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Abstract
The prediction of concrete compressive strength based on mixing proportions using statistical and machine learning tech-
niques has gained significant attention due to its relevance in the industrial context. However, most existing models have been 
developed with limited experimental data. In this study, a neural-based prediction model is proposed that employs both deep 
neural network (DNN) and artificial neural network (ANN) approaches to accurately forecast the compressive strength of 
high-strength concrete using eight input parameters. To ensure the robustness of the present model, a comprehensive dataset 
comprising over 1000 building site records has been used. For the development of the ANN model, MATLAB's ANN Tool is 
utilized and experimented with three different algorithms namely, Levenberg–Marquardt (LM), Bayesian regularization (BR), 
and scaled conjugate gradient (SCG). Additionally, the DNN model using Python coding is implemented. The prediction 
accuracy of the models is evaluated by analyzing the root mean square error (RMSE) and coefficient of determination  (R2), 
while also employing Taylor diagram to assess their performance. The results demonstrated that the DNN model achieved 
remarkable accuracy in predicting the compressive strength of concrete incorporating industrial waste, yielding an  R2 value 
of 0.972. Furthermore, a sensitivity analysis revealed that the cement content, amount of blast furnace slag, and age of 
concrete were identified as the most influential parameters affecting the compressive strength. This research contributes to 
the field by providing an effective prediction model for high-strength concrete compressive strength, leveraging the power 
of neural networks, and incorporating a comprehensive dataset.
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Introduction

Property of concrete to withstand compressive strength, it is 
an exceptional material for use in the construction industry. 
As a result of this, the concrete industry is searching for 
ways to include alternative materials in the production of 
concrete to reduce the negative effect that it has on the envi-
ronment and to encourage sustainable development (Nazeer 
et al., 2023). As per the environmental report, approxi-
mately 3.5 billion tons of cement was used in the construc-
tion industry, and it will grow 25% more in the next decade 
(Meng et al., 2022). As a result, this huge use of cement 
produced carbon dioxide  (CO2) in the environment which 
will create adverse effects. Concrete is a remarkable building 

material due to its resistance to compressive stress (Rout 
et al., 2015). Consequently, the concrete industry is look-
ing for methods to include alternative materials in concrete 
manufacturing to promote sustainable growth (Rout et al., 
2023). The wastes such as silica fume (SF), metakaolin 
(MK), fly ash (FA), rice husk ash (RHA), ground granulated 
blast furnace slag (GGBFS), construction and demolition 
(CD) waste, and crumb rubber (CR) act as supplementary 
cementitious materials (SCMs) which can be used as a sub-
stitute for cement in the production of concrete (Gill & Sid-
dique, 2018; Kumar, 2017; Singh et al., 2018). Compressive 
strength is the most typical measure of the technical qualities 
and performance of concrete after it has been allowed to cure 
for 28 days (Kaveh & Iranmanesh, 1998; Rout et al., 2021). 
Compressive strength after 28 days of aging is the criterion 
that is used most often when defining structural concrete. 
It is well-established that compressive strength is associ-
ated with other mechanical parameters such as flexural and 
tensile strength (Diptikanta Rout et al., 2023; Ziyad Sami 
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et al., 2023). In addition, it is important to keep in mind 
that the ratio of water to cement, denoted as w/c, is one 
of the most important factors in determining the ultimate 
strength of concrete. Yet, for a given water-to-cement ratio, 
the strength of the concrete may varies greatly depending 
on factors such as the kind of cement, aggregate, mineral 
and chemical admixtures, and other similar factors. So, the 
need for proper mix design arises to tackle the chances of 
concrete failure (Akbar et al., 2020). The optimization of 
mix design should be employed for the concrete based on 
various laboratory tests.

