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Abstract
This study encompasses a Finite Element (FE) analysis simulation approach and assessment of ultimate behavior responses 
of the Reinforced Concrete (RC) beam using the Analysis System (ANSYS) tool. The configuration of the 3D beam model 
is generated in APDL graphical user interface for validation. The developed FE model used smear-type cracks for concrete 
and a discrete reinforcement method for steel bars. The crushing and cracking phenomenon of the FE beam is modeled 
using William and Warnke’s method and Von-mises failure criteria. The FE analysis load–deflection plots are corroborated 
through the available tested curves in the literature, and it found that both curves are in accordance. The FE evaluated ultimate 
results show a maximum disparity of 9% with the tested beam results. The average ratio of numerically predicted yield load 
and deflection with the experimental beam are 1.05 and 1.07, respectively. The average percentage of numerically evalu-
ated ultimate load capacity and deflection exhibit 1.07 and 1.01, respectively, against the experimental beam. Furthermore, 
the numerically validated model is used to examine the flexural response under different strain magnitudes (εtn) of tensile 
reinforcement at the nominal stage. The transition-controlled (TRC) and compression-controlled (CC) beam predicted an 
ultimate moment capacity of 61.42 and 92.92% higher than those of tension-controlled (TRC) beams. The TRC and CC 
beams showed a 35.54 and 62% reduction in ductility against the TC beam.

Keywords Flexural capacity of RC beam · Numerical modeling · Limiting strain of tensile reinforcement · Free-vibration 
response · Crack evolution

Abbreviations
FEA  Finite element analysis
APDL  ANSYS parametric design language
fck  Characteristic strength (compressive) of concrete
As  Area of tensile steel bar
d  Beam effective depth
IS  Indian standard
Mn  Nominal moment
Xu  Depth of neutral axis
Ec  Elasticity modulus of concrete
ft  Maximum strength (tensile) of concrete
Py  Beam yield load
Δy  Beam yield deflection
Pu  Beam ultimate load
Δu  Beam ultimate deflection
βt  Shear transfer coefficient

TC  Tension-controlled section
TRC   Transition-controlled section
CC  Compression-controlled section

Introduction

Evaluation of ultimate moment resistance and deflection 
response and nonlinear behavior of structural elements like 
beams is usually made by experimental study. An experi-
mental investigation becomes laborious, and only limited 
results can be obtained. On the other hand, methods like 
numerical analysis deliver comprehensive results at each 
loading interval up to the failure stage. Numerical analy-
sis can be a perfect alternate substitute for the highly com-
plicated and cost involving experimental methods (Kaveh, 
2014; Kaveh et al., 1998; Pandimani et al., 2023). Evaluation 
of load–deflection response and crack progression at crack 
initiation, yielding, and ultimate stage, and the complete 
nonlinear response up to the failure stage, can be efficiently 
predicted by the FE software. The mathematical modeling 
for linear and nonlinear material properties and various 
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constitutive models are presented. This study represents the 
capability of the FE method for assessing the ultimate behav-
ior response of RC beams using the versatile numerical tool. 
ANSYS is a robust and sophisticated numerical tool that pre-
dicts satisfactory results. This study provides ANSYS soft-
ware's comprehensive material and cracks modeling aspects 
and nonlinear simulation strategies to examine the bending 
response under two-point loadings. Perfect bond (no slid-
ing) condition is assumed at the interface between concrete 
and reinforcement, and concrete's nonlinear tensile stiffen-
ing behavior is incorporated into the FE models. Various 
material constitutive laws are incorporated into the numeri-
cal model, representing the experimental beam's different 
element properties. The responses, like the load–deflection 
plot and the load and deflection magnitude at the failure 
of the developed model, are validated with the data of the 
tested RC beam adapted from the previously published arti-
cle. Besides the FE modeling approach, three additional 
RC beam models are generated to investigate the flexure 
response of tension, transition, and compression-controlled 
beam section. Later, the predicted numerical moments at 
failure are verified with the theoretical expression based on 
two national code provisions. The code expression gives a 
nearer prediction and closer agreement with the numerical 
results. Generally, free vibration analysis assesses the pre-
liminary information required for extended dynamic analy-
sis. To investigate the mode shape and natural frequency 
under free vibration response, under various strain limits 
as well as a varying area of tensile steel reinforcements, 
five more numerical models are generated from each cat-
egory of RC beam. The natural frequency and the displace-
ment results are compared with each other. From the past 
literature studies, it is identified that several researchers and 
scholars have used the ANSYS FE analysis tool to corrobo-
rate their tested results and extended the numerical analysis 
for various effective parameters on the RC beam's bend-
ing response. A numerical simulation is done through an 
analysis tool to probe the beam's flexure conduct reinforced 
with an Aramid fiber bar (Buyukkaragoz et al., 2013). The 
predicted results, like load and deflections, correlate well 
with the other two studies. Vasudevan et al., 2013 studied 
the nonlinear response of medium and high grades of con-
crete beams using the ANSYS software (Vasudevan et al., 
2013). The FE models are capable of predicting the ultimate 
failure and correlate well against the tested results. A com-
putational study is performed with two loading methods, 
namely load control and displacement control methods for 
RC beam (Osman et al., 2017; Yousuf et al., 2017). The 
authors performed the analysis using both methods sepa-
rately and verified the computational results with the results 
of the tested beam presented in past works. The authors con-
cluded that the displacement control method gives stiffer 
load–deflection results than the force method. A numerical 

