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Abstract
Pressure-Impulse (P-I) diagrams, a widely popularized approach, relate different damage levels and are utilized in the prelimi-
nary design of structural elements subjected to blast loading. In the presented paper, P-I diagrams generated using coupled 
Single Degree of Freedom (SDOF) model subjected to blast loading are studied. It may be noted that these P-I diagrams 
for the blast in the dynamic and impulsive regime are very different from those derived by applying the uncoupled SDOF 
approach. The resultant P-I diagrams are further compared with those based on Timoshenko beam theory, including the higher 
modes effect. The findings are intended to shed light on how to develop simpler, more accurate methods for calculating the 
combined reaction of structural parts exposed to various blast loading ranges. The effect of shear and flexure resistance ratio 
on P-I diagrams has been studied parametrically. P-I diagrams show only small fluctuations as they approach quasi-static 
regimes, indicating that they are not sensitive to the shear and flexure resistance ratio for a distant range of blast loadings.
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Introduction

The dynamic response of structural elements under blast 
loading can be represented in various forms. Single degree 
of freedom (SDOF) models, due to their simplicity, are 
widely employed strategies that several researchers adopt 
to predict the dynamic response (Biggs, 1964; Smith & 
Hetherington, 1994Defense UFC, 2008). Numerical meth-
ods used in a variety of methods accurately represent the 
structural elements’ dynamic response exposed to blast 
load (Jayasooriya, 2010). FEM software like Abaqus, LS 
Dyna, etc., have been used to simulate the problem by sev-
eral investigators (Ibrahim et al., 2017; Jayasooriya, 2010; 
Kadid, 2008), but it consumes a lot of computational time. 
P-I (Pressure-impulse) diagrams are one of the most popu-
larized and efficient tools to examine the damage of struc-
tural elements subjected to blast loading (Fallah & Louca, 
2007; Syed et al., 2014). A significant amount of work on the 
generation of pressure-impulse diagrams has been done by 
number of researchers. The pressure-impulse diagrams can 

be generated through experiments (Liu et al., 2018), numeri-
cal simulations, and theoretical calculations (Dragos & Wu, 
2014; Fallah & Louca, 2007; Youngdahl, 1970).

The pressure impulse diagrams paradigm was conceived 
in the mid-1950s. Much of the study generally assume the 
damage is usually linked to the flexure response on the 
basis of Biggs’ method defining flexural resistance func-
tion as elastic-rigid plastic, elastic, elastic–plastic soften-
ing, and hardening (Biggs, 1964; Fallah & Louca, 2007; 
Gantes & Pnevmatikos, 2004; Smith & Hetherington, 
1994). May and Smith introduced the SDOF approach for 
structural materials exposed to blast loads on the basis 
of the ratio of the load duration to the time period of 
the comparable SDOF, namely, impulsive and dynamic 
(Smith & Hetherington, 1994). Researchers (Gantes & 
Pnevmatikos, 2004) described the response spectrum on 
the basis of exponential blast pressure distribution taking 
into account the material’s elastic–plastic nature. Pressure-
impulse diagrams in form of three regimes on the basis 
of the positive pulse duration of the load and the natu-
ral period of the structure has been suggested by Cormie 
et al. (2009). To create the iso-damage diagram with elas-
tic–plastic hardening and elastic–plastic softening under 
blast loading, Fallah and Louca analyzed the SDOF sys-
tems (Fallah & Louca, 2007). The reaction was split into 
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elastic, rigid-plastic-hardening/ softening, elastic–plastic-
hardening and softening categories using dimensionless 
parameters. In order to generalize the system’s solution, 
inverse ductility, and softening/ hardening indices were 
included as dimensionless parameters. Youngdahl (1970) 
and Li and Meng (2002) and others discussed the impact 
of impulse loading shape on an elastic–plastic SDOF 
system’s dynamic response. The situation was divided 
into elastic–plastic, elastic, and rigid-plastic structural 
responses using two dimensionless factors. To provide 
each response category with a distinct loading shape and 
separate P-I diagram, dimensionless parameters were 
introduced. Campidelli and Voila (2007) pointed out that 
equations proposed by Li and Meng (2002) need modifica-
tion for some complex pulse shapes.