The experimental strength requires more labor and time, 
and may have some errors associated with the test. There-
fore, it would be beneficial to have a model that is both 
robust and predictive and that could estimate compressive 
strength as a function of the proportions of the mixture (Sob-
hani et al., 2010). This would result in an optimized mix 
design and reduce the empirical and labor-intensive nature 
of "trial batching" approaches, which are the current basis of 
industrial practice. It is difficult to develop physical models 
that can predict strength because chemical data, particularly 
which are required to estimate reaction kinetics, are consid-
erably less readily available. Although the mechanical prop-
erties of the component materials and cement hydrates are 
better understood, this is not the case for chemical data (i.e., 
without empirical calibration) (Chithra et al., 2016; Dan-
tas et al., 2013; Kaveh & Khavaninzadeh, 2023). To over-
come this complexity, artificial intelligence (AI) is the best 
option for the prediction of strength, deformation, modulus 
of rupture, etc. (Chaabene et al., 2020). Thus, it is crucial 
to use statistical and machine learning (ML) approaches to 
forecast the growth of compressive strength as a function 
of the concrete's mixing proportions (Asteris et al., 2021; 
Duan et al., 2013). In recent times, the majority of investi-
gations have applied various conventional ML techniques 
such as k-nearest neighbor (kNN), naïve Bayes’ (NB), sup-
port vector mechanism (SVM), random forest (RF), decision 
tree (DT) and extremely randomized trees (ERT) to evalu-
ate the strength of concrete at the desired curing ages (Liu, 
2022; Mohtasham Moein et al., 2023; Thai, 2022). How-
ever, neural networks (NN) can provide a better prediction 
than conventional ML algorithms. Several studies focused 
on numerous linear and non-linear regression equations in 
the last decade owing to the significance of the study issue 
(Lin & Wu, 2021; Paruthi et al., 2022; Shahmansouri et al., 
2021). Using AI for modeling has been a hotbed of academic 
activity. ANN learning has been demonstrated to be robust 
to errors in the training data, and it has been successfully 
used to learn real-valued, discrete-valued, and vector-val-
ued functions. Thus, this technique has been implemented 
to determine the compressive strength of concrete contain-
ing industrial waste (Abhilash & Tharani, 2021; Alhazmi 
et al., 2021; Fakhri et al., 2017; Gupta & Sachdeva, 2021; 

Kioumarsi et al., 2023; Lam et al., 2022; Parhi & Patro, 
2023; Verma et al., 2023). There are various ANN algo-
rithms which can be used for ML modeling. Binary clas-
sification tasks are often dealt with using perceptron. Image 
and video processing tasks are done using convolutional lay-
ers to extract the spatial features. Recurrent neural networks 
(RNN) and long short-term memory (LSTM) are used to 
handle sequential dependencies. The gated recurrent unit 
(GRU) is another type of RNN that is more computation-
ally efficient and has fewer parameters for the prediction 
purposes. Self-organizing maps (SOM) is used for clustering 
and dimensionality reduction tasks. SOMs map input data 
to a low-dimensional grid. Radial basis function network 
(RBFN) utilizes radial basis functions as activation func-
tions and is particularly suitable for function approximation 
tasks. Bayesian regression is an algorithm that combines 
neural networks with Bayesian inference (Kaveh & Servati, 
2001). It allows for probabilistic modeling and uncertainty 
estimation in predictions. The advantage of BR is its ability 
to provide not only point predictions but also uncertainty 
estimates, which can be valuable in decision-making and 
risk assessment (Garoosiha et al., 2019). Scaled conjugate 
gradient (SCG) is an optimization algorithm used in train-
ing neural networks (de-Prado-Gil et al., 2022). It combines 
the advantages of conjugate gradient methods with adap-
tive step-size control. The advantage of SCG is its fast con-
vergence rate, efficient memory usage, and suitability for 
large-scale neural networks. SCG can be particularly useful 
when training deep neural networks or dealing with large 
datasets (Garoosiha et al., 2019). The Levenberg–Marquardt 
(LM) algorithm is another optimization technique used in 
training neural networks. It combines the advantages of the 
Gauss–Newton method and gradient descent. LM is known 
for its fast convergence and robustness. It is particularly 
efficient for problems with small training datasets and can 
be useful when dealing with noisy or ill-conditioned prob-
lems. Systems based on artificial neural networks (ANNs) 
are motivated to capture these phenomena because of the 
possibility of tremendous parallelism made possible by dis-
tributed representations. While artificial neural networks 
(ANNs) are an effective solution for prediction issues, there 
are still drawbacks to using them, as evidenced by past 
research (Getahun et al., 2018). Some recent studies show 
DNN models to be more effective and reliable than ANN. 
Recently, researchers have employed DNN for the strength 
prediction of foamed concrete (Nguyen et al., 2019), rubber 
concrete (Ly et al., 2021), high-performance concrete (Liu, 
2022), eco-friendly concrete (Lv et al., 2022), and recycled 
concrete (Deng et al., 2018). Search also shows that these 
models can be used as surrogate models in reliability analy-
sis (Shubham et al., 2022). The literature survey shows that 
most of these DNN models have been developed using less 
data. So, those models are not very effective in prediction 
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when implemented over a large range. The present study 
aims to develop a DNN model for the prediction of compres-
sive strength based on the dataset formed through the col-
lection of data from different construction sites. It provides 
an edge to the DNN model because the dataset will have a 
wide range of variation among the parameters and the size 
of dataset being large.