study is conducted to corroborate the experimental hybrid 
steel-FRP reinforced concrete beams (Bui et al., 2018). The 
authors further extended their study by using the validated 
numerical models and explored the ductility behavior of 
hybrid reinforcements under many impact aspects. The influ-
ence of unsymmetrical bending of beams with carbon FRP 
rods under shear behavior is executed numerically (Hawileh 
et al., 2019). The authors stated that the numerical model is 
consistent for assessing the capacity of carbon FRP beams in 
shear, and the results are in good relation to the tested beam 
data. An experimental study and numerical investigation 
were conducted to assess the deflection response of beams 
that had pre-existing cracks and renovated RC beams (Ham-
rat et al., 2020). The FE-evaluated load–deflection plots are 
verified with the tested (RC) beams for different FRP sheet 
types and the number of layers. Hybrid concrete beams con-
taining self-compacting high-strength concrete matrix in the 
compression region and normal-grade concrete in the ten-
sion region are tested experimentally (Hussain et al., 2021). 
The authors studied the influence of the thickness of the 
concrete layer over the compression region and the shear 
reinforcements for a maximum capacity of hybrid beams. 
The testes beam results are later compared with the numeri-
cal models and stated that the load–deflection plots are in 
good agreement. Kaya & Ozcar, 2021 analyzed the one-way 
slab under the influence of openings using the FE model 
(Kaya and Anil, 2021). The predicted numerical results are 
verified against the author's tested beam data and demon-
strated that the FE model predicts closer results. Numerous 
numerical models are generated using the ANSYS tool to 
compare the existing results of experimental data in the lit-
erature (Pandimani et al., 2021a,b, Kaveh et al., 1998; Pan-
dimani, 2023). The validated beam model is utilized later 
to explore several significant aspects which altered the flex-
ural performance of RC beams. Several authors have used 
the artificial neural network (ANN) approach to determine 
the maximum load-resisting capacity of RC beams (Kaveh, 
2014). Among those, Rafooei et al., 2011, used the ANN 
approach to asses the susceptible damage of concrete build-
ings under seismic forces. Two-dimensional buildings with 
varying story heights and numbers were designed using Ira-
nian code. The damage assessment of the building is evalu-
ated through dynamic nonlinear analysis (Rofooei et al., 
2011). Kaveh et al., 2021, did a comparative study using 
different machine-learning methods to evaluate the buckling 
strength of composite cylinders. These techniques are used 
to develop a relationship between the buckling strength with 
the fiber orientation (Kaveh et al., 2021). Kaveh & Khavan-
inzadeh, 2023, studied the strength of an axially loaded con-
crete column with CFRP fibers. The authors used different 
algorithms to predict the strength of concrete with carbon 
fibers (Kaveh & Khavaninzadeh, 2023). Kaveh & Khalegi, 
1980, analyzed the strength of admixtured and plain concrete 
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using the ANN method. Using this approach, the authors 
ascertained the compressive strength at 7 and 28 days for 
several trials mixes (Kaveh et al., 1998). Though the ANSYS 
and ANN models are used in past analysis work for assessing 
the flexural response of RC beams. In this study, the author 
implemented the ANSYS model over the ANN model for 
the following reasons: (i) the ANN model can only analyze 
the beam behavior but can’t provide a graphical display of 
the output result. (ii) The ANN model can’t display the crack 
evolution and progression of RC beams.

Modeling methodology

This section presents the complete linear and nonlinear 
mathematical and crack modeling approach of RC beams in 
the ANSYS domain. The nonlinear material behavior, con-
crete failure criteria, and iteration procedures are explained 
comprehensively.

Concrete linear behavior modeling

The concrete's elastic linear property is defined by Poisson's 
ratio and elasticity modulus (Hawileh, 2015; Sayed, 2009; 
Xiaoming & Hongqiang, 2012). The elastic modulus (E) is 
defined by using the expression 4700 

√
f
′

c
 , and 0.2 Poisson 

ratio (m) is assigned for concrete (ACI, 2019). The isotropic 
material stress–strain matrix is given in Eq. (1).