Several mechanisms can cause a flexural member to 
fail (i.e., flexure, shear, combined failure) when subjected 
to varying range of blast scenario (Slawson, 1984). Direct 
shear failure modes and flexure failure modes are always 
independent of one another, according to Krauthammer et al. 
(2008). The P-I diagram, which is made up of two thresh-
old curves that each reflect a failure mode corresponding 
to direct shear and flexure, has two failure modes, accord-
ing to Krauthammer (2008). In the numerical simulation 
conducted by Mutalib and Hao (2013), the authors recog-
nized three primary damage modes of Reinforced Concrete 
(RC) columns. In the study of Ma et al. (2012), the evalu-
ation of the failure mode categories for fully clamped and 
simply supported beams has been explored. In the authors’ 
research, the bending and shear failures were evaluated, and 
the responses of the beams using five transverse velocity 
profiles were investigated. Three failure mechanisms were 
explored by Ma et al. (2012). Only shear is present in mode 
1. The element’s plastic hinge in the element’s centre serves 
as the mode 2, indicator for the bending failure. Mode 3 
is feasible to recognize as the confluence of mode 1 and 
mode 2. To simulate the interdependence of the flexure and 
direct shear modes of failure, Dragos et al. (2014) conducted 
a 1-D FEM analysis. The authors performed a parametric 
analysis to better understand how the flexure and direct shear 
response interact and exhibited the flexure member reaction 
during the direct shear response. Runquin Yu et al. (2018) 
produced non-dimensional pressure impulse diagrams based 
on Euler Bernoulli’s theory to predict combined response.

In the present work, a forecast of the dynamic response 
of the reinforced concrete flexural components in different 
explosion ranges was conducted in the form of P-I diagram. 
The response expressed in form of (P-I) diagrams were cre-
ated with the help of a coupled SDOF model that takes into 
account the interaction between flexure and shear responses. 
The resultant pressure-impulse diagrams are compared with 

traditional P-I diagrams on the basis of the uncoupled SDOF 
model. P-I diagrams are also contrasted with Timoshenko 
beam theory- based diagrams that take higher mode impact 
into account.

Pressure impulse diagrams for coupled 
SDOF system

Pressure impulse diagrams

The standardized P-I characteristics of the blast loading, 
which may apply to any given blast scenario, are one of the 
approach to depict the structure’s dynamic response under 
the blast load (Abedini et al., 2019). To achieve a distinct 
amount of predetermined damage for the structures under 
consideration, pressure impulse diagrams are an appropri-
ate approach to link blast pressure duration and amplitude 
(Van der Meer et al., 2010). The impulsive, dynamic, as 
well as quasi-static loading regimes could be utilized to 
segment a pressure impulse (P-I) curve (Syed et al., 2014). 
The applied pressure (quasi-static area), impulse (impul-
sive area), or both the applied impulse & pressure (dynamic 
regime) may completely determine the structural element's 
maximal response (Bhatt et al., 2021). A short- duration 
dynamic load serves as a representation of the impulsive 
case. In this loading scenario, the structure under examina-
tion does not respond to its maximum response until after 
the load duration has passed. The maximal response of the 
structure is attained close to the end of the loading regime 
since the dynamic regime is represented by a dynamic load. 
The quasi-static regime illustrates the scenario of dynamic 
load when maximal structural response is attained before the 
applied load is removed. Figure 1 depicts the key properties 
of the P-I curve (Bhatt et al., 2021).

Both the pressure and the impulsive asymptote may be 
used to classify the P-I diagram. The impulsive asymptote 
is connected to an extremely dynamic load of very short 
duration in comparision to the structure’s naturally occur-
ring period, which is controlled by impulse. The pressure 
asymptote, on the other hand, is connected to a longer-last-
ing dynamic loading and thus susceptible to a quasi-static 
load condition controlled by pressure.

