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Abstract
Post-tensioned rocking steel bridge piers are round tubes with welded circular base plates. A post-tensioned (PT) tendon 
or gravitation loads are utilized to compress the structure's foundation. In this research, an artificial neural network (ANN) 
model and six machine learning (ML) techniques were considered to determine which would be most effective at predicting 
the lateral cyclic response of PT base rocking steel bridge piers. These ML techniques included linear regression, support 
vector regression, decision trees, K-nearest neighbors, random forests, and extreme gradient boosting. Factors such as tendon 
cross-sectional area, initial post-tensioning ratio, dead-load ratio, base plate thickness, and base plate extension were taken 
into account. Column diameter, column diameter-to-thickness ratio, column height-to-diameter ratio, and column height 
were also taken into account. The study takes into account the residual drift of the columns, the shortening of the columns, 
the ratio of the degraded stiffness to the starting stiffness, the maximum lateral strength to the uplift force, and the lateral 
strength reduction ratio as response factors. The proposed strategy was tested using a number of statistical measures, such 
as R-squared  (R2), root mean square error (RMSE), and mean absolute error (MAE). When compared to the other models 
under consideration, the random forest based model is recommended due to its superior prediction performance, as measured 
by a greater coefficient of determination and a lower error estimate.

Keywords Post-tensioned · Rocking steel · Bridge piers · Prediction tool · Artificial neural network (ANN) models · 
Machine learning (ML) techniques

Introduction

In recent decades, post-tensioning techniques have been 
widely used to control swaying on bridge piers (Marriott 
et al., 2009). Bridge piers built with this idea in mind can 
withstand seismic vibrations and return to their former shape 
afterward. Posttensioned (PT) base rocking steel piers have 
lately been the subject of an investigation into their potential 
as a cost-effective alternative to concrete piers (Ahmad et al., 

2021). A round steel tubular column is incorporated into the 
design of the proposed pier construction. This column is 
joined to a circular base plate that is welded together. A PT 
tendon is an additional component of the framework, and it 
has additional energy dissipators (EDs). The occurrence of 
gap opening at the connection interface due to the rocking 
mechanism gives high deformation capacity when subjected 
to lateral loading in the presence of nonlinearity in the mate-
rial. When exposed to a certain stimulus or circumstance, 
the pier exhibits a hysteresis response that can be described 
as having the shape of a flag. In addition, it has been noticed 
that, when subjected to seismic activity, the pier exhibits a 
hysteresis response matching that of a flag, with residual 
displacements that are either limited or minimal. This has 
been observed to be the case. Because it is simple to cre-
ate pre-fabricated columns on-site, the method may be an 
option worth considering for accelerated bridge construction 
(ABC), which refers to the process of building a bridge in a 
shorter amount of time. Because of the possible application 
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of this model in areas that are prone to seismic activity, the 
creation of an efficient and accurate model for predicting the 
lateral reaction of the system is of the utmost importance. 
Despite this, there are no prognostic models in the literature 
that are accessible to the public that can accurately predict 
the response of the system in question (Wakjira et al., 2022).

There has been a major uptick in interest in the applica-
tion of machine learning and deep learning techniques in 
the field of earthquake and structural engineering (Flood, 
2008). It's possible that the ability of machine learning (ML) 
models to forecast the connection between independent and 
dependent variables is the root cause of this phenomenon. 
These models don't require prior knowledge of the underly-
ing physical or mathematical models to make these predic-
tions. A great number of studies have been carried out with 
the objective of predicting the reaction of a wide variety 
of structural components by employing machine learning 
models that have been trained on data obtained from experi-
mental as well as numerical simulations.