Concrete nonlinear behavior modeling

Desayi and Krishnan's model, as represented by Eq. (25), is 
employed to define the concrete stress–strain response in com-
pression (Godinez et al., 2015; Ozcan et al., 2009). This sin-
gle expression represents the rising and falling curve profile, 
as illustrated in  Fig. 3a. A concrete stress–strain (tri-linear) 
relationship in tension is represented by the ANSYS default 
model, as shown in  Fig. 3b (Ansys, 2016). The model linearly 
rises upward till rupture (tensile) strength and then vertically 
descends to 0.6 times the maximum tensile strength. Finally, 
it linearly drops to zero stress when the strain magnitude is six 
times the maximum strain, as depicted in  Fig. 3b  (Pandimani 
et al., 2022a, b). The maximum strain (compressive) of 0.003 
is assumed in this study. The failure model adopted by ANSYS 
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well predicts the cracking and crushing failure modes of brittle 
material like concrete. Equation (2) can represent the concrete 
failure stress (multi-axial) (Ansys, 2016).

where F = principal stress function, S = failure surface.
Five parameters, such as  f1,  f2,  fc,  fb, and  fcb, are needed to 

specify the failure surface. However, only  fc and  ft constants 
are sufficient to define the failure surface (Godinez et al., 2015; 
Pandimani et al., 2021(a,b)). The remaining constants can be 
defaulted based on William and Warnke's model as given 
through Eqs. (3) to (5) (William, 1975).

The above-specified equations are said to be effective 
when the ||�h|| ≤ 

√
3 fc . Where,  ||�h||   = Hydrostatic stress 

state = 1
3

(
�xp + �yp + �zp

)
 . When crushing strength  (fc) is equal 

to − 1 (i.e., turned off) and when principal stress components 
exceed ft, the material initiates cracking. The F and S can be 
defined based on principal directions  (r1,  r2, and  r3) (Pandimani 
& Geddada, 2022), where:

where  ft = maximum (cracking) stress,  fc = maximum (crush-
ing) stress,  fcb = maximum biaxial stress in compression, 
 f1 = biaxial (compressive) stress overlaid on the hydrostatic 
state of stress,  f2 = ultimate (compressive) stress overlaid on 
the hydrostatic state of stress, and  rxp,  ryp, and  rzp = direc-
tion of principal stress. The concrete’s failure surface can 
be categorized into 4 categories as illustrated in Eqs. (9) to 
(12) respectively (Ansys, 2016).

1. Comp-Comp-Comp

2. Ten-Comp-Comp

3. Ten-Ten-Ten

4. Ten-Ten-Ten

(2)
F

fc
−S ≥ 0

(3)f1 = 1.45fc

(4)fcb = 1.2fc

(5)f2 = 1.725fc

(6)�1 = max
(
�xp, �yp, �zp

)

(7)�1 = min
(
�xp, �yp, �zp

)

(8)�1 ≥ �2 ≥ �3

(9)0 ≥ �1 ≥ �2 ≥ �3

(10)�1 ≥ 0 ≥ �2 ≥ �3

(11)�1 ≥ �2 ≥ 0 ≥ �3
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The surface of failure for biaxial stress state in 3-D is 
represented in Fig. 1. Which reveals that when the nonzero 
stresses (principal) in σyp and σxp directions, three possible 
surfaces exist that are σzp = 0, σzp > 0, and σzp < 0. The failure 
type of material is dependent on σzp. For example, when 
σzp. is positive, and σyp and σxp both are − ve, cracking may 
typically occur in the σzp-direction. But, when σzp = 0 or -ve, 
concrete crushes occur (Al-Rousan, 2020).

Crack modeling of concrete

Altering the stress–strain relationship by presenting a weak 
plane perpendicular to the crack face, cracking can be mod-
eled at the integration point. Besides, the reduction in shear 
strength at the crack face is taken care of by a shear reten-
tion coefficient (βt). Then the stress–strain matrix concrete 
in unidirectional is given in Eq. (13).

