden 
layer MLP with back propagation
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Based on the surface observations, the aforementioned 
behaviour was studied in 2011 and earlier. Using tag sensors, 
Goldbogen et al.(2013)carried out a distinct study.The two 
new bubble motion plans, upward spirals and double loops, 
were developed using the 300 bubble-net feeding episodes 
from nine individual tagged humpback whales. In particular, 
humpback whales create spiral-shaped bubbles all around 
their prey and then swim toward the top in the movement 
pattern described earlier. Three unique phases make up the 
innovative movement plan: coral loop, lobtail, and capture 
loop. Additional details and descriptions of behaviour may 
be found in the literature (Goldbogen et al., 2013; Mirjalili & 
Lewis, 2016). Bubble-net feeding is a technique used exclu-
sively by humpback whales, hence this uniqueness must be 
emphasized.

Dragonfly algorithm (DA)

A new and intriguing meta-heuristic optimization algorithm 
inspired by nature called the Dragonfly Algorithm (DA) was 
developed by Mirjalili (2016). It is used to solve a variety 
of optimization problems. Dragonflies are small flying car-
nivores that consume a range of other small insects, includ-
ing mosquitoes, bees, ants, and butterflies (Babayigit, 2018; 
Mirjalili, 2016).It is utilised to handle a variety of optimiza-
tion challenges like tiny flying carnivorous insects known 
as dragonflies hunt and consume a range of tiny insects, 
including mosquitoes, bees, ants, and butterflies (Babayigit, 
2018; Mirjalili, 2016).

DA is based on the dragonfly swarming activities that 
are dynamic (migratory) and static (feeding) in nature. The 
exploitation and exploration stages of DA are represented 
by the dynamic and static swarms respectively.In the exploi-
tation phase, many dragonflies cause the swarms to travel 
across great distances in a single direction and divert preda-
tors. However, during the exploration phase, dragonflies 
form tiny groups and circle a constrained region in an effort 
to find food and entice soaring predators.

Particle swarm optimization (PSO)

PSO was first developed in 1995 by Kennedy and Eberhart 
(2021) as a part of the swarm-based community, which was 
influenced by the schooling and flocking habits of birds and 
fish. In a multidimensional context, PSO's main objective is 
to identify globally optimal solutions. The random speeds 
and positions of objects are first implemented by PSO. In a 
multidimensional environment, each object then adjusts its 
location in accordance with its personal best position,speed 
and overall best position to select the appropriate state. 
Individual particles can only achieve one place, which is 
the ideal global status; nevertheless, they can only choose 
one position, which is the perfect personal position. The 

particle's position is changed in accordance with its opti-
mum personal position and the orientation of its optimum 
global location. The differences between an object's best per-
sonal position and its best location worldwide are taken into 
account whilst modifying the objects' speeds. The particles 
converge around the optima through a combination of E&E. 
The acceleration coefficients C1 (cognitive coefficient) and 
C2 (social coefficient), with fixed values of 1 and 2, respec-
tively, depend on the subject and show how confidently a 
given element is positioned in relation to its own and the 
world's circumstances. Previous studies can be used to learn 
the detailed working principles of PSO (Le et al., 2019), 
(Kaveh & Nasrollahi, 2014).

Harish hawk optimization (HHO)

Heidari et al. (2019) have developed a novel SI-based opti-
mization method known as Harris Hawk Optimization 
(HHO),that relates the hunting habits of the Harris hawk 
with computerized mathematical systems. A group of Harris 
hawks attack their prey, usually rabbits, from a wide range 
of angles and use a variety of dynamic and clever strate-
gies to adapt to their prey’s flight pattern, leaving the prey 
baffled and exhausted.The algorithm is divided into three 
steps. Birds serve as prospective answers to the selected 
difficulty during the exploratory phase, which is the first 
stage of waiting, searching, and discovering.The second 
stage involves the transition from exploration to exploita-
tion, which depends on the availability and quality of the 
prey. The targeted prey is attacked by the environment and 
besieged from many sides throughout the exploitation phase, 
the third step. Depending on the energy level of the prey, as 
determined in the second stage, the besiegement’s severity 
will change (Kaveh et al., 2022).