The goal of this research is to create a prediction model 
that employs neural networks to precisely forecast the com-
pressive strength of concrete, including the integration of 
industrial wastes. While earlier research has frequently uti-
lized artificial neural network (ANN) techniques, they lack 
the capacity to give insights into the relative relevance of 
diverse elements impacting compressive strength. To solve 
this restriction, this research incorporates deep neural net-
works (DNN) into the model to improve its efficiency. In 
this investigation, a big dataset with over 1000 data points 
covering a broad variety of parameters was used. The goal is 
to promote sustainability in concrete manufacture by facili-
tating a deeper knowledge of the behavior of concrete mixes 
that include industrial wastes. The purpose of this paper is 
to evaluate the potential of DNN using a large quantity of 
experimental data to forecast the compressive strength of 
concrete including different kinds of industrial wastes. It is 
believed that using DNN in this work, a more accurate and 
robust prediction model may be constructed. The incorpora-
tion of a varied variety of experimental data will improve the 
model's dependability and give useful insights into the use 
of industrial wastes in concrete manufacturing. Finally, this 
study advances information and understanding of concrete 
mixture behavior, which may help researchers and industry 
experts make educated choices to enhance the sustainability 
and performance of concrete production processes.

Description of the dataset

A total of eight input parameters were considered which are 
cement (C), water (W), fly ash (F), ground granulated blast 
furnace slag (GGBS), super-plasticizer (S), coarse aggre-
gate (CA), fine aggregate (FA), and concrete age (T). The 
compressive strength was employed as the output variable 
for the target data sets. A total of 1030 data have been used. 
The range and the abbreviations of the parameters are men-
tioned in Table 1.

The complete description of the dataset is mentioned in 
Table 2. The data collected through different construction 
sites provided an advantage of a wide range of implementa-
tion and availability of an ample amount of data so that DNN 
can be implemented. The heat map, which is a depiction of 
the correlation matrix, is shown in Fig. 1. A pair plot (as 
shown in Fig. 2) may be used to get a better understanding 
of the distribution of variables between a pair of variables, 

while a correlation matrix can reveal the value of the cor-
relation coefficient that exists between the input variables.

Neural network prediction modeling

ANN architecture was conceptualized after the biologi-
cal neurons found in the body, which served as a source 
of inspiration (Naderpour et al., 2018). ANN is based on a 
network of interconnected components referred to as artifi-
cial neurons. Each artificial neuron sends a signal to another 
artificial neuron through the connections between them. 
Every connection is given a weight, and that weight may be 
used to change the amount of signal intensity (Kaveh et al., 
2008; Verma et al., 2023). The ANN architecture consists 
of an input layer, a hidden layer, and an output layer. The 
number of neurons in the input and output layer is equal 
to the number of input parameters and output parameters, 
respectively (Siddique et al., 2011). The most common ANN 
algorithms for predicting the value of target variable of het-
erogeneous, anisotropic, and non-uniform materials like 
concrete are supervised learning algorithms like Bayesian 
regularization (BR), scaled conjugated gradient (SCG), and 
Levenberg–Marquardt (LM) (Chhabra et al., 2023). ‘nntool’ 
command present in MATLAB has been used to access the 
mentioned algorithms. In general, the LM method was cre-
ated to give numerical solutions to the issue of minimizing a 
non-linear function. The LM methodology is often a hybrid 
of the steepest descent technique and the Gauss–Newton 
algorithm (Deng et al., 2018). The SCG algorithm uses 
much less memory than the LM method for processing the 
data. The SCG is based on supervised learning using sec-
ond-order gradients. While the BR technique takes longer 
processing time than the other algorithms studied in this 
research, it can provide excellent generalization for tough, 
tiny, or noisy datasets. This approach enables the ANN 
model to be built using just the training datasets, eliminat-
ing the need for separate training and validation datasets.

