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Abstract
To maintain structural integrity and avoid structural failures that could harm neighboring infrastructure, pollute the 
environment, and even result in fatalities, routine inspection and repair of concrete infrastructure are required. Throughout 
the structure’s operational life, routine visual inspections are typically undertaken to detect various problems caused by 
environmental exposure (such as cracks, loss of material, rusting of metal bindings, etc.). Visual examination can yield a 
variety of data that may enable the cause of distress to be positively identified. Its effectiveness is subject to human error and 
depends on the investigator’s skill and experience and because of their size and difficult-to-reach features, huge structures 
like dams, bridges, and tall skyscrapers can be prohibitively dangerous. The approach presented here uses deep learning 
techniques to identify the structural cracks on concrete surfaces to achieve easy detection of the cracks and high accuracy. 
Here, we propose an integrated Tensrflow CNN and image processing-based crack-finding method to detect cracks with 
high precision. Thousands of photos of cracked and non-cracked structure surface datasets are considered while developing 
the model. Image features are extracted during pre-processing to increase training effectiveness. The developed model has 
a 97.11% accuracy rate and an F1-score of 97%. The results show that the designed model is highly precise and effective in 
identifying cracks in structures and more accurate than many implemented techniques.

Keywords Crack detection · Structural damage · Image processing · Structural load · Feature extraction · Convolutional 
neural network

Introduction

This section gives a glimpse of what our proposed method 
is all about and it introduces the basics and the overview of 
the proposed technique. It also includes the motive for the 
proposed method and the necessity for the model implemen-
tation with objectives.

Effective damage detection techniques are necessary to 
identify damage quickly and avoid catastrophic failure. The 
examination includes detecting cracks in structures. In most 

cases, structural cracks are examined by humans. During this 
type of examination, the cracks are noted along with the sur-
rounding anomalies. The human method lags in the quanti-
tative analysis because it is completely based on the experi-
ence and method of the examining person (Shan & Dewhurst, 
1998). Thus, automated identification of cracks becomes one 
of the most important methods in examining the structures 
and at the same time a challenge for developing intelligent 
maintenance systems (Zhou et al., 2021).

Automated fracture detection has shown to be a difficult 
endeavor due to issues including noises in the captured 
images, non-uniformity, and other complex topologies.

This study introduces a convolutional neural network 
that can train on deep convolutional features in the images, 
improving the discriminant of captured image features 
along other complex conditions (Han et al., 2018). With 
the right data processing, it is possible to extract useful 
information from structures and use it for spotting cracks. 
This helps in taking early measures for maintenance 
and preventing any major damage to the structures. The 
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experimental findings show that our detection approach 
produces good performance with a precision of above 
98.00% after we train and analyze the data on our Dataset. 
This method is highly effective when analyzed with other 
existing methods and approaches.

The motivation is that, currently, there are many uses 
for image processing. Being involved in this field now is 
fascinating and thrilling. Visual information that is delivered 
in the form of a digital image is more important in today’s 
society. In the future, image processing may be widely used 
to identify and make people aware of cancerous tumors, 
which aids in disease prevention by raising awareness. 
Digital image processing is a branch of signals and systems, 
where the images are manipulated and it concentrates mostly 
on pictures and visuals. The input for the system is an image, 
which is processed by effective algorithms and methods to 
generate the required output.

We can see that there are numerous instances of 
buildings collapsing owing to deterioration and fractures 
in the walls, and numerous accidents on the highways take 
place for the same reason. This can occasionally result 
in numerous casualties and losses. In the circumstances 
mentioned above, early damage or crack identification 
enables us to take preventative action to lessen or avert 
damage and potential failure. This technique may be 
enhanced and made accessible to everyone.

The goal of the research is to locate fractures in concrete 
surfaces. Builders may quickly determine the strength of 
any concrete building using this computed information 
and take any required adjustments right away. Concrete 
has a low tensile strength and quasi-brittleness. Tensile 
stress can arise in concrete as a result of applied loads, 
harmful chemical reactions, and environmental influences. 
The concrete will break if these tensile stresses are greater 
than its tensile strength. The size and number of fractures 
affect how well bridges and structures function. Although 
this cracking may be minimized by carefully choosing 
the elements that makeup concrete, some cracking is 
unavoidable.