Smile mould optimization (SMO)

SMA is a newly developed meta-heuristic OA (Li et al., 
2020) that draws inspiration from nature and considers 
mathematical simulation modelling of slime mould propaga-
tion waves. when choosing the most effective route for con-
necting food. Slime mould is a type of eukaryotic organism 
found in nature. Because of their distinct traits and patterns, 
they utilise multiple food sources to build a venous network 
for communication. Slime mould has a maximum growth 
length of 900  cm2. If sufficient food exists in the environ-
ment. The bio-oscillator creates a spreading wave when a 
vein receives food, which improves the cytoplasmic flow 
into the vein and speeds up the flow of cytoplasm, thicken-
ing the vein. Given these favourable and unfavourable reac-
tions, the slime might create the ideal path for a substan-
tially stronger relationship to food. As a consequence, slime 
mold has been the subject of mathematical modelling and 
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application in the fields of path networks and graph theory, 
which simulate the creation of positive and negative reac-
tions through wave propagation. Based on the source of the 
food's quality, slime mould could also adjust their dynamic 
search patterns.Numerous challenges involving engineer-
ing optimization can be solved using this technique. The 
slime mould algorithm has two main levels: (a) acquiring 
food, after which the slime's behaviour is to acquire food 
based on its odour in the atmosphere (b) warping foodstuffs, 
after which the slime's behaviour is to undergo contraction 
of its venous configuration. Detailed information regarding 
the working principle of SMA can be found in the original 
work of Li et al. (2020).

Gorilla troops optimization (GTO)

Gorilla troop optimization (GTO) is based on the group 
behaviours of gorillas, where five strategies are simulated. 
These strategies include migration to a previously undiscov-
ered territory, relocating to other gorillas, migrating toward 
a known site, pursuing the silverback, and competing for 
adult females. To illustrate the exploration and applica-
tion of the optimization method, they are mimicked and 

demonstrated. During the exploration stage, three strategies 
are used: migration to an undiscovered area, moving near 
other gorillas and movement in the general direction of a 
predetermined place. In the exploitation stage, two strategies 
are used: “follow the silverback” and “competition for adult 
females.” (Ginidi et al., 2021).

Hybridization of regression models

The performance of MOAs can be improved by modifying 
the learning parameters (such as the weights and biases) 
for conventional machine learning (CML) algorithms. By 
enhancing the learning parameters of CML techniques, the 
combination of CML and MOA helps in the search for the 
precise global minimum and produces more accurate results 
(Bardhan et al., 2022; Golafshani et al., 2020). In this study, 
advanced MOAs (ALO, GWO, SSA, WOA, DA, PSO, HHO, 
SMO, and GTO) were employed to develop hybrid ANN 
models in order to maximize the learning parameters of 
ANN. The learning parameters of an ANN are the input 
weights, hidden biases, output weights, and output biases. 
Figure 4 shows the hybridation of regression models. Fol-
lowing is an overview of the methodological development 

Fig. 4  Hybridation of regression models



930 Asian Journal of Civil Engineering (2024) 25:923–938

1 3

of ANN-based hybrid models: Hyper-parameters (such the 
activation function and  Nhn) are selected in the first step, and 
then weights and biases are produced at random. The sec-
ond stage involves developing the ideal learning parameter 
values utilizing MOAs. Finally, the findings are validated 
for the new dataset using the generated hybrid ANN models 
using the altered weights and biases. Although each MOA 
uses the same hybrid model development procedure, the 
optimal learning parameters that come from this technique 
are different. In addition to the ANN's learning parameters, 
deterministic parameters such as the population size  (Np), 
generation probability (GP), maximum number of iterations 
(itr), inertia weights  (wmax and  wmin), random parameters 
 (r1,  r2), acceleration coefficients of PSO  (c1 and  c2), lower 
bound (lb), upper bound (ub), and other MOA parameters 
are significant and thus, should be tuned appropriately dur-
ing hybrid modelling.