A novel hybrid intelligent model has been developed by 
Keshtegar et al. (2021) to predict the maximum capacity of 
an reinforced concrete shear wall (RCSW) structure before 
it fractures. Thaler et al. (2021) developed a Monte Carlo 
simulation method for engineering structures with nonlin-
ear behavior that incorporates machine learning and other 
forms of artificial intelligence. Naser et al. (2021) examined 

the use of machine learning methods inspired by nature to 
uncover previously unknown correlations between geomet-
ric and material parameters that affect CFST column load 
capacity. Almustafa and Nehdi (2020) applied the random 
forests technique to estimate the maximum movement of 
blast-exposed reinforced concrete slabs. In addition, a 
machine learning model with thirteen features was presented 
to predict the maximum displacement of blast-exposed rein-
forced concrete columns (Almustafa & Nehdi, 2022). Rah-
man et al. (2021) estimated the shear strength estimation of 
steel fiber reinforced concrete (SFRC) beams using eleven 
ML models. Rofooei et al. (2011) employed artificial neural 
network (ANN) models to assess the seismic vulnerability 
of concrete structures with moment resistant frames. Nguyen 
et al. (2021) proposed an ANN model for estimating the 
shear strength of polymer concrete beams reinforced with 
fibers. Dey et al. (2020) used several popular corrosion 
models to estimate the useful life of reinforced concrete 
buildings, then compared those results to those generated 
by an artificial neural network. Bardhan et al. (2022) created 
a high-performance machine learning system to calculate 
the ultimate load-carrying capacity of concrete-filled steel 
tube columns. Kaveh and Khalegi (1998) trained an ANN 
using backpropagation algorithm, neural nets with one, two 
and three hidden layers model for different types of concrete 
mixes to predict the strength of concrete. They used the best 

Table 1  Input parameters

Parameters Values

Column diameter dc(mm) 762, 1066.8, 1371.6, 1828.8
Column diameter-to thickness ratio dc∕tc 30, 30.545, 33.6, 34.286, 36, 39.273, 40, 41.143,42, 43.2, 

43.605,44.308, 48,52.364, 53.381, 54, 56, 57.6, 60, 61.047,61.714, 
67.2, 68.493

Column height-to diameter ratio hc∕dc 4, 5, 6
Cross-sectional area of tendon to column ratio Apt∕Ac(%) 2, 4, 6
Tendon prestressing ratio fpt,0∕fpt,u(%) 10, 30, 50
Dead load ratio P∕Acfy,c(%) 10.0, 12.5, 15.0
Base plate thickness tbp(mm) 25.4, 50.8, 76.2
Base plate extension ebp(mm) 50.8, 101.6, 152.4

Table 2  Hyperparameters of 
machine learning models most

Machine learning 
models

Hyperparameters Response variables

δres∕hc δshort∕hc Kdeg∕Kini Vmax∕Vup,rigid

LR number of jobs None None None None
SVR C 5 5 10 10
KNN Number of neighbors 10 10 5 15
DT maximum depth 15 12 14 12
RF Number of estimators 80 50 50 60
XGBoost Number of estimators 500 400 300 250

learning rate 1 0.9 0.8 0.9
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networks to provide accurate predictions about the strength 
of concrete blends with minimum error. To determine the 
connection between fiber angle and buckling capacity of the 
cylinders under bending induced loads, Kaveh et al. (2021) 
studied various ML approaches. Naderpour and Mirrashid 
(2020) used an innovative ANN model to predict the shear 
strength of concrete beams reinforced with fiber reinforced 
polymer (FRP) bars. The punching shear strength of two-
way reinforced concrete slabs can be predicted using a neu-
ral network model developed by Tran and Kim (2021). In 
order to create an ANN model, they utilized a total of 218 
test data taken from the relevant literature. For forecasting 
the ultimate buckling load of composite cylinders, Kaveh 
et al. (2021) used several machine learning approaches.

In order to predict the lateral cyclic response of rocking 
steel bridge piers, this research aims to develop cutting-edge 
physics-based ML techniques such as linear regression, sup-
port vector regression, decision tree, random forest, artifi-
cial neural network, k-nearest neighbors, and XGBoost. The 
purpose of this research was to assess and contrast the per-
formance of various ML models and ANN frameworks. By 
comparing results, we can gauge the accuracy and precision 
of the predictions made by the various ML models.