When the KEYOPT (7) of the SOLID65 element = zero, 
 Rt becomes zero, and when it is equal to 1,  Rt becomes 
a slope, as displayed in Fig. 2.  Rt turns to zero when the 
solution converges. Where  Tc = stress (tensile) relaxation 
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factor, which defaults to 0.6. When the crack closes, a 
coefficient (βc) for shear retention is introduced. In this 
instance, all the stresses (compressive) perpendicular to 
the crack's plane are transferred through the crack. Conse-
quently, the resulting matrix altered, as given in Eq. (14)

The stress–strain matrix becomes as given in Eq. (15) 
when the cracking originates along two/three directions, 
and they are closed.
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Fig. 1  Failure surface of the concrete in a biaxial stress state (God-
inez et al., 2015)

Fig. 2  Strength of concrete under cracked conditions (Ansys, 2016)

Fig. 3  Newton–Raphson iteration method (Wolanski, 2004)
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The following expression defines the transformation of [
Dck

c

]
  to element coordinates:

where, 
[
Tck

]
 = transformation matrix. But, the status of 

cracking (open or closed) depends on a strain εck
ck

 .. When no 
cracking has occurred then,

When cracking occurred in the y-direction then,

When both y and z directions have cracked then,

where,
εck
x

 �ck
y

 , εck
z

 = normal components of strain in crack 
direction.

The vector εck
x

 can be assessed as given in Eq. (20).

where, n = number of sub-steps, 
{
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}
 = elastic strain, {
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 = incremental total strain, 
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n

}
 = incremental ther-

mal strain, 
{
Δ�
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n

}
 = incremental plastic strain. When 

εck
ck

 < zero, the closing of the crack is assumed, and when 
εck
ck

 > zero, the opening of the crack is assumed.

Non‑linear Solutions and convergence criteria

The total load step (applied force) is broken into a sequence 
of force increments, and each load increment is subdivided 
into several sub-steps for doing nonlinear iterations. The 
program default iteration method (Newton–Raphson) is 
adopted to run the nonlinear analysis (Osman et al., 2017). 
After each increment of the load step, this iteration method 
updates the changes that occur in the nonlinearity and is 
reflected in the stiffness matrix before the subsequent load 
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step (Wolanski, 2004). The Newton–Raphson method checks 
the convergence of the solution of each set of load incre-
ments within the specified/default tolerance (force/displace-
ment) limits. The iteration process for unidirectional DOF 
is shown in Fig. 3. An equilibrium equation for nonlinear 
iteration becomes,

where, {Fa} = applied force, {u} = unknown displacement, 
and [K] = stiffness matrix. The nonlinear equation (iterative 
process) can be modified as given in Eqs. (23) and (24).

where, {Fi
nr} = restoring force,  [Ki

T] = Jacobian (tangent) 
matrix, and i = subscript for the current iteration. In this 
analysis, the automatic (time-stepping) option in the solu-
tion control page was adopted for controlling the load incre-
ments (Hawileh, 2015). For this (automatic time stepping) 
option, the user must mention the minimum and maximum 
number of load increments. The solution convergence looks 
for minimum load steps if the behavior is smooth and goes 
for maximum load-step if found to be highly nonlinear. 
When the solution does not converge, the load increments 
can be improved, or the sub-step can be altered (Pandimani 
et al., 2022a,b). The solution generally tends to diverge at 
the occurrence of the first crack (tensile) or later the rein-
forcement yielded, which in turn terminates the iterations. 
A 0.5% and 5% program default tolerance limits for dis-
placement and force vector are assumed initially. But these 
values are increased later when the solution is difficult to 
converge due to the high nonlinearity of concrete elements 
followed by a large displacement. Therefore, the tolerance 
limits were increased to 10% for force criteria by keeping 
the displacement limits as program default (Hawileh, 2015; 
Pandimani et al., 2021a,b). The iteration solution terminates 
abruptly when the numerical displacements exceed the pro-
gram default values.

Finite element modeling of RC beam

Three elements are used to represent the RC beam model in 
the ANSYS domain. The concrete's crushing and cracking 
property is simulated using the SOLID65 element, which 
has 8-node and three translational DOF per node (Ahmad 
& Saleh, 2022; Choobbor et al., 2019; Mustafa & Hassan, 
2018). The elastic–plastic properties of steel reinforce-
ments are represented by two nodes of the LINK180 ele-
ment, which has 3 DOF per node (Godinez et al., 2015). 

(22){Fa} = {u}[K]

(23){Fa} −
{
Fnr
i

}
=

[
KT

i

]{
Δui

}

(24)
{
ui
}
+

{
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}
=

{
ui +1
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To minimize the stress concentration at the support and 
loading points, an 8-node SOLID185 element is used with 
3 DOF per node. To define the stress–strain (compressive) 
relation of concrete, Desayi and Krishnan's proposed multi-
linear curve is adopted, as shown in Fig. 4a (Godinez et al., 
2015). The tri-linear stress–strain behavior is assumed to 
define the tension behavior of concrete by employing the 
default ANSYS data incorporated with a tensile stress reduc-
tion coefficient of 0.6. Steel reinforcements are modeled as 
bilinear isotropic hardening properties, as shown in Fig. 4b. 
The constitutive mathematical expressions employed for 
concrete and steel reinforcements are given in Eqs. (25) to 
(28) and Eqs. (29) to (30), respectively. The four critical 
parameters, namely, coefficients for close and open shear 
strength at the crack, uniaxial cracking, and uniaxial crush-
ing, concern William and Warnke failure criteria and are 
incorporated into the FE model (Sayed, 2019). A value of 
open and closed shear coefficients βt = 1 and βc = 0.3 is used 
in this study. The uniaxial cracking is assigned to SOLID65 
element based on Eq. (28). In contrast, the uniaxial crush-
ing strength is suppressed  (fc