Data processing and analysis

Descriptive analysis and correlation

In order to develop the nine machine learning models to 
predict the compressive strength of the UHPC, a total of 
308 test data points with nine input features have been used 
as the final dataset. In the present study, nine SI algorithms 
have been used to construct hybrid ANN, namely GWO, 
WOA, SSA, GTO, ALO, DA, PSO, HHO and SMA. Table 2 
shows the descriptive statistics for the input parameters (C, 
SF, GGBS, FA, CA, SP, W, T, Age) and the output param-
eters (f'c). Figure 5 illustrates the results of the statistical 
analysis performed after the descriptive analysis to deter-
mine the degree of correlation (DOC) using the Pearson cor-
relation between the above mentioned parameters. Thus, the 
descriptive analysis confirms that a wide range of data points 
are available and can be used as input parameters to get the 
desired result. Following normalization, all of the data is 

divided into training (TR) and testing (TS) subsets. After 
the aforementioned descriptive analysis described that the 
collected database had a wide range of experimental data, 
a statistical analysis was conducted to measure the degree 
of correlation (DOC) using Pearson correlation between 
the parameters mentioned above.The Pearson correlation in 
Fig. 5 demonstrates that when all parameters were evaluated, 
the  DOCs between f’c and parameters (SF, GGBS, SP, T, 
Age) were significantly higher compared to other param-
eters. On the other hand, it was revealed that there is a nega-
tive correlation between f’c and parameters (Cement, CA, 
FA).

In this study, the training subset was drawn from 70% 
of the total dataset at random, whilst the testing subset was 
drawn from the remaining 30%. It is important to note that 
the number of samples used in a prediction model is at the 
discretion of the researchers, even though there are no estab-
lished standards or criteria in this regard. However, a model 

Table 2  Descriptive statistics of 
the collected dataset

SF GGBS C SP CA FA T Age fck

Mean 60.55 168.18 511.27 8.89 1076.41 507.37 67.86 14.93 93.10
SE 2.40 7.87 7.97 0.00 0.75 0.35 2.03 0.89 2.10
Median 74.00 185.00 510.60 8.88 1073.88 506.15 60.00 7.00 89.81
Mode 88.80 0.00 666 8.88 1062.14 500.62 28.00 3.00 41.88
Std. Dev 42.09 138.09 139.96 0.03 13.24 6.22 35.67 15.57 36.83
Kurtosis − 1.16 − 1.63 − 1.47 17.35 − 1.04 − 1.03 − 1.43 0.82 − 1.07
Skewness − 0.33 − 0.06 0.02 4.39 0.32 0.32 0.22 1.27 0.18
Range 133.20 370 458.80 0.12 46.30 21.82 92.00 55.00 137.91
Minimum 0.00 0.00 281.20 8.88 1055.71 497.59 28.00 1.00 25.32
Maximum 133.20 370.00 740 9.00 1102.01 519.41 120.00 56.00 163.23
Count 308.00 308.00 308 308.00 308.00 308.00 308.00 308 308.00

Fig. 5  Pearson’s correlation coefficient
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developed with a large dataset may be considered more reli-
able than one developed with a small dataset. Furthermore, a 
validated model using a large dataset is more reliable. Thus, 
in this study, the training and testing subsets of the hybrid 
ANN were developed and validated using around 206 and 
102 data points, respectively.

Sensitivity

In the context of suggested models, sensitivity analysis 
(SA) is a technique used to learn how alterations to input 
parameters affect output results. This will help us deter-
mine which input parameters had an effect on the output. 
Here, the Cosine Amplitude Method (Biswas et al., 2021) 
is employed to determine the input-to-output mapping (CS) 
of a finite-response-plate (UHPC) system. The data pairings 
in this study are represented in a data array X, as follows in 
Eq. 2–4.

and variable xi in X, is a length vector of m as in Eq. 7.