Table 1  Input and output parameters for the NN model used in this 
study

Parameter Notation Minimum Maximum

Cement C 102 540
GGBS G 0 359.4
Fly ash F 0 200.1
Water W 121.8 247
Super-plasticizer S 0 32.2
Coarse aggregates CA 801 1145
Fine aggregates FA 594 992.4
Age of the concrete T 1 365
Compressive strength CS 2.33 82.60
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DNN is an improvized ANN technique in which the 
number of hidden layers can be increased over more than 
two (Ly et al., 2021). They display actions that are charac-
teristic of the human brain. Deep neural networks can find 
overall solutions when provided with adequate data. Nev-
ertheless, a DNN employs several different optimization 
strategies to offset the impacts of the limitations related 
to prior multilayer neural networks (Munir et al., 2022). 

This is done to improve the accuracy of the DNN. One of 
the downsides of the present iteration of the multilayer 
neural network is an issue referred to as overfitting, which 
is also known as overtraining (Stel et  al., 2022). This 
indicates that the accuracy of the predictions produced 
using the information utilized during training is high, but 
that the accuracy of the predictions made using fresh data 
that were not used in training is relatively low (Mai et al., 

Table 2  Description of input 
and output parameters for the 
considered model

Parameters C G F W S CA FA T CS

Count 1030 1030 1030 1030 1030 1030 1030 1030 1030
Mean 281.17 73.89 54.18 181.56 6.20 972.92 773.58 45.66 35.82
Standard deviation 104.51 86.27 63.99 21.35 5.97 77.75 80.18 63.17 16.71
Minimum 102.00 0.00 0.00 121.80 0.00 801.00 594.00 1.00 2.33
25% 192.38 0.00 0.00 164.90 0.00 932.00 730.95 7.00 23.71
50% 272.90 22.00 0.00 185.00 6.40 968.00 779.50 28.00 34.45
75% 350.00 142.95 118.30 192.00 10.20 1029.40 824.00 56.00 46.14
Maximum 540.00 359.40 200.10 247.00 32.20 1145.00 992.60 365.00 82.60

Fig. 1  Heat map showing the correlation between the parameters
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2023a). This is because only the essential input vectors are 
trained to an excessive degree.

Methodology

The suggested model has been constructed using three dis-
tinct inbuilt techniques including BR, SG, and LM was cal-
culated to estimate the compressive strength of high-strength 
concrete. The proposed methodology is diagrammatically 

depicted in Fig. 3. The model is evaluated based on the error 
and coefficient of determination  (R2). The ANN architec-
ture is modified to increase prediction efficiency. For the 
development of DNN, initially, a baseline linear regression 
model is used.

The data present in the used dataset were further used 
to develop the ANN model. The dataset was shuffled 
to obtain a better result. The shuffled dataset was then 
divided into three subsets 70% for training, 15% for test-
ing, and the remaining 15% for validation using MATLAB. 

Fig. 2  Pair-scatter plot of the input variables
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The ANN model consists of an input layer, a hidden layer, 
and an output layer. In this study, the number of neurons 
in the input and output layer was constant, i.e., 8 and 1, 
respectively. The variation was done in the number of 
neurons present in the hidden layer as shown in Fig. 4. 
The obtained  R2 value in each case has been discussed 
in Table 3 for all the algorithms. Then after, the DNN 
model is developed by splitting the dataset into training 
and testing subsets. During the process, the initial model 
had an architecture of 8–12–10–8–6–1 which was updated 
to 8–64–64–64–1 to deal with the overfitting problem. 
The baseline and updated DNN architecture are shown in 
Fig. 5. In addition, a sensitivity analysis was performed to 

determine the effect of the most influential and contribut-
ing input attributes on the output prediction.

Result and discussion

A quantitative evaluation of a prediction model performance 
is the difference between the predicted and experimental 
values. The constructed ANN and DNN model hold good if 
the statistical parameters such as coefficient of determination 
 (R2), absolute average error (AAE), root mean square error 
(RMSE), and mean square error (MSE) values satisfy the 

Fig. 3  Proposed methodology of the present study
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proposed model criteria (Chhabra et al., 2023; Debbarma & 
Ransinchung, 2022). The proposed model is said more pre-
cious and high accuracy when the model gives the  R2 value 
close to 1. The above statistical parameters can be computed 
using Eqs. (1), (2), and (3).