' = − 1) or turned off to prevent 
the premature cracking of concrete elements at the loading 
and support regions (Xiaoming & Hongqiang, 2012). Two 
boundary (displacement) conditions are required to restrain 
the model, similar to the experimental beam. A pinned and 
roller supports are achieved for the FE model by employing 
zero displacement constraints in x, y, z, and y-directions, 
respectively, as displayed in Fig. 7. The loads are applied 
monotonically above the loading plates until the beam fail-
ure occurs by crushing. No real constant is needed for the 
concrete element since the reinforcements are embedded 
inside the concrete element using the discrete reinforce-
ment method (Mustafa & Hassan, 2018. The elastic, per-
fect behavior with the isotropic hardening property of steel 

reinforcement is shown in Fig. 5. The real constant in the 
form of the cross-section area is assigned for steel reinforce-
ments, as presented in Table 1. The linear and nonlinear 
material properties required for the steel bars and concrete 
elements of the RC beam are shown in Table 2.

Where: f = stress concern to strain (ε), ε0 = maximum 
compressive strain, ε = strain concern to stress (f)

where fs = steel reinforcements stress (MPa) at εs , fy = 
steel bar yield stress (MPa), εs = strain concern to stress fs , 
εy = strain at yielding and   ES = steel elastic modulus (MPa).

(25)
f =

Ec�

1 +
(
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�0

)2

(26)�0 =
2f

�

c
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(27)Ec =
f

�

(28)f t = 0.62

√
f
�

c

(29)fs = εSES,whenεs < εy

(30)fs = fy = εyES,whenεs ≥ εy

Fig. 4  Constitutive stress–strain model for concrete (Vasudevan et al., 2013)
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Verification of numerical (RC) beam

Validations of the developed numerical model are done 
by comparing the FE analysis results with the experimen-
tally tested beams (Vasudevan & Kothandaraman, 2014). 
The authors studied the conduct of RC beams externally 
retrofitted by bars at the bottom. Twenty beams are tested 
with different internal and retrofitted reinforcement steel 
bar ratios for normal and high-strength concrete beams. 
Among those three high-grade and three normal grades, 
RC beams are kept as conventional beams. In this study, 
three beams of 35  MPa compressive strength having 
250 mm depth, 200 mm width, and 2000 mm span are 
selected from Vasudevan et al. experimental study (Vas-
udevan & Kothandaraman, 2014). The three RC beams 
are reinforced with two main bars with varying diameters 
of 10, 12, and 16 mm, respectively. The beams have shear 

reinforcement of 8 mm diameter at 200 mm c/c spac-
ing and 2-10 mm diameter compression bars. The yield 
strength of 556 MPa was used for all reinforcements. The 
configuration of experimentally tested and numerical 
developed models for RC beams is presented in Figs. 6 
and 7, respectively Tables 3 and 4.

The load-resisting capacity at the yielding and ulti-
mate stage predicted by the established models are vali-
dated against the experimentally tested data as revealed 
in Tables 5 and 6. The ratio of the predicted maximum 
capacity to the experimental maximum capacity shows 
1.02, 1.07, and 1.08 for B-10, B-12, and B-16 RC beams. 
The FE evaluated maximum deflections of the FE model 
B-10, FE model B-12, and FE model B-16 show 1.04, 
1.09, and 1.08 times the ultimate deflections of experi-
mental beams. It is obvious from Table 1 that the numeri-
cal ultimate results show a maximum difference of 9% 

Fig. 5  Reinforcement constitutive model (Godinez et al., 2015)

Table 1  Real constants used for 
different elements

Real con-
stant set

Element type Real constants

1 Solid65 Rebar1 Rebar2 Rebar3
Material number 0 0 0
Volume ratio 0 0 0
Orientation angle 0 0 0
Orientation angle 0 0 0

2 Link180 (Main steel) Beam type B-10 B-12 B-16
Cross-section area  (mm2) 78.53 113.097 201.06
Initial strain 0 0 0

3 Link180 (Hanger bar) Cross-section area  (mm2) 78.53 78.53 78.53
Initial strain 0 0 0

4 Link180 (Stirrups) Cross-section area  (mm2) 50.27 50.27 50.27
Initial strain 0 0 0
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related to the experimentally tested beams. The ratios of 
yield load and the ratio of deflection predicted by the 
FE model B-10, FE model B-12 and FE model B-16 
show 1.07 and 0.97, 1.10 and 1.13, and 1.05 and 0.94 
respectively with the experimental result. The validations 

of the ultimate load–deflection response profile of the 
numerical model and the tested beam are presented in 
Fig. 8, which reveals that both curves are in good agree-
ment. The predicted ultimate load capacity is increased 
whereas the ductility index decreases when the steel area 