The correlation between the strength of the relation (Rij) 
and datasets of xi and xj is provided by in Eq. 8.

Figure 6 presents a graphical representation of Rij, illu-
minating the connection between the input bias structure of 
UHPC and the parameters used to generate it. With a strength 
value of 0.87, age is the strongest predictor of CS of UHPC, 

(2)X =
{
x1, x2, x3,… , xi,… , xn

}

(3)xi =
{
xi1, xi2, xi3,… , xim

}

(4)Rij =

∑m

k=1
xikxjk

�∑m

k=1
x2
ik

∑m

k=1
x2
jk

followed by SF (0.81) and GGBS (0.72). The relative strengths 
of the parameters T and Cement are approximately 0.71 and 
0.69. The strength values for CA and FA both seem to be 0.64, 
however SP's value is significantly lower as 0.22. All eight 
characteristics should be taken into account when forecasting 
output since they have significant influences on the interfacial 
bond strength.

Performance parameters

It is essential to evaluate the performance of machine learning 
(ML) models during the training and testing phases to ensure 
the model will perform satisfactorily on future, unseen data in 
terms of accuracy, robustness, and generalization capabilities. 
To evaluate how well machine learning models predicted the 
target, statistical indicators could be used. In this study, the 
performance parameters may be divided into error measuring 
parameters such as (RMSE, MAE, RSR, and WMAPE) and 
parameters for trend measurement as  (R2, VAF, PI and WI) 
were used to evaluate the prediction accuracy of each indi-
vidual model, using Eq. 5–12 respectively. The ideal values of 
these performance parameters are listed in Table 3.

(5)R2 =

∑n

i=1
(yi − ymean)

2 −
∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − ymean)

2

(6)PI = adj.R2 + 0.01VAF − RMSE

(7)VAF(%) = (1 −
var(yi − ŷi)

var(yi)
) × 100

Fig. 6  Sensitivity analysis

Table 3  Ideal values of different 
performance parameters

Indices R2 PI VAF WI RMSE MAE RSR WMAPE

Ideal Value 1 2 100 1 0 0 0 0
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where y and ŷ are the actual and estimated output; n is the 
total number of observations; ymean is the average of the 
actual values.

Results and discussion

In this part, we discuss the contributions made by the dif-
ferent forecasting models. The methodology section evalu-
ates the UHPC using nine design parameters (SF, GGBS, C, 
SP, CA, FA, T and age). In preparation for this procedure, 
test were performed in the lab as mentioned in “Mixture 
Proportion”, “Compressive Strength Test Methods” and 
total 308 results were obtained for different combination 
of input parameter. The whole dataset is going to be tested 
and trained separately. After that, the dataset that was used 
for training was the one that was used to generate proposed 
models and the dataset that was used for testing was the 
one that was used to evaluate the generalization potential 
and robustness of the models that were developed. In order 
to validate the robustness of the models, the performance 
indicators are estimated and evaluated immediately. In the 
next subsections, a comparative analysis of the parametric 
configuration of the models that were used in the study is 
provided for the predictive capacity of the created models. 
This review focuses on the predictive ability of the mod-
els. Lastly,  the most accurate forecasting model will be 
discussed.

Parametric configuration of hybrid models

The ANN model is optimally calibrated using nine optimiz-
ing algorithms, namely GWO, WOA, SSA, GTO, ALO, DA, 
PSO, HHO and SMA, once the experimental results have 

(8)WI = 1 −

� ∑n

i=1
(yi − ŷi)

2

∑n

i=1

��
�̂yi − ymean

�
� +

�
�yi − ymean

�
�
�2

�

(9)RMSE =

√
1

n

∑n

i=1
(yi − ŷi)

2

(10)MAE =
1

n

∑n

i=1

|
|
|
(
ŷi − yi

)|
|
|
n

(11)
RSR =

RMSE
�

1

n

∑n

i=1
(yi − ymean)