The primary goal is to construct and create a software 
tool for crack detection with Python and algorithms, as 
well as ideas from machine learning and deep neural 
networks.

The contribution and objectives of the proposed work are.

• To implement localization methods of signal processing 
in the detection of cracks.

• To use the fundamentals of image processing for crack 
detection.

• To collect datasets.
• To develop an algorithm for analyzing the dataset.
• To apply the mathematics to implement a software-based 

process Framework to the sampled data.

“Different methods used in crack detection” deals 
with studies and research made by some of the certified 
researchers throughout the world on crack or damage 
detection and related works. “Methodology” gives the 
required procedure to detect cracks using image processing 
and also deals with the explanation of the block diagram 
which is used for implementation with the necessary 
evaluation models.

“Result and discussion” deals with the final step of our 
project, in this section we discuss the accuracy and losses 
of the training and testing model that we have implemented 
with the validation loss over time. We will also have a look 
at the model classification reports.

In “Conclusion and future scope”, we conclude our work 
by explaining the challenges that are present in surface rack 
detection and future scope of the proposed work.

Existing work

Many efforts are made to examine the structural properties 
by use of an image processing approach with different 
cameras for highly efficient examination of the structures. 
Many methods have been developed over time for the 
detection of structural damages or cracks using various 
methods.

Cracks or damages on concrete structures are one of 
the early signs, and concrete quality is a key indicator in 
assessing the quality of construction projects (Arun & 
Poobal, 2018). It’s important to find cracks and insect holes 
in structures since they frequently influence the quality of 
concrete surfaces (Hassene et al. 2017; Sun et al., 2021). 
One of the biggest challenges in the industry today is to 
maintain the quality of the surface of the structure which 
directly indicates the durability and maintenance of the 
buildings (Yao et  al., 2019). Nevertheless, because of 
uneven light, deformation, possible shadows, and other 
factors, it is challenging to precisely identify pavement 
fractures in complex formations (Qu et al., 2020). Due to 
the fast increase in traffic, many older bridges’ load designs 
are no longer able to accommodate the necessary loads, 
significantly jeopardizing the safety of the structure. Thus, 
it is essential to regularly check infrastructure like tunnels, 
bridges, etc., and identify any possible structural damage 
to guarantee operational safety (Zinno et al., 2022; Dong 
et al., 2019).

Using image processing and convolution neural 
network

Many image processing methods have been put into 
place to find civil infrastructures and partially replace 
on-site inspections that are handled by humans. Yet, very 
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different real-world circumstances (such as lightning and 
shadow) might provide difficulties (Dong et al., 2019). 
Cracks that are not identified at the earliest or structures 
that are less maintained can lead to major damages. While 
identifying the cracks using image processing, one of the 
major problems is noise-captured images. So, based on a 
discretized variation minimization model with constraints, 
Amir et al. provided gradient-based solutions for picture 
denoising and deblurring issues (Beck & Teboulle 2009; 
Cha et al., 2017). A deep architecture using a convolutional 
neural network and infrared thermal image processing-based 
fracture detection assist overcome these difficulties (Mao 
et al. 2020). Vision-based algorithms are also often utilized 
in crack detections, as the human inspection takes more time 
and includes many other difficulties (Lionnie et al. 2022; 
Yang et al., 2019; Yeum & Dyke, 2015).

Shaoqing et al. suggested using RPN (region proposal 
network) that uses complete image-based convolutional 
network features including the network of crack detection, 
so, making an almost cost-free region proposals network 
(Ren et  al., 2017). Liyan Zhang et  al. suggested a 
convolutional neural network-based method combined with 
the Internet of Things with an accuracy of more than 90% 
(Zhang et al., 2018). Kaiming He et al. proposed spatial 
pyramid pooling with CNN based technique with accuracy 
much better than the R-CNN model (He et al., 2015). Jun 
Yang et al. proposed infrared thermal image crack detection 
with an accuracy of 95.52% (Yang et al., 2019). Chen et al. 
put forward a multi-task enhanced faster RCNN approach 
and the results with the K-MABtrA method were useful 
when dealing with multiple or small objects and were able 
to get 80.02 average precision (mAP) (Zou et al., 2012).