Table 2  Element material 
properties used in ANSYS

Material model 
number

Element type Material properties

1 SOLID65 Concrete element
Linear properties
EX EX
PRXY 0.2
Nonlinear properties
Idealized stress–strain curve Figure 4a
Open shear transfer coefficient 0.3
Closed shear transfer coefficient 1
Uniaxial cracking stress 3.71 N/mm2

Uniaxial crushing stress − 1 (turn off)
2 LINK180 Steel reinforcement element

Linear properties
EX 200,000 N/mm2

PRXY 0.3
Nonlinear properties
Yield stress 525 N/mm2

Tang modulus 20 N/mm2

3 SOLID185 Loading and support plate element
Linear properties
EX 200,000 N/mm2

PRXY 0.3

Fig. 6  Details of the experi-
mental beam (Vasudevan & 
Kothandaraman, 2014)
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is increased; this justifies the similar observation made 
by Vasudevan et al. experimental study beam (Vasudevan 
& Kothandaraman, 2014). From the validation study, it 
is suggested to extend the proposed FE model for further 
parametric study.

Fig. 7  Proposed numerical model: a Reinforcement model and b Concrete model

Table 3  Comparison of 
experimental and numerical 
results at yield load

Beams Yield load,  Py (kN) Ratio Yield deflection, Δy (mm) ratio

Exp FEA Exp FEA

B-10 65.09 69.75 1.07 6.02 5.84 0.97
B-12 74.90 82.62 1.10 5.56 6.26 1.13
B-16 145.09 151.90 1.05 8.10 7.63 0.94

Table 4  validation of 
experimental and numerical 
ultimate results

Beams Ultimate load,  Pu (kN) ratio Ultimate deflection, Δu (mm) ratio

Exp FEA Exp FEA

B-10 75.41 76.70 1.02 18.51 19.23 1.04
B-12 96.12 102.42 1.07 19.22 20.89 1.09
B-16 160.10 173.46 1.08 17.55 18.91 1.08

Table 5  Moment-deflection 
comparison at critical points

Beams Mcr, (kNm) Δcr, (mm) My (kNm) Δy, (mm) Mu, (kNm) Δu, (mm)

TC 21.58 0.65 125.75 6.27 139.90 43.57
TRC 25.27 0.57 211.92 8.25 225.83 36.97
CC 29.35 0.52 233.41 7.91 269.89 20.90

Table 6  validations of numerical and theoretical ultimate moment 
capacity

Beams Ultimate moment-resisting capacity (kN-m)

FEA ACI 318–19 Ratio IS: 456–2000 Ratio

TC 139.90 126.90 1.10 126.43 1.11
TRC 225.83 211.77 1.06 214.31 1.05
CC 269.89 253.10 0.91 229.02 1.18



486 Asian Journal of Civil Engineering (2024) 25:477–493

1 3

Results and discussions

The verified numerical models are used for further 
extended study. This section discusses the responses of 
tension, compression, and transition-controlled RC beams, 
and the numerically obtained load–deflection curves and 
magnitudes are compared. Besides, crack generation and 
progression of RC beams are also presented for these three 
types of sections.

Comparison of numerical RC beams

The corroborated numerical models assess the nonlinear 
response of TC, CC, and TRC beams under four-point loading 
conditions. As per code ACI 318–19, the RC beams are cate-
gorized according to the limiting strain of extreme tensile rein-
forcement at nominal strength. When the strain is less than or 
equal to 0.002, greater than 0.005, and between 0.002–0.005, 
the beam type is considered compression, tension, and transi-
tion-controlled section, respectively (ACI, 2019). In this study, 
the limiting strain of 0.010, 0.0348, and 0.0018 are evaluated 
theoretically, which in turn gives the tensile reinforcement area 
of 855.06mm2, 1520.12 mm, and 1934.01mm2 for tension, 
transition, and compression controlled beams respectively. 
Based on the area of tensile reinforcement, three FE models 
are generated to evaluate the load–deflection magnitudes at 
crucial locations, mid-span load–deflection response curves 
up to failure, and crack evolution of the concrete beam section. 
The moments and deflections of the three developed mod-
els at the formation of tensile crack, at the yield point, and 
the final stage of concrete crushing captured through the FE 
analysis are demonstrated in Table 5. The maximum resisting 
moment predicted by the FE models was verified with the code 
expressions, as shown in Table 6. The validation of moment-
deflection curves for TC, TRC, and CC beams are depicted in 
Figs. 9, 10a, b, and c, respectively. The cracking moment has 
increased by 17.09 and 36% for TRC and CC sections com-
pared to the TC section. A 68.52 and 85.61% yield moment 