2

(12)WMAPE =

∑n

i=1

�
�
�
yi−ŷi

yi

�
�
�
× yi

∑n

i=1
yi

been collected. Due to the random nature of meta-heuris-
tic algorithms, the collection of parametrical parameters, 
i.e.dynamic parameters, has a major influence on optimiza-
tion modelling.Thus, during deployment, it is essential to 
change the dynamic parameters. Using the trial and error 
method, the optimal hidden layer for ANN simulation was 
found to be 10.In this study, deterministic parameters like 
population size, the number of search agents and number of 
iterations were accurately simulated. Hidden neurons were 
taken as 10 and 500 iterations were performed keeping the 
mean square error as a loss function.

Simulation and statistical details of different 
developed models

After developing the models, their performance will be 
discussed in the following subsection. Figure 7 shows the 
stack bar for the training and testing of the above predic-
tion models. Tables 4 and 5 contain all relevant performance 
parameters for the above mentioned models. As indicated, 
all the developed models have succeeded in capturing the 
relationship to predict the fck of UHPC. It was observed 
that ANN-GTO outperformed other models in terms of 
prediction accuracy in training (R2 = 0.9629, VAF = 96.28, 
RMSE = 0.0518, and RSR = 0.1930) stages. Also, in the 
testing phase, the ANN-GTO model outperformed other 
models with R2 = 0.9578, VAF = 95.78, RMSE = 0.0540, 
and RSR = 0.2056. The ANN-GWO was the second-best 
performing model amongst others with R2 = 0.9466 in 
training and R2 = 0.9504 in testing. The ANN-DA and 
ANN-PSO were the least performing model amongst all 
the developed model in training (R2 = 0.8241, VAF = 82.35, 
RMSE = 0.1129 and RSR = 0.4202) and testing (R2 = 0.8076, 
VAF = 80.74, RMSE = 0.1106 and RSR = 0.4401), respec-
tively. It was observed in the study that the use of meta-
heuristic optimization on the conventional model improves 
the performance of the model significantly.

Fig. 7  Stack bar plot
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Accuracy matrix

Recently, a heat map-like graphical assessment known as an 
accuracy matrix has been introduced to better visualize the 
model's effectiveness and explain the values of performance 

indices (Kumar et al.). In this matrix, a number of statisti-
cal parameters are used to show the model's predictivep-
erformance on the training and testing datasets. The per-
formance indicators determined in this study and their 
associated accuracy matrices are shown in Figs. 8 and 9. It 

Table 4  Performance indices for the training dataset

ANN GWO ANN-WOA ANN-SSA ANN-GTO ANN-ALO ANN-DA ANN-PSO ANN-HHO ANN-SMA

R2 0.9466 0.8591 0.9196 0.9629 0.9391 0.8241 0.8690 0.8455 0.8877
PI 1.8289 1.6115 1.7598 1.8723 1.8094 1.5277 1.6354 1.5743 1.6806
VAF 94.65 85.90 91.96 96.28 93.91 82.35 86.90 84.46 88.76
RMSE 0.0621 0.1009 0.0762 0.0518 0.0663 0.1129 0.0972 0.1095 0.0901
WI 0.9859 0.9602 0.9787 0.9903 0.9839 0.9507 0.9635 0.9518 0.9697
MAE 0.0478 0.0821 0.0605 0.0413 0.0548 0.0920 0.0803 0.0926 0.0732
RSR 0.2313 0.3756 0.2835 0.1930 0.2469 0.4202 0.3620 0.4077 0.3356
WMAPE 0.0967 0.1662 0.1225 0.0836 0.1109 0.1862 0.1625 0.1873 0.1482