This research demonstrates innovative utilization of the 
ANN framework and ML models to predict various lateral 
cyclic reactions of rocking steel bridge piers. These various 
lateral cyclic reactions include column residual drift, column 
shortening, the ratio of degraded stiffness to initial stiffness, 
the maximum lateral strength to uplift force ratio, and the 
lateral strength reduction ratio. The recognition that, in con-
trast to statistical or mathematical methods that require a 
predetermined model, the machine learning algorithms ena-
ble the discovery of patterns and relationships in complex 
datasets serves as the motivation for employing machine 
learning and deep learning models in this research study.

In the current investigation, an input vector consisted 
of eight different parameters that have an effect on the lat-
eral cyclic response of PT-base rocking steel bridge piers. 

These parameters consist of the following: column diam-
eter ( dc ), column diameter-to-thickness ratio ( dc∕tc ), column 
height-to-diameter ratio ( hc∕dc ), cross-sectional area of the 
tendon to column ratio ( Apt∕Ac ), tendon prestressing ratio 
( fpt,0∕fpt,u ), dead load ratio ( P∕Acfy,c ), base plate thickness 
( tbp ), and base plate extension ( ebp ). The research looked into 
a number of response characteristics, including maximum 
lateral strength to uplift force ratio, column residual drift, 
ratio of column shortening to height, ratio of degraded stiff-
ness to beginning stiffness, and ratio of degraded stiffness 
to initial stiffness. The study investigated several response 
variables, including the column residual drift ( δres∕hc ), col-
umn shortening to height ratio ( δshort∕hc ), ratio of degraded 
stiffness to initial stiffness ( Kdeg∕Kini ) and maximum lateral 
strength to uplift force ratio ( Vmax∕Vup,rigid).

In this context, the symbol ( tc ) represents the thickness 
of the column wall, ( Apt ) denotes the area of the tendon, 
( Ac)represents the cross-sectional area of the column, ( fpt,0)
stands for the prestressing force of the tendon, ( fpt,u ) denotes 
the ultimate strength of the tendon, ( P ) represents the load 
of the superstructure, and ( fy,c ) denotes the yield strength of 
ASTM A252-19 Gr (2019) in relation to the column. Three 
tubes were subjected to experimental measurement, result-
ing in a value of 415 MPa. The input parameters used to 
develop the models are presented in Table 1. All the input 
parameters, except for ( dc ) and ( dc∕tc ), were assigned three 
distinct values, as delineated in Table 1. The column diam-
eter was observed to exhibit four distinct values, while a total 
of 23 different values for the ( dc∕tc ) ratio were considered, 
as observed in Table 1.

Machine learning models

In this study, we tested six different approaches to predict-
ing punching power. Linear regression, K-nearest neighbors 
(KNN), support vector regression (SVR), decision tree (DT), 
random forest (RF), and extreme gradient boosting (xgBoost) 

Fig. 1  Structure of the artificial 
neural network (Bu et al., 2021)
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are only a few of the Machine Learning approaches used for 
prediction. Linear regression is a statistical method in which 
the input variables and the output variables are assumed to 
have linear connections. K-nearest neighbors (KNN) is a 
non-parametric machine learning approach whose output is 
a weighted average of the K-nearest neighbors. In DT, the 
dataset is broken down into a hierarchy of simple judgments, 
where each branch relies on just one or a small number of 
input features. As a result, the information is structured in 
this tree. The goal of SVR is to develop a prediction equa-
tion that yields a result within the allowed error range, based 
on the expected result. The estimated result of using RF is 
the average of a series of trees constructed using a random 
vector drawn independently of the input vector. AdaBoost 
and xgBoost are the latest developments in the line of boost-
ing methods, which take several relatively weak classifiers 
and merge them into a single robust one. The definitions 
of the weak classifiers are such that they greatly improve 
prediction performance when used in conjunction with one 
another. Each leaf in the tree is given a continuous score as 
it is developed in xgBoost (Mangalathu et al., 2021). Table 2 
displays the optimum values for the hyperparameters of the 
machine learning models.