increment is observed for the TRC and CC sections against the 
TC sections. The maximum moment resisting capacity of the 
TRC and CC beam increased by 82.86 and 92.92% compared 
to the TC beam. The maximum mid-span (verticle) deflection 
of the TRC and CC beam sections is decreased by 15.15 and 
52.02% compared with the TC section. The ductility (displace-
ment) of 6.95, 4.48, and 2.64 is obtained for the TC section, 
TRC section, and CC section, which reveals that the ductility 
of RC beams reduced considerably with the increasing area of 
tensile steel. The proportion of the FE model predicted maxi-
mum moment to the ACI code expression shows 1.10, 1.06, 
and 0.91 for TC, TRC, and CC beams.

Similarly, the numerical predicted ultimate moment ratio to 
IS: 456 expressions gives 1.11, 1.05, and 1.18 for TC, TRC, 
and CC beams. It is concluded from Table 6 that both the 
code expressions exhibit similar results when compared to the 
FE results. The ultimate deflection captured by the FE model 
for TC, TRC, and CC beam is presented in Fig.  respectively. 
The supplementary file Fig. S1 (a) to (c) shows the predicted 
principal stress (tensile) contour diagram at the first (rupture) 
crack, and Fig. S1 (d) to (f) shows the Von-misses stress con-
tour diagrams at ultimate failures of TC, TRC, and CC beam 
sections respectively.

Analytical study

The numerically predicted ultimate moment resisting capacity 
of tension, transition, and compression-controlled RC beam 
is verified with the code expression based on the ACI 318–19 
and IS 456–2000 (ACI, 2019; IS 456, 2000). The stress–strain 
relationship and the ultimate load resistance for the RC beam 
under these two code provisions are represented in Fig. 11. 
The ultimate moment of resistance expression for the TC, 
TRC, and CC beam section as per the code ACI 318–19 and 
for the under, balance and over-reinforced concrete section 
related to the code IS 456–2000 is presented in Eqs. (31) and 
(33), respectively (ACI, 2019; IS 456, 2000). The Indian code 
IS 456–2000 categorized the RC beam as under, balanced, 

Fig. 8  Load–deflection response comparison: a for the B-10 model, b for the B-12 model, and c for the B-16 model
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and over-reinforced sections, following the neutral axis depth 
(IS 456, 2000). When the limiting depth of the neutral axis is 
lower than, equal to, or more than the actual neutral axis depth, 
the beam section is said to be an under, balanced, and over-
reinforced beam, respectively. From the ACI 318–19 code:

From IS 456–2000 code

Crack evolution

The first cracking in the concrete element is formed between 
the loading points at the extreme bottom fiber of the beams. 
The cracking of concrete elements occurs at the integration 
points in three perpendicular directions with a circular sign 
as displayed in Fig. 12. The crack pattern at the ultimate col-
lapse of the RC beam is shown in Fig. 13, where Fig. 13a, 
b, and c represent the flexural, compression, and diagonal 
shear types of cracks respectively. Whenever the principal 
tensile stress of concrete element (SOLID65) exceeds the 
uniaxial cracking stress of concrete  (ft), cracking initiates 
represented by a circular red-colored sign perpendicular to 
the longitudinal direction as shown in Fig. 14a, 15a, and 
16a. The red, green, and blue colors represent the primary, 
secondary, and tertiary cracks, as shown in Fig. 13. At first 
cracking, 21.58kN-m, 25.27kN-m, and 29.35kN-m moments 
were observed for TC, TRC, and CC beam sections as illus-
trated in Table 5.

When the numerical model is further loaded, numerous 
flexural tensile cracks are observed around the pure bend-
ing and shear zones. It is witnessed that, at the yield point 
of the FE model, more diagonal cracks are formed within 
the shear zone, and then few flexural and shear cracks are 
propagated towards the compression fiber as shown in 
Fig. 14b, 15b, and 16b. At the yielding of steel bars, the FE 
model exhibit 125.75kN-m, 211.92kN-m, and 233.41kN-
m, respectively, for TC, TRC, and CC beams, as illustrated 
in Table 5. Finally, horizontal cracks develop near the top 
compression fibers when the principal (compressive) stress 
of SOLID65 elements reaches the concrete maximum com-
pressive stress. At this stage, the beam is assumed to fail by 
concrete crushing, as shown in Figs. 14c, 15c, and 16c. An 
ultimate moment capacity of 139.90kN-m, 225.83kN-m, and 
269.89kN-m were obtained for TC, TRC, and CC beams, 
respectively, as shown in Table 5.