The present study employs the Coupled Single Degree 
of Freedom (CSDOF) approach model proposed by Bhatt 
et al., (2023, under communication) to incorporate the direct 
coupling between direct shear-slip and flexure response and 
the SDOF model (Bhatt et al., 2021) based on Timoshenko 
beam theory, including higher modes, to forecast the pres-
sure-impulse diagrams. Specifics of the adopted approach 
are discussed in subsequent sections.



3895Asian Journal of Civil Engineering (2023) 24:3893–3905	

1 3

Coupled single degree of freedom (CSDOF) system 
model (Bhatt et al., 2023, under communication)

The present work employs Coupled SDOF system model 
(Bhatt et  al., 2023, under communication) to generate 
pressure-impulse (P-I) curves for structural elements under 
consideration. When exposed to a variety of blast loads, 
the majority of structural components with suitable flex-
ure and shear capacity often exhibit combined shear-flexure 
deformation mode. The system’s shear and flexure resist-
ance will determine the deformation modes, such as direct 
shear-slip at support and flexure failure at the center, thus 
they shouldn’t be handled separately. Based on several stud-
ies, Fig. 2 depicts the assumed deflected profile that a beam 
could experience when exposed to blast load (Bhatt et al., 
2023; Jones & Alves, 2004; Ross, 1986; Slawson, 1984; Xu 
et al., 2014; Zhang et al., 2019).

Idealizing a system as an equivalent Single Degree of Free-
dom (SDOF) system, which is defined by the following equa-
tion of motion, is a frequently used method for analyzing a 

system’s dynamic response. The following is a notation for 
the governing equation of motion:

Or alternatively,

where M is the total mass of the system, km is a correspond-
ing equivalent mass factor, K is the stiffness, kl is equiva-
lent load factor, and y(t)andÿ(t) are dynamic transverse dis-
placement and acceleration response, respectively and P(t) is 
equivalent blast load (P(t) = b × L × p(t)), where the load 
pressure can be given as:

(1)kmMÿ(t) + klKy(t) = klP(t)

(2)kmlMÿ(t) + Ky(t) = P(t)where, kml =
km

kl

(3)p(t) = po

(
1 −

t

td

)
, t < td = 0, t ≥ td

Fig. 1   Pressure-Impulse dia-
gram (after, Bhatt et al., 2021)

Fig. 2   Deflected shape profile 
for combined shear-flexure 
failure (after Bhatt et al., 2023, 
under communication)
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A simplified triangular pulse closely approximates the 
real impulsive blast load neglecting the negative load 
phase (Biggs, 1964).

The present section provides the conceptual background 
to coupled SDOF system’s equation of motions for all 
the deformation modes listed (as illustrated in Fig. 2). 
Accordingly, flexure response combined with support slip 
for the RC beam can be categorized into stages as given 
subsequently:

Stage I (a’)–Direct shear response (with varying support 
slip)

The direct shear response involves the rigid body trans-
lation of member, depending on the slip at the support, ys 
(Fig. 3). During this stage the flexure resistance mecha-
nism has yet not initiated, and the structural member has 
not yet undergone the flexure deformation (after Bhatt 
et al., 2023, under communication).

The dynamic force equilibrium equation for the system 
may be expressed as:

which, in turn, may be simplified in the form of SDOF sys-
tem equation of motion as:

where V(t) is the shear resistance function mobilized cor-
responding to the support slip ys.

Stage I (a)-Elastic response (along with varying support 
slip):

Initially, the assumption taken is that shear resistance 
and flexure resistance is within the elastic limit.