Artificial neural networks

In machine learning, artificial neural networks (ANNs) 
rely on mathematical techniques founded on the principle 
of interconnected layers of nodes. An ANN is a type of 
specialized artificial intelligent (AI) built to identify and 
address complex issues and events. While it is possible to 
draw parallels between neural networks and traditional digi-
tal computing methods, it is essential to remember that neu-
ral networks have several additional benefits. For instance, 
high precision is frequently used in conjunction with the 
similarity between processing modes and distributed data 
storage. Furthermore, after the training phase is complete, 
these methods show remarkable resilience and the ability to 
learn from and use new information. In most cases, an ANN 
will consist of a layer of input neurons, which will then typi-
cally be followed by other layers of interconnected neurons. 
As shown in Fig. 1, the neurons are able to make predictions 
regarding the results of a certain process. According to Rafiq 
et al. (2001), the interface that exists between the layers is 
built on the basis of the link weights. An ANN is a compu-
tational structure that can be claimed to be made of several 
straightforward modules and intricately linked processing 

entities. This can be said as a description of what an ANN 
is. These components analyze data while responding in a 
dynamic state to input from the outside world (Bu et al., 
2021).

A capability of an ANN is the ability to acquire skill in 
retaining the traits or properties of data that are bestowed 
upon it. This enables the ANN to build connections or paral-
lels between new data and data that it has already seen, with 
different degrees of success. The fundamental purpose of the 
hidden layers is to serve as either a connector or a carrier of 
information. The architecture makes it easier for the neural 
networks to derive a non-linear association from the dataset 
that is being supplied to them. An ANN with reference to 
a specific neuron nj is composed of six fundamental com-
ponents: inputs ( pi ), bias ( bj ), weights ( wij ), the respective 
sum function (n)j, activation function (f), and outputs ( aj ) 
as illustrated in Fig. 1.

The term "input" refers to a piece of information that 
is considered to be a decision variable and that originates 
either from the external environment or from the neurons 
themselves. Inputs can come from either source. Weights 
provide numerical numbers that can be used to measure the 
influence that various process elements and input factors 
have on one another. There is a possibility that the procedure 
of initialization will result in the development of arbitrary 
weight values. The operation that is widely known as the 
"sum function" is used to thoroughly reflect the combined 
influence of inputs and related weights while also account-
ing for a predetermined bias value in the provided process 
element. This is accomplished by using the operation that 
is commonly known as the "sum function". This concept is 
mathematically described by Eq. 1:

i = [1;k] denote  the  index  of the ith input neuron, 
j = [1;m] denote the index of the jth output neuron, k = sig-
nifies the total number of units contained within the ith input 
vector, bj = denotes the bias of the jth node, which is the 
activation threshold.

The activation function or transfer function, commonly 
represented by the log-sigmoid function or the hyperbolic, 
is an operable function that processes the input value (n)j, 
and subsequently determines the corresponding output value 
according to the formula stated in Eq. 2:

(1)(n)j =

i=k∑

i=1

wijpi + bj

Table 3  Parameters of the ANN 
model

Method Learning rate Epoch Activation Function Inputs Hidden Layers (HL) Outputs

ANN 0.0015 35 ReLu 8 3 1
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The variable (a)j denotes the output of the jth neuron, 
while the constant �  serves as a control parameter that regu-
lates the slope of the semi-linear region and it is common 
to assign a numeric value of 1 to this parameter (Bu et al., 
2021).

Python was the chosen programming language for the 
creation of the neural network model that was utilized in this 
investigation. For the objectives of data preprocessing and 
management, libraries such as Pandas, Numpy, and Scikit-
Learn are utilized. The model was developed with the help 
of three hidden layers, each of which had sixty-four neurons 
(Table 3). The training phase was provided with access to 
75% of all of the available data for its own purposes. For the 
purpose of testing, in accordance with our methodology, a 
subset that was chosen at random and consisted of 25 percent 
of the data that was left over was allotted. The parameters 
for the ANN model are outlined in Table 3, which provides 
an overview of these parameters.

Modeling metric for evaluation

Through the application of performance metrics, the accu-
racy of the suggested system as well as the error quantifi-
cation could be determined. In statistical analysis, the  R2 
coefficient, also known as the coefficient of determination, 
is the most important parameter that is taken into account. 