Different methods used in crack detection

As cracks are of high non-uniformity and topological 
complexity using a multiscale feature attention network 
or multiscale dilated convolution model yields better 
efficiency in crack detection (Song et al., 2019). Pavement 
crack detection can also be done using a Gabor filter which 
is very much a potential and possible technique for crack 
detection in various directions (Salman et al., 2013). Lee 
et al. proposed a bridge inspection system using a robot, 
as conventional bridge inspection has a lot of challenges 
(Oh et  al., 2009). Adaptive thresholding and deep 
convolutional neural network model can be implemented 
for crack detection to yield better accuracy (Fan et  al., 
2019). Hyunwoo Cho et  al. put forward a structural 
damage detection approach that depends on edge finding 
with many intermediate steps. It is based on CWT (crack 
width transformation) algorithm for damage detection (Cho 
et al., 2018). Dhanajitha et al. proposed crack detection in 
buildings using drones and which were able to inspect the 

cracks in high-rise buildings from various angles and were 
able to get 90.67% accuracy (Danajitha et al., 2022).

Kaveh worked on damage detection with different 
technologies and he introduce different optimization 
technologies his primary goal is to determine the position 
and severity of multiple damages in buildings or structures 
(Kaveh & Maniat, 2015). To achieve this, natural 
frequencies and mode shapes are utilized in constructing 
the necessary objective function (Kaveh, 2017). The 
authors presented an alternative technique for detecting 
structural damage in beams and frames by leveraging 
natural frequencies (Kaveh & Dadras, 2018; Kaveh & 
Zolghadr 2012).

Kaveh and Maniat researched identifying structural 
damage in skeletal structures when only incomplete data 
is available (Kaveh & Maniat, 2014, Kaveh & Zolghadr 
2017a) and the authors proposed the tug-of-war algorithm 
for the detection of structural damage (Kaveh & Zolghadr, 
2017b).

Here, we analyzed numerous approaches and fracture 
detection systems used to concrete civil constructions. 
The research we have done gives a thorough analysis of 
various technologies with different approaches used to 
identify cracks in concrete buildings. This investigation also 
sheds insight into the difficulties associated with fracture 
identification on concrete buildings and the potential 
avenues for future research. In conclusion, the analysis 
of the crack-detecting method demonstrates significant 
advancement in several areas. Although coping with varying 
camera resolutions has not been a major barrier for these 
studies, a bargain in the middle between the accuracy of the 
system and the complexity of an algorithm still exists which 
has to be addressed.

Methodology

This section gives the required procedure to detect cracks 
using image processing and also deals with the explanation 
of the block diagram which is used for implementation with 
the necessary evaluation models.

The main benefit of employing image processing instead 
of traditional manual methods for crack identification is that 
the results are more accurate with image-based analysis. One 
of the major challenges in damage detection is the size of 
the image. The image resolution of modern digital cameras 
exceeds 10 megapixels.

The ability to capture detailed photographs of concrete 
surfaces is made possible by the improvement in resolution. 
The outspread view of the structure surface is captured on a 
single image utilizing modern commercial cameras. A broad 
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range of pictures is employed for realistic fracture detection 
in low-cost applications.

The overall framework of the cracks identification model 
by utilizing image processing is shown above. The block 
diagram (Fig. 1) includes the following:

a. Using a camera or other source, first, get a picture of 
the required structure which will be used in the fracture 
identification technique.

b. Succeeding the image acquisition, the gathered 
pictures are pre-processed to perform techniques like 
segmentation and make the image processing process 
more effective.

c. To process the subtracted picture sample, certain image 
processing methods are implemented.

d. Using the output from image processing, and fracture 
detection on the structure can be observed here.