(1)AEE =
1

n

n∑

i=1

(ai − pi)

where ai = actual or experimental value, pi = predicted or 
output value, and n = no. of concrete sample.

Performance of algorithms in artificial neural 
network model

Each curve represented the performance of the training 
dataset, the validation dataset, and the test dataset. The 
entire dataset was then randomly divided into 70% training 
set, 15% testing set and the remaining 15% as validation 
set. These performance curves' test data resulted from this 
procedure.

Figure 6 demonstrates that based on the regression 
and MSE values, it is feasible to conclude that the LM 
approach has a more precise prediction model than the 
SCG and BR methods, respectively. Figure 7 is a histo-
gram displaying the MSE values derived from the super-
vised learning models developed in this study. During 
the training phase, it was determined that the LM-ANN 
successfully trains the data with an MSE of 1.7 MPa, fol-
lowed by the BR-ANN and SCG-ANN with MSE values 
of 3.8 and 8.2 MPa, respectively. The validation of the LM 
performed much better than other methods, with an MSE 
of 2.9 and 5.1 MPa, respectively. On the other hand, LM-
ANN errors were much greater than.BR and SCG. Figure 8 
illustrates the performance of the model.

(2)R2 =

�∑n

i=1
(ai − pi)2

n

(3)RMSE =

√
1

n
×
∑

j

|||ai − pi
|| |

2

Fig. 4  Variation of the number 
of neurons in the hidden layer 
from 4 to 24

Table 3  Values of  R2 obtained in different cases for the LM, BR, and 
SCG algorithms

Algorithm ANN architecture R2

LM 8–4–1 0.961
8–8–1 0.979
8–12–1 0.976
8–16–1 0.968
8–20–1 0.982
8–24–1 0.984
8–28–1 0.983

BR 8–4–1 0.971
8–8–1 0.977
8–12–1 0.981
8–16–1 0.986
8–20–1 0.988
8–24–1 0.991
8–28–1 0.990

SCG 8–4–1 0.932
8–8–1 0.945
8–12–1 0.941
8–16–1 0.934
8–20–1 0.919
8–24–1 0.937
8–28–1 0.934
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Performance of the deep neural network model

For developing a DNN model, the dataset was checked for 
the presence of any missing values so that it can be imputed. 
However, the dataset was not having any missing values. So, 
the input and output variables were marked. In the next step, 
the dataset was scaled to carry out the standardization and 
then shuffled randomly to remove the presence of linear-
ity among the datasets. Then after, normalization was done 
based on which the first DNN model was developed. In this 
step, the ‘RMSprop’ optimizer was used which is like gradi-
ent decent optimizer. The vertical oscillations are controlled 
by the RMSprop optimizer. Hence, the rate of learning can 
be enhanced, and the algorithm will be able to take greater, 
more rapid horizontal steps. The data analysis shows that 
the concrete mix from lean concrete to high-grade concrete 
is present in the dataset. Figure 9 shows the distribution of 
compressive strength data in form of a density plot and box-
plot, respectively.

The first step in the development of a baseline model is to 
select the type of prediction algorithm. It is clear from the 
pair plot that all the input variables show linear behavior. So, 
the multiple linear regression model was used as the base 
model (named Model 1). It was observed that this model 
did not give a good result for prediction. Moreover, based 
on the error plot, it can be inferred that the difference in the 
training and validation loss in terms of mean absolute error 
(MAE) and mean square error (MSE) is more. So, there was 
a need for improving the model for the validation data. The 
DNN architecture of the Model 1 was 8–12–10–8–6–1 with 
ReLU (rectified linear unit) as the activation function for the 
first three hidden layers while the Sigmoid activation func-
tion has been used for the last hidden layer. Then Model 2 
with 8–64–64–64–1 architecture was used with ReLU as an 
activation function in each hidden layer. It was observed that 

the value of  R2 value increased from 0.38 to 0.96. However, 
the issue with the model was the presence of overfitting. 
Figure 10 shows the error histograms with the modification 
in the models. So, the next step was to remove the overfitting 
from the model. The training and validation loss in terms of 
MAE and MSE gave an idea about it (as shown in Fig. 11). 
For this purpose, the basic architecture of the DNN model 
was kept the same in Model 3. The activation function in the 
first two hidden layers was ReLU while in the last hidden 
layer was Sigmoid.