Table 5  Performance indices for the testing dataset

ANN GWO ANN-WOA ANN-SSA ANN-GTO ANN-ALO ANN-DA ANN-PSO ANN-HHO ANN-SMA

R2 0.9504 0.8736 0.9085 0.9578 0.9369 0.8250 0.8076 0.8602 0.8948
PI 1.8380 1.6429 1.7285 1.8581 1.8022 1.5221 1.4829 1.6056 1.6953
VAF 95.04 87.36 90.77 95.78 93.68 82.27 80.74 85.99 89.48
RMSE 0.0585 0.0934 0.0798 0.0540 0.0660 0.1106 0.1156 0.1024 0.0853
WI 0.9871 0.9653 0.9760 0.9891 0.9836 0.9517 0.9445 0.9570 0.9716
MAE 0.0455 0.0771 0.0629 0.0444 0.0537 0.0901 0.0972 0.0854 0.0689
RSR 0.2228 0.3559 0.3039 0.2056 0.2515 0.4210 0.4401 0.3900 0.3247
WMAPE 0.0936 0.1585 0.1293 0.0914 0.1105 0.1852 0.2000 0.1757 0.1417

Fig. 8  Accuracy matrix for 
training dataset
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compares the actual values of the performance parameters to 
the desired values for each and displays the result as a per-
centage. For example, in this work, we found that the MAE 
for the training subset of the hybrid ANN-GTO model was 
0.0413, whilst the ideal value is 0. (see Table 3). In this way, 
we can conclude that the hybrid ANN-GTO achieved 96% 
((1–0.041327) × 100%) accuracy concerning MAE. On the 
other hand, the values of R2 and PI were obtained as 0.9578 
and 1.8581 in the testing phase respectively, for ANN-GTO 
(see Table 4), which shows that ANN-GTO attained 96% 
((0.9578/1) × 100%) and 93% ((1.8581/2) × 100%) accuracy 
in terms of R2 and PI, respectively. The same method was 
used for all the remaining variables. It should be noted, how-
ever, that factors like VAF, which are calculated in percent-
age terms, must first be transformed into their decimal form 
before the process mentioned above can be carried out.

Taylor diagram

Figures 10 and 11 illustrate how the performance of the hybrid 
ANN-GTO models on both the training and testing datasets 
can be analyzed using the Taylor diagram (2001). This graph 
is used to evaluate the accuracy with which the models can 
anticipate the desired result. Authors evaluate the models' rela-
tive merits using three statistical measures (RMSE, correlation 
coefficients and standard deviation ratios). The average root-
mean-square-error (RMSE; the distance from the measured 
point) is used as a benchmark. The correlation coefficient and 
standard deviation are both set to 1 for the reference model. 
The graph demonstrates that all nine hybrid models had stand-
ard deviation and correlation coefficient values for the training 

phase that were quite close to one. A conclusion that can be 
drawn from the graph is that the ANN-DA model had the low-
est correlation during training whilst the ANN-GTO model 
provided the best performance, followed by the ANN-GWO 
model. Out of all nine hybrid models of ANN, the ANN-GTO 
model had the best performance for the testing dataset. As a 
result, it is possible to draw the conclusion that the ANN-GTO 

Fig. 9  Accuracy matrix for test-
ing dataset

Fig. 10  Taylor diagram for the training stage
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model has the best overall performance because it produced 
satisfactory results for both datasets. 

Uncertainty analysis

Uncertainty analysis is used to determine the predictive mod-
els' uncertainties, demonstrating the accuracy of trained mod-
els in predicting future outcomes.The error mean e and the 
standard deviation of the prediction error  Se are determined 
as demonstrated in Eq. 12 and 13 respectively.

(13)e =
1

n

n∑

i=1

ei

where  ei denotes an individual error in prediction. When 
the mean error is positive, the trained model overestimated 
the data, and when it is negative, the trained model under-
estimated the data. Using the mean and standard deviation 
of an error, the Wilson score method without continuity 
correction can be used to determine a confidence interval 
around the predicted values of an error. Table 6 and Figs. 12 
and 13 illustrate the results of the uncertainty analysis for 
the proposed model. The results show that, in comparison 
to other models, ANN-GTO obtains lower values of band 
width (0.1016 and 0.1057) for training and testing data. 