(2)(a)j = f (n)j =
1

1 + e−�(n)j

This metric provides a numerical value ranging from 0 to 1 
that measures the proportion of a variable's variance that can 
be accurately attributed to a particular explanatory variable. 
This value can be stated as a proportion of the total vari-
ance. The above phrase refers to a metric that, expressed by 
a numerical value, quantifies the degree to which a model 
elucidates the data that is at hand. The coefficient of deter-
mination,  R2, can take on any value from 0 to 1, with 0 being 
the smallest and 1 being the greatest. As the value of  R2 
gets closer to 1, the likelihood that the predicted value will 
be within a reasonable distance of the experimental value 
increases, as shown by Eq. 3:

In predictive modeling, a performance evaluation metric 
known as the root means square error (RMSE) is produced 
by taking the square root of the mean square error. This 
metric is extensively used. It provides a numerical repre-
sentation of the typical amount by which a data point devi-
ates from the value that was anticipated by the model that 
is being considered. A smaller value for the RMSE is posi-
tively connected with the efficacy of the model, as shown 
in Eq. (4):

The mean absolute error (MAE) formula is denoted as 
Eq. 5

(3)R2 = 1 −

∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − y)

2

(4)RMSE =

√√√√ 1

N

N∑

i=1

(yi − ŷi)
2

(5)MAE =
1

N

N∑

i=1

|yi − ŷi|

Table 4  Performance measures 
for the various machine leaning 
models

Response Machine learning models

ANN DT XGBoost KNN Linear SVR RF

δres∕hc R2 
RMSE
MAE

0.95
0.025
0.010

0.97
0.019
0.004

0.90
0.038
0.022

0.84
0.047
0.016

0.35
0.097
0.061

0.80
0.053
0.044

0.98
0.015
0.004

δshort∕hc R2

RMSE
MAE

0.94
0.014
0.006

0.95
0.013
0.002

0.90
0.018
0.010

0.81
0.025
0.007

0.32
0.049
0.029

0.48
0.043
0.034

0.96
0.011
0.001

Kdeg∕Kini R2

RMSE
MAE

0.97
0.036
0.030

0.97
0.032
0.016

0.98
0.029
0.018

0.97
0.035
0.024

0.88
0.075
0.059

0.95
0.048
0.038

0.98
0.026
0.013

(Vmax∕Vup,rigid) R2

RMSE
MAE

0.98
0.013
0.011

0.98
0.015
0.009

0.99
0.006
0.008

0.97
0.019
0.009

0.76
0.059
0.043

0.81
0.052
0.046

0.99
0.008
0.004
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Results and discussion

The inclusivity and arrangement of the data that is used for 
training purposes, as well as the extent of the volume of the 
data, all have a substantial impact on the effectiveness of a 
network. In the current investigation, a database was utilized 
that contained information on the lateral quasi-static cyclic 
response of post-tensioned steel bridge piers (Wakjira et al., 
2022).The neural network model was educated employing 

the keras module, which was then implemented atop the 
Tensorflow backend. In the pre-learning phase, one of the 
most important steps is looking for hyperparameters. Table 3 
presents the hyperparameters that, after optimization, best 
represent the models. The use of statistical analysis indica-
tors allows for the evaluation of the optimized models in pre-
dicting the seismic response of rock and steel bridge piers. 
In the course of this study, the models that were used to 

Fig. 2  Loss plot in ANN model for: a δres∕hc ; b δshort∕hc ; c  Kdeg∕Kini; d ( Vmax∕Vup,rigid)
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forecast the seismic response of rock and steel bridge piers 
were optimized.

A number of different metrics, including the coefficient of 
determination  (R2), the RMSE, and the MAE, are computed 
in order to determine each method's performance. The  R2 
value illustrates how close the proposed formulation may get 
to matching the observed values from the experiment. The 
root means square error, also known as the RMSE, is a cost 
function that actively contributes to the learning process of 
the algorithm. A good predictor model will have values that 
are closer to  R2 value of 1.0, as well as RMSE and MAE val-
ues that are lower than those values. According to the find-
ings of this investigation, the random forecast (RF) model 

had the highest  R2 and the lowest RMSE values compared 
to all of the other models that were taken into consideration.