Figure 12 depicts the change in the regression plots of 
Model 1, Model 2 and Model 3. It is quite clear that the per-
formance of the model was increased through the rigorous 
changes in the DNN architecture. The final model gives an 
 R2 value of 0.972 which is higher than the previous models 
developed in this study.

Comparison of considered algorithms

Based on the results obtained through different models, it is 
necessary to check the performance and to determine which 
model is performing the best (as shown in Fig. 13). For 
this purpose,  R2 and RMSE values are taken as the ranking 
parameters. It was observed that the DNN model outper-
forms the ANN model in terms of  R2 value. However, RMSE 
value is quite high but almost near to the value in case of 
ANN-BR. Table 4 shows the ranking of these algorithms 
based on their performance.

Feature importance

The relevance of feature importance technique is that it 
evaluates the utility of input data in forecasting the target 
variable for predictive model (Mai et al., 2023b). The feature 

Fig. 5  Variation of the DNN 
architecture used in the present 
study
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importance was determined using sensitivity analysis. This 
analysis is aimed to assess the relative influence of input 
variables on the output of the proposed ANN strength pre-
dicting model (Nguyen et al., 2023). On the other ways, the 
predictive model has increased the performance and effi-
ciency by the impact of each input characteristics on con-
crete. In this research, the proportionate effect of each input 
characteristic on outputs was calculated using L. Milene's 
suggested technique and the number of weight corrections 
as shown in Eq. 4 (Milne, 1995).

where IF = influence factor for an input parameter to the 
output prediction, Ninp = number of inputs, Nhid = the number 
of hidden units, w = connection weight, I = input unit, and 
O = output unit.

(4)IF =

∑Nhid

j=1

wji
∑Ninp

i=1
wji
xWoj

∑Ninp

k=1
(
∑Nhid

j=1

wjk
∑Ninp

i=1
wij
xwoj)

Fig. 6  Model performance of ANN using a LM algorithm, b BR algorithm, and c SCG algorithm
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Sensitivity analysis depicts the normalized scores of influ-
ential parameters and their importance. It can be inferred 
from Fig. 14 that the cement content has the most influence 
(score = 12.85) on the compressive strength of concrete in 
this study. As the dataset is altered, it is essential to keep 
in mind that the feature influence score might potentially 
shift. In addition, it is interesting to note that none of the 
input characteristics has non-negligible significance levels. 
This is because all of these characteristics represent the basic 
input parameters in almost all engineering projects that are 
connected to concrete mix designs.

Taylor diagram

Taylor diagram is a graphical tool used to compare and visu-
alize the similarity between two sets of data, typically model 

output and observations (Biswas et al., 2021). The diagram 
consists of a scatter plot and a set of statistics that provide 
information on the correlation, variance, and bias of the two 
datasets (Khursheed et al., 2021). The x-axis and y-axis of 
the scatter plot represent the standard deviation and correla-
tion coefficient between the two datasets, respectively. The 
model output is plotted on the x-axis, while the observations 
are plotted on the y-axis. Each point on the scatter plot rep-
resents a particular location or time in the dataset (Kumar 
et al., 2023).

The statistics included on the diagram are the correlation 
coefficient, root mean square error (RMSE), and standard 
deviation ratio. The correlation coefficient indicates how 
well the two datasets are correlated, with a value of 1 indi-
cating a perfect correlation. The RMSE indicates the differ-
ence in variance between the two datasets, with lower values 

Fig. 7  Error histograms of considered algorithm (LM, BR, and SCG)
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indicating better agreement. The standard deviation ratio is 
the ratio of the standard deviation of the model output to the 
standard deviation of the observations, with values closer 
to 1 indicating better agreement. Taylor diagram is a useful 
tool for comparing the performance of different models or 
for evaluating the performance of a single model over time. 
It allows for a quick and intuitive assessment of the degree 
of agreement between the model output and observations 
and can help identify areas where the model may be over- or 
under-predicting.

The prediction models developed in the present study 
are DNN and ANN models based on LM, BR, and SCG 
algorithms. The relative rankings for each model based on 
 R2 and RMSE were discussed in the previous subsection. 