Image acquisition

Illuminating the surface with the requisite light is required to 
obtain a picture of the fracture surface that is of high quality. 
For the broken surface to receive stable light, the light source 
is also crucial. Some of the light sources used are tungsten 
(wide spectrum), light emitting diodes, Xeon and sunshine, 
etc. They are utilized to shine a light on the surfaces of 
cracks in steel and concrete civil constructions. Digital 
cameras are typically utilized in concrete construction. 
Digital camera resolution power and lighting conditions 
determine the accuracy and precision of the images.

Pre‑processing and image processing

The majority of pre-processing approaches are based on 
filtering techniques and these are used in differentiating 
the crack feature from the surroundings. Multi sequential 
image filter is implemented to filter out background noises 
and spot fuzzy fractures. By removing of input picture from 
smoothed picture, the smoothing filter gets rid of the uneven 
lighting conditions and shading effects (Cao et al., 2020). 
Line emphasis filters are used to eliminate the noise from 

the input image. Morphology- and algorithm-based pre-pro-
cessing methods are additional crucial methods. Figure 2 
displays a pie chart with the various pre-processing proce-
dure types displayed on it.

The pixel value of the support region is operated linearly 
by a filter known as a linear filter (or weighted summation). 
So, the “filter matrix” designates the support zone, which is 
represented as H. (i, j). The filter region’s size is referred to 
as H, and the coordinate system for the filter matrix is unique 
with I denoting the index in column and j the index in row. 
Its center serves as the origin point and is called a hot spot. 
Noise is removed with a smoothing filter (a linear filter), 
which produces a blurred image structure, line, and edge. 
This problem was solved using non-linear filters, which 
operate nonlinearly.

Following steps are used to apply the filter to the image.

a) Adjust the filter matrix so that I and H (0, 0) match the 
image’s current location (u, v).

b) Multiply each of the filter’s coefficients H (i, j) by the 
associated picture component I (u + i, v + j).

c) Calculate the result for the present location I (u, v) by 
averaging all the results from the previous step.

The equation below can be used to describe each stage.

One of the operations associated with linear filters is 
linear convolution. The convolution operation is described 
as the equation for the two-dimensional function I and H.

(1)I
�

(u, v) ←

1∑

i=−1

1∑

j=−1

I(u + i, v + j).H(i, j)

(2)I
�

(u, v) ←

∞∑

i=−∞

∞∑

j=−∞

I(u − i, v − j).H(i, j)

Fig. 1  Block diagram for crack identification utilizing image process-
ing

Fig. 2  Types of pre-processing techniques
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when the convolution technique is used. If you look at the 
equation, you’ll notice that this procedure yields results 
that are comparable to those of linear filters that have filter 
functions that take into account Vertical axes and also in 
horizontal axes. The kernel is convolution matrix H.

One type of non-linear filter is the minimum and 
maximum filter which generate the least and maximum 
value respectively in moving region R of the original 
image. Defining these filters,

Another type of Non-linear filter, the median filter’s 
output is the median of each value in R (moving area). 
Moreover, these filters are frequently implemented to 
eliminate pepper and salt noises in pictures. This filter’s 
definition is

Filters can be implemented where the quality of the 
image has to be improved (e.g., noise removal). It may be 
used to sharpen the image and find edges.

Crack detection

There are var ious crack identif ication methods 
constructed on image processing. The first sign of a 
structure deteriorating is when cracks start to show on 
its concrete surface. Regular fracture revelation will 
result in the structure being rigorously destroyed. To 
solve these issues, it is crucial to spot the fissures as 
soon as possible. Nevertheless, voids and delamination, 
as well as other elements, make fracture identification 
on a concrete picture challenging. This section discusses 
numerous techniques for fracture detection on the surface 
of concrete. Several image processing techniques may be 
used to find fractures in concrete constructions (Gui & 
Li, 2020). Based on the sort of technology used to find 
cracks in concrete buildings, crack identification methods 
are divided into 3 groups.

• Model-dependent approaches.
• Thresholding-based strategies.
• Pattern-based approaches.