(31)The nominal resistance
(
Mn

)
= fyAs(d − 0.5a)

(32)The stress block depth (a) = fyAs∕0.85f
�

c
b

(33)Ultimate moment
(
Mu

)
= fyAst

(
d − 0.42xu

)

(34)Actual height of neutral axis
(
xu
)
= Astfy∕0.542bfck

Fig. 9  Ultimate deflection: a TC beam, b TRC beam, and c CC beam
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Free vibration analysis

This section develops nine models with varying strain lim-
its in tensile reinforcements. Three types of sections are 
formed: tension, transition, and compression-controlled 
beams. Three models, each from tension, transition, and 

compression-controlled beams, are generated with supported 
ends subjected to free vibration. Only the self-weight of the 
beams is considered by assigning the weight density and 
acceleration due to gravity. The free vibration analysis is 
done under the Block Lanczos method (Ansys, 2016), and 
the first five natural frequencies and the displacements are 
determined as shown in Fig. 17. It is observed from Table 7 
that all the types of beams have shown nearly similar natural 

Fig. 10  Moment-deflection curve comparison: a tension-controlled, b transition-controlled, and c compression-controlled models

Fig. 11  Stress–strain distribution for RC beams (Pandimani et al., 2021 a, b)

Fig. 12  Crack formation in concrete element: a Integration points and b cracking sign (Ansys, 2016)
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frequencies and displacement results. This suggests that the 
strain limit and the area of tensile reinforcement have an 
insignificant effect on the vibration characteristics. However, 
the natural frequency increases with the number of mode 
shapes, and mode 5 predicts the highest frequency. The pre-
dicted natural frequency and mode shapes are depicted in 
Fig. 17.

Conclusions

This study presents the mathematical modeling approach 
for the linear or nonlinear response of RC beams. From the 
numerical analysis, it is evident that the proposed numeri-
cal models can capture the nonlinear conduct of the RC 
beam until its failure with reasonable accuracy. The pro-
posed FE models have a few limitations (1) It does not 
capture the post-peak response since the input stress–strain 
curve is assumed to be a horizontal straight line soon after 

Fig. 13  Various crack formations in the ANSYS beam model

Fig. 14  Concrete crack patterns 
for TC beam
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the maximum compressive strength. (2) The FE model 
assumes perfect bond condition, so it cannot assess rela-
tive slip of reinforcement. Moreover, the future scope of 
this study is: (1) The validated model shown in this paper 
can extensively be used to evaluate the effect of shear and 
flexure-deficient RC beams under static loadings. (2) It can 
also be used to study the effect of other special concrete 
RC beams (like geopolymer concrete beams and high-
performance concrete beams). (3) ANN models can be 
used for validation and comparing their results with the 
ANSYS models. From this numerical study, the following 
observations are obtained.

A) The generated FE model proficiently captures the load–
deflection plot, load and defection results at cracking, 
yielding, and ultimate stages, and the crack evolution 
and propagation in concrete.

B) The crack, yielding, and ultimate moment capacity of 
TRC and CC beams are found to be 17.10 and 36, 68.52 

and 85.61, 61.42, and 92.92% higher magnitude com-
pared to the TC section.

C) The yield deflection is enhanced by 31.58 and 26.16%, 
whereas the maximum deflection is declined by 15.14% 
and 52.03% for the TC beam when compared with the 
TRC and CC beams, respectively.

D) The modal analysis determined that the three types of 
RC beam sections with varying strain limits and ten-
sile steel areas have found insignificant effects on the 
natural frequency and displacement under free vibration 
response.

E) The FE predicted ultimate moment for TC, TRC, and CC 
beams show 1.10, 1.06, and 0.91 times the theoretically 
evaluated ultimate moment for ACI code expressions. In 
contrast, these values become 1.11, 1.05, and 1.18 times 
the theoretical moments based on IS code expressions.

F) The ratio of numerical to the experimental moment and 
deflection results show a maximum deviation of 1.10 
and 1.13, respectively, whereas these results become 

Fig. 15  Concrete crack patterns 
for TRC beam

Fig. 16  Concrete crack patterns 
for CC beam
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Fig. 17  Mode shapes under free vibration analysis



492 Asian Journal of Civil Engineering (2024) 25:477–493

1 3

1.08 and 1.09 for the ultimate moment and deflection. 
This indicates that the proposed numerical model pre-
dicted closer results to the experimental data.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42107- 023- 00789-w.
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