The performance of the models can be understood using 
Taylor diagram as shown in Fig. 15. This method includes 
all the prediction model performances on the same scale 
which has been depicted under a single diagram. The 
standard deviation of actual compressive strength (as cal-
culated earlier) is 16.70. This is marked with a bold dotted 
line (referred to as ‘ref’ in the figure). All models (DNN, 
LM-ANN, and LM-BR in this case) lying inside this area 
are suitable for prediction. It can be observed from the fig-
ure that DNN and LM-ANN are found to be in close vicin-
ity with low standard deviation. Moreover, the SCG-ANN 
model is found to have low performance in the prediction 
of compressive strength.

Fig. 8  Regression plots of ANN model a LM algorithm b BR algorithm and c SCG algorithm
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Fig. 9  Output data visualization for the present study

Fig. 10  Error histogram of the DNN models a Model 1 b Model 2 and c Model 3
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Conclusion

In the present study, NN models were developed to predict 
the compressive strength of concrete containing industrial 
waste. It was observed through the literature that most of 
the studies are done using the ANN technique. The issue 
with these neural networks is the nature of the dataset. The 
dataset used for the present study contains a wide range of 
data. So, the novelty of this research is to develop an efficient 
DNN prediction model which can be implemented to predict 
the compressive strength in a vast range of values.

This study used feed-forward ANN with supervised learn-
ing to predict the compressive strength of high-strength con-
crete mixtures including industrial wastes. For supervised 
learning, the LM-ANN, BR-ANN, and SCG-ANN algo-
rithms were taken into consideration. After experimenting 
with various configurations of deep neural networks in terms 
of hidden layers, activation functions, optimizers, and the 
total number of neurons, a model with three hidden lay-
ers, each consisting of 64 neurons, was found to be optimal. 
Below are the conclusions that may be derived from this 
study:

Fig. 11  Mean absolute error and mean square error wrt epochs in a Model 1 b Model 2 and c Model 3
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• The ANN-based prediction model performed very well 
in predicting the values of compressive strength across 
all methods. However, it was discovered that the BR-
ANN model had the highest coefficient of determination, 
exceeding 0.95. The neural design corresponding to 24 
neurons in the hidden layer yielded the greatest results. In 
the testing phase, the  R2 values for the created networks 
of LM-ANN (8–24–1), BR-ANN (8–24–1), and SCG 
(8–24–1) are 0.938, 0.916, and 0.887, respectively.

• The DNN model yields a better prediction value than 
the ANN model. This has also been validated through 
Taylor’s diagram. It was observed that the DNN model 
was found to be performing well having an  R2 value of 
0.972 with the error being compared to the error obtained 

in the ANN model. The architecture was changed and 
different combinations of hidden layers, the number of 
neurons, and the associated activation functions were 
tried to achieve an optimized model.

• A sensitivity analysis revealed that the cement content 
is the most important element affecting the concrete 
strength. Other elements like water content, silica fumes, 
and the age of concrete also have a major impact on the 
strength. Among all the parameters, water content has a 
negative impact on the compressive strength of concrete.

Conclusively, all the models except ANN-SCG have 
 R2 values greater than 0.90. So, these models are catego-
rized under excellent prediction models and thus, can be 

Fig. 12  Regression plots of the test data a Model 1 b Model 2 and c Model 3
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implemented in the field of civil engineering. The cur-
rent study has some limitations that include the associated 
uncertainties which have not been accounted (which may 
include both epistemic and non-epistemic uncertainties) 
and the DNN-based prediction model yields higher RMSE 
as compared to the other considered algorithms. The future 
scope of the present study lies in the updating of the model 
to increase efficiency. Different optimization techniques 
like CATBoost, XGBoost, swarm particle optimization, 
LightGBM, etc., can be used along with DNN for this 
purpose.
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Fig. 13  Comparison of algo-
rithms based on  R2 and RMSE 
values

Table 4  Performance of 
different algorithms used in this 
study

Algorithms R2 RMSE Ranking based on  R2 
value

Ranking based on 
RMSE value

Overall 
ranking

ANN-LM 0.966 1.037 2 2 2
ANN-BR 0.944 1.53 3 3 3
ANN-SCG 0.884 0.01 4 1 4
DNN 0.972 1.62 1 4 1

Fig.14  Influence of input parameters on concrete compressive 
strength
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