(14)Se =

�
∑n

i=1

�
ei − e

�2

n − 1

Fig. 11  Taylor diagram for the testing stage Table 6  Results of uncertainty analysis

Mean Error Width of 
uncertainty 
band

95% prediction error Interval

ANN-GWO
 Training 0.0003  ± 0.1218 − 0.1215 to 0.1220
 Testing 0.0005  ± 0.1147 − 0.1141 to 0.1152

ANN-WOA
 Training 0.0022  ± 0.1977 − 0.1954 to 0.1999
 Testing 0.0040  ± 0.1830 − 0.1790 to 0.1870

ANN-SSA
 Training 0.0007  ± 0.1493 − 0.1486 to 0.1499
 Testing − 0.0025  ± 0.1564 − 0.1588 to 0.1539

ANN-GTO
 Training − 0.0010  ± 0.1016 − 0.1026 to 0.1006
 Testing − 0.0027  ± 0.1057 − 0.1084 to 0.1030

ANN-ALO
 Training 0.0010  ± 0.1300 − 0.1290 to 0.1309
 Testing 0.0012  ± 0.1294 − 0.1282 to 0.1306

ANN-DA
 Training − 0.0030  ± 0.2211 − 0.2241 to 0.2182
 Testing 0.0010  ± 0.2167 − 0.2157 to 0.2177

ANN-PSO
 Training − 0.0013  ± 0.1906 − 0.1918 to 0.1893
 Testing − 0.0087  ± 0.2259 − 0.2346 to 0.2172

ANN-HHO
 Training − 0.0279  ± 0.2075 − 0.2355 to 0.1796
 Testing − 0.0288  ± 0.1927 − 0.2215 to 0.1639

ANN-SMA
 Training − 0.0040  ± 0.1765 − 0.1805 to 0.1725
 Testing − 0.0042  ± 0.1669 − 0.1711 to 0.1627

Fig. 12  Uncertainty analysis for the training stage
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Conclusion

In this work, nine hybrid ANNs were used to estimate the 
CS of the concrete cast using manufactured sand. Spe-
cifically, nine widely used ML algorithms, namely GTO, 
GWO, WOA, SSA, ALO, DA, PWO, HHO and SMO were 
utilized to optimize the weights and biases of ANNs. For 
training and validation of the constructed ANNs, a total 
of 308 samples which consisting of nine distinct input 
variables, were acquired. The inputs were selected based 
on the influence on the strength using Pearson correla-
tion and sensitivity analysis. As per the estimated results, 
the developed ANN-GTO was the best-fitted model in 
both TR (R2 = 0.9629, VAF = 96.28, RMSE = 0.0518, 
and RSR = 0.1930) TS  (R2 = 0.9578, VAF = 95.78, 
RMSE = 0.0540, and RSR = 0.2056) phases. This result 
is suggestively better than the approaches, including the 
AN BBO, ANN-DE, ANN-GA, ANN-PSO, and ANN-SA 
models. According to the overall results, the suggested 
ANN-GTO model can be considered a capable alterna-
tive for estimating the CS of UHPC concrete. Similar 
results were concluded from the other studies like Tay-
lor Diagram, accuracy matrix and uncertainty analysis 
of the parameters. The key advantages of the suggested 
ANN-GTO model are (a) optimized weight and biases 
generated through 15,000 solutions, which is a multipli-
cation of population size and maximum iteration count; 
(b) faster convergence; and (c) higher generalization abil-
ity. Despite these advantages, the proposed ANN-GTO 
model's computational cost is very high. This is one of 
the limitations. Another constraint is the searching space 
configuration of the GTO algorithms' parameters, which 
confines the position of the particles because several runs 
must be performed to get the best results. Consequently, 
the future work should include (a) construction and vali-
dation of other hybrid models based on an extensive 
database (b) implementation of other hybrid ANNs for a 
comparative evaluation of results (c) implementation of 
recently developed MH algorithms; and (d) development 

and implementation of an improved version of the GTO 
algorithm to estimate the desired output at a low computa-
tion cost.
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