The performance of the various ML models was analyzed 
using the three performance indicators, and the results are 
shown in Table 4. According to statistics, a model is con-
sidered to have strong performance when the  R2 value of 
the model is high and the error measures associated with 
the model are correspondingly low. Table 4 displays that the 
 R2 value for the RF model's prediction of residual drift has 
the highest value (0.98), while the MAE and RMSE values 
have values of 0.004 and 0.015, respectively. When it comes 
to predicting residual drift, the DT model achieves the next-
highest value of  R2, which is 0.97, and it has RMSE values 
of 0.019. These data provided evidence that the RF model 

Fig. 3  RMSE plot in ANN model for: a δres∕hc ; b δshort∕hc ; c  Kdeg∕Kini; d ( Vmax∕Vup,rigid)
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Fig. 4  Comparison of predicted 
and actual residual drift: a 
ANN; b Linear; c SVR r; d 
KNN; e DT; f RF; g XGBoost
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Fig. 5  Comparison of predicted 
and actual column shortening to 
height ratio: a ANN; b Linear; 
c SVR r; d KNN; e DT; f RF; g 
XGBoost
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Fig. 6  Comparison of predicted 
and actual degraded stiffness to 
initial stiffness ratio: a ANN; b 
Linear; c SVR; d KNN; e DT; f 
RF; g XGBoost
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Fig. 7  Comparison of predicted 
and actual ratio of maximum 
lateral strength to uplift force: a 
ANN; b Linear; c SVR; d KNN; 
e DT; f RF; g XGBoost
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is superior to the other models in terms of how accurately 
it can make predictions. It has been demonstrated that the 
linear model has the worst performance when it comes to 
forecasting residual drift. This can be seen from the fact 
that its  R2 value is the lowest (0.35) and its MAE value the 
highest (0.061). In Fig. 2 and 3, the plot of loss and RMSE 
is depicted against the epoch number for the ANN model. As 
can be seen, As the number of iterations increases, the root-
mean-square error of the training and testing set exhibits a 
decreasing trend.

One of the most important variables that might affect 
the seismic performance and functioning of rocking bridge 
piers after a seismic event is residual drift ( δres∕hc ). Fig-
ure 4 presents scatter plots that demonstrate the residual drift 
forecast and actual residual drift comparison. The 45-degree 
concealed line in these graphs illustrates the exact match 
between the anticipated and actual values of δres∕hc . On 
both the train and test sets, each figure also displays the 
coefficient of determination  (R2). The complicated nonlinear 
relationship between the predictors and the response vari-
able, δres∕hc , could not be accurately captured by the linear 
regression algorithm as shown in Fig. 4.

Figures 5, 6, 7 show scatter plot of anticipated against 
actual values for δshort∕hc , Kdeg∕Kini , and.(Vmax∕Vup,rigid ), 
respectively. Similarly to the residual drift, the relationship 
between the input features and the response variables was 
not represented using linear regression models.

Conclusions

The purpose of this research was to determine whether or not 
it would be possible to forecast the lateral cyclic response 
of PT base rocking steel bridge piers using an ANN model. 
Column residual drift, column shortening, ratio of deterio-
rated stiffness to initial stiffness, maximum lateral strength 
to uplift force ratio, and lateral strength decrease ratio were 
the response variables that were investigated in this study. 
In this analysis, we tested several theorized predictive char-
acteristics. These variables included the diameter of the col-
umn, the ratio of column diameter to thickness, the ratio of 
column height to diameter, the cross-sectional area ratio of 
tendon to column, the prestressing ratio of tendon, the ratio 
of dead load, the thickness of the base plate, and the degree 
to which the base plate was extended. All of these variables 
were compared to one another to determine which one had 
the greatest influence. The models were educated and vali-
dated using a dataset that had more than 18,000 distinct data 
points. The model errors, which are determined using statis-
tical metrics such as  R2, RMSE, and MAE, shows that there 
are only very slight deviations between the values that were 
predicted and those that were actually observed. The results 
of this research showed that an upgraded version of the RF 

model could precisely and effectively estimate the lateral 
cyclic reactions of PT-based rocking steel bridge piers.
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