Image processing methods implemented in crack 
identification and analyzed datasets are specifically 

(3)I
�

= I ∗ H

(4)I
�

(u, v) ← min {I(u + i, v + j)|(i, j) ∈ R}

(5)I
�

(u, v) ← max {I(u + i, v + j)|(i, j) ∈ R}

(6)I
�

(u, v) ← median{I(u + i, v + j)|(i, j) ∈ R}

designed for certain pictures. For fresh photos and datasets 
gathered under diverse lighting circumstances and in the 
presence of shadows, the approaches might not produce 
correct findings. In some cases, crack detection methods 
are also classified into three groups as Filter dependent 
approaches, Machine learning-dependent approaches, 
and the last one which is machine learning and filtering-
dependent methods (Sizyakin et al., 2020).

Procedure

Annotations and Labelling: The images were taken from 
a Kaggle dataset having 227 × 227 dimensions. The final 
dataset had a total of 6000 images labelled as cracks. 
Images with cracks were labelled as ‘Cracked’ and images 
without cracks were labelled as ‘Uncracked’ and based on 
that datasets were divided into file paths and labels that 
contain the file path of the images with labeling from the 
starting index.

Here, we first build a model using Keras layers which are 
already defined in the network, and compile it. Then training 
of the model is carried out.

Although the model's structure is similar to that of VGG-
16, it has fewer layers and a considerably more compact 
input picture size. Three convolutional blocks make up the 
model, after which fully connected layers along with an out-
put layer. Spatial dimensions of activation maps after each 
convolutional block were also shown in Fig. 3. This illustra-
tion helps us understand how the Keras layer works.

As we have only considered binary, with only two classes, 
binary classification methods employ Sigmoid, whereas 
multiclass issues require SoftMax. So, here we have used 
sigmoid activation after the dense layer.

The default behavior has no padding therefore the 
convolutional layer’s output will have a spatial dimension 
that is somewhat less than its input if we don’t specifically 
specify this padding option. Except for the output layer, 
we apply a ReLU activation function across the board 
throughout the network. In addition to the consideration of 
Convolutional neural networks, the convolution of the kernel 
is a crucial part of many other Computer Vision approaches. 
In the procedure, the kernel (a small number matrix) or filter 
is utilized to change the image depending on filter values. 
The formula, which is used to produce subsequent feature 
map values, represents the input picture as the letter f and 
the kernel as the letter h. The result matrix’s indices for the 
rows and the columns are denoted by the symbols m and n.

(7)G[m, n] = (f ∗ h)[m, n] =

.∑

j

.∑

k

h
[
j, k

]
f [m − j, n − k]



1084 Asian Journal of Civil Engineering (2024) 25:1079–1090

1 3

Figure 4 shows the architecture of the convolutional neu-
ral network. Representation of the convolutional network as 
shows the Fig. 5.

Filters are applied to a particular pixel, following every 
kernel value in pairs is multiplied with matching values in 
the input picture. In the end, everything is compiled and the 
outcome is placed in the appropriate location on the output's 
feature maps.

The output of the kernel by use of a convolution product 
is also referred to as a filtered image. This can be represented 
as below:

Here, k represents a kernel and

For the Conv2D layer, we have considered only three 
arguments, these are filters, activation, and kernel size. The 
output of the convolution layer can be represented as

After the above, MaxPooling2D with argument Pool_size 
and Global average pooling 2D is used.

(8)

G(x, y) = w × F(x, y) =

ki∑

�x=−ki

.

kj∑

�y=−kj

.w(�x, �y) ⋅ F(x + �x, y + �y)

(9)−kj ≥ �y ≥ ki,−kj ≥ �x ≥ −ki

(10)output =
input − kernelsize + 2 × padding

stride
+ 1

Fig. 3  Convolutional neural 
network

Fig. 4  Architecture of the 
model convolutional network

Fig. 5  Representation of convolutional product
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Activation functions

These are used for converting the neuron linear output into 
non-linear output which helps a neural network to learn the 
non-linear conducts.

To implement this, Rectified Linear Unit (ReLU) is used, 
which gives x for all the positive values of x and zero and 
gives 0 for the negative values of x which is the same as 
max (x, 0).

The ReLU equation is:

Function ReLU (Fig. 6) and its derivative are monotonic 
and the output range of the function varies from 0 to infinity. 
It’s a default activation function and is widely implemented 
in neural networks, particularly CNNs.

The sigmoid activation function is differentiable and also 
bounded. It is also a real function that has a single point of 
inflection and the derivative at every point is non-negative. 
It is interpreted for every real value.

It is also defined as a sigmoid curve and is described as a 
function having a recognizable S-shaped curve. The logistic 
function is denoted by the following formula:

The sigmoid function (Fig. 7) is also monotonic. One pair 
of horizontal asymptotes act as a constraint on a sigmoid 
function as X → ±∞

In many of the examples, that point is 0, and for values 
below that point, sigmoid is convex and concave for values 
above it.

Compiling and training the model

After the above steps, we compile the model by specifying 
the optimizer type as Adam. We have specified loss as 

(11)f (x) = max (0, x)

(12)S(x) = 1 − S(−x) =
1

1 + e−x
=

ex

ex + 1

binary_crossentropy. Lastly, we provide accuracy as a 
further parameter to track throughout training. Although 
the loss function’s value is always recorded by default, you 
must specify it if you want accuracy. After this, we train and 
acquire the results required.

Evaluation metrics

It is important to keep false negatives to a minimum at 
the expense of raising false positives since the purpose of 
assessment is to find as many examples from a community as 
feasible for a screening approach. As a result, false positive rate 
and true positive rate with accuracy should be considered. The 
first parameter is referred to as sensitivity (SEN) in medical 
terminology and is represented by the symbol equation:

Here, P stands for the occurrences of positive events and 
TP represents the number of genuine positives. False positive 
rate estimation, stated as the equation:

(13)TPR = SEN = TP∕P

Fig. 6  ReLU activation function

Fig. 7  Sigmoid activation function

Fig. 8  Evaluation matrix
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The fraction of false positives is FP, the Number of total 
genuine negative samples is N and cumulative negative events 
in the population is N. Evaluation matrix as shown in Fig. 8. 
On the other side, this statistic is best understood in terms of 
true negatives and true negatives or specificity (SPEC), which 
is provided as equation:

Lastly, accuracy establishes the ratio of genuine positives 
to true negatives. When the number of good and negative 
events is not equal, this statistic might be very helpful. This 
can be written as equation:

Result and discussion

As we are in the final step of our proposed work, in this 
section we discuss the accuracy and losses of the training 
and testing model that we have implemented with the 
validations loss over time. We will also have a look at the 
model classification reports.

(14)FPR = FP∕N

(15)TNR = SPEC = TN∕N = 1−FPR

(16)ACC = (TP + TN)∕(P + N)

We have taken the number of epochs to be 100 to get the 
maximum accuracy in our training model with each epoch 
going over 105 cycles. The batch size of the model is 32 
which is the standard batch size for any model.

After training the model, we obtained a training accuracy 
of 98.23%, which is excellent accuracy for any model. The 
validation of our trained model is 98.21%. The training and 
validation loss is reduced to a minimum to improve the 
system’s accuracy.

From the plot shown in Fig. 9, we can observe that as 
the number of epochs increased our validation and test 
loss over time almost becomes equal (tends to zero) The 
testing datasets that we used to test the model yields an 
accuracy of 97.11%, which is excellent for any model. 
Figure 10 shows the number of epochs used for training 
and validation.

Test loss 0.10665
Test accuracy 97.11%

The shown graph in Fig. 11 represents the accuracy of 
the trained datasets and validation datasets. It represents 
an increase in accuracy as the number of cycles increases. 
The confusion matrix given below shows the implemented 
model success rate by giving true positive and true nega-
tive numbers in the testing of our model, which indicates 
the error rate and accuracy of the system model.

Fig. 9  Training and validation loss
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From the confusion matrix in Fig. 12, analyzing sys-
tem model performance using classification reports can 
be done. Table 1 shows the classification report. From the 
classification report, we can observe that the precision of 
predicting positive images is correct being almost 99% of 
the time and the negative images (with no cracks) being 
96%. The accuracy of the mode is also well above 97%. 
Table 1 shows the classification report for the proposed 
model. Table 2 shows the comparison result of the pro-
posed model with existing model.

Fig. 10  Epochs processing in the system model

Table 1  Classification report for the designed model

Precision Recall F1-score Support

Uncracked 0.96 0.99 0.97 917
Cracked 0.99 0.95 0.97 883
Accuracy 0.97 1800
Macro avg 0.97 0.97 0.97 1800
Weighted avg 0.97 0.97 0.97 1800

Fig. 11  Accuracy curve

Fig. 12  Designed model confusion matrix
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Conclusion and future scope

Here, our work is concluded by explaining the challenges 
that are present in surface crack detection and how we 
have tried to overcome them with the future scope of this 
proposed method.

This work developed a model for image processing to 
find structural damages and flaws in the structures such 
as buildings. As digital pictures used for crack investiga-
tion provide a variety of challenges for image analysis, 
some of which are inconsistent lighting, less contrast, 
and noise. Also the distance of the concrete crack from 
the camera. The resolution of the camera is also impor-
tant which might result in blurry photos, poor contrast 
images, and thin objects that are difficult to identify are 
the key factors affecting how well the different crack detec-
tion systems in concrete operate. The majority of crack 
detection methods currently in use rely on photographic 
images, which are ineffective at identifying internal flaws 
like voids, environmental factors like weather, the color 
of surfaces, the fog presence along with the appearances 
of structures, optimizing the minimum value for termina-
tion procedures, photos with poor contrast and blurs, all 
of this lower required accuracy for the cracks identifica-
tion process. Problems with convolutional neural network 
approaches include the need for several or large amounts 
of sample dataset points for fine-tuning a network, also 
data overfitting, tweaking parameters to boost accuracy, 
and the necessity for fast processors like graphics process-
ing units are included. To manage the enormous quantity 
of data collected by such autonomous systems and to find, 
quantify, and categorize different types of cracks, a system 
must be developed. It is necessary to undertake a quick 
examination of fracture detection utilizing reliable deci-
sion-making techniques. Another crucial research ques-
tion is the impact of lighting conditions on the efficacy 

and effectiveness of crack-detecting systems. In this paper, 
we’ve spoken about utilizing neural networks to solve such 
issues. We have developed a model that effectively and 
accurately detects fractures in surface pictures. To prevent 
data build-up and to improve the system, we employed 
Keras pre-processing.

The future scope of the proposed work is:

• Real-world application of the model: In this study, we 
developed a model that virtually utilizes the provided 
datasets. The technology will next be put into practice 
in areas with real-world applications.

• Building a more effective model: The model may 
be made to accumulate data more quickly, prevent 
overfitting issues, and process data more quickly for 
implementations in practical applications.

• Automated crack inspection: The process of finding 
a crack in a structure using any method is called 
crack detection. The proposed approach makes use of 
radiometric, geometric, and contextual data that were 
retrieved from the photos in turn.

• Railway track damage detection: A neural network-
based method for measuring and detecting railway 
deterioration. Train accidents are frequently the result 
of damage to the railroad. This neural network-based 
measuring system provides a high degree of accuracy 
and is appropriate for applications requiring online rail-
way damage identification and monitoring.
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Table 2  Comparison of the proposed work with different methodologies

Method/algorithm Datasets Accuracy

GoogleNet CNN, FPN [01] 64,000 uncracked pictures and 64,000 cracked 
pictures

Recall = 86.09% and
The precision of 80.13%

Adaboost, random forest, SVM, STRUM [20] 100 pictures with
1920 × 1280 pixels

Accuracy = 95%

Canny algorithm, decision tree heuristic [21] 320 × 320 pixels
400 pictures

Accuracy = 88% (crack detection)

Deep convolutional encoder-decoder network [22] 527 pictures Precision = 77.68% and
Recall = 71.98%

Morphological operations, NN, SVM [23] 5184 × 3456 pixels and
1910 uncracked and 3961 cracked images

Accuracy of NN = 79.5% and
Accuracy of SVM = 78.3%

Recursive tree edge pruning [24] 800 × 600 pixels with
206 pictures

Precision = 79% and
Recall = 92%

Proposed method 3000 crack and 3000 noncrack images Accuracy = 97.11%
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