The assumed profile of elastic deflected shape, in terms 
of mid-span deflection ym and support slip ys, is repre-
sented as (Fig. 4):

(4)0 =

l

∫
0

− p(t)dx + ∫
l

0

mÿs(t)dx + Vs

(5)Mÿs + V(t) = P(t)

Dynamic rotational and force equilibrium equations 
may be written as:

which, in turn, combined with Eq. (6), yields SDOF equation 
at mid-span and support as:

It may be emphasized that both resistance functions, 
moment Mm = β1Mo, β1 < 1 and shear V(t) = β2Vo, β2 < 1 , 
are within the elastic range.

Stage I (b)–Elastic response with constant support slip:

At stage I (b), the support slip attains a constant 
value, albeit within the elastic limit. This scenario can 
be observed in the case of the distant blast (lower mag-
nitude). In this stage, after attaining a certain amount of 
slip, flexure mode dominates the response of the structural 
element (Fig. 5).

The dynamic rotational equilibrium equation is writ-
ten as:

(6)Y(x, t) =
(
ym(t) − ys(t)

)(
cos

(
�x

2l

))
+ ys(t), x ∀ 0 to l

(7)

0 = −
p(t)l2

2
+
(
ÿm(t) − ÿs(t)

)
∫

l

0

m
(
cos

(
𝜋x

2l

))
(l − x)dx

+ ÿs(t)
ml2

2
+Mm

(8)

0 = −p(t)l +
(
ÿm(t) − ÿs(t)

)
∫

l

0

m
(
cos

(
𝜋x

2l

))
dx + mlÿs(t) + Vs

(9)Mid − span ∶ (t) + 2.0885Kym(t) − 1.0885V(t) = P(t)

(10)Support ∶ Mÿs(t) − 3.6586Kys(t) + 4.6586V(t) = P(t)

(11)Y(x, t) = ym(t)
(
cos

(
�x

2l

))
, x ∀ 0 to l

Fig. 3   Direct shear response mode (after Bhatt et  al., 2023, under 
communication)

Fig. 4   Combined shear-elastic flexure failure mode (after Bhatt et al., 
2023, under communication)
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Considering Eqs. (11) and (12), the SDOF system’s 
equation of motion becomes:

where ym is the mid-node transverse dynamic deflec-
tion,Mm = β1Mo, β1 < 1 is the moment resistance offered 
by the beam at the center, and Mo is moment capacity of 
the section.

Stage II–Dynamic plastic response along with a vary-
ing slip:

The structure experiences both support slip and flex-
ure deformations. The flexure resistance has reached the 
plastic region. This condition is observed in the case of 
the near blast. The assumption is that the hinge zone will 
not propagate towards the mid-span of the beam until slip 
is taking place at support (Abedini et al., 2013; Jones & 
Alves, 2004).

(12)0 =

l

∫
0

− p(t)(l − x)dx + ∫
l

0

mŸ(x, t)(l − x)dx +Mm

(13)kmlMÿm(t) + Kym(t) = P(t), kml = 0.8

The assumed profile of dynamic plastic deflected shape 
is represented as (Fig. 6)

Once again, the dynamic rotational and force equilibrium 
may be written as:

Combining Eqs. (14) and (15) with (16) and (17), the equa-
tion of motion for the SDOF system can be re-cast as:

Dynamic plastic zone:

Beyond the dynamic plastic zone ( x > 𝜀):

Support:

Stage III–Dynamic plastic deformation with a constant sup-
port slip:

At this stage, the slip has attained its maximum value, 
flexure resistance has reached the plastic region, and the 
hinge zone starts propagating towards the mid-span of the 
beam.

Assuming the dynamic plastic zone extending to a length � 
as shown in Fig. 7, the deflected shape can be represented as-

(14)Y(x, t) = ym(t), x ∀0 to �
−, �− = � − �x, �x → 0

(15)
Y(x, t) = (y�(t) − ys(t))

l − x

l − �
+ ys(t), x∀�

+tol, �+

= � + �x, �x → 0

(16)

0 = − p(t)𝜀
(
l −

𝜀

2

)
|𝜀−
0

+ mÿm(t)𝜀
(
l −

𝜀

2

)
|𝜀−
0

− p(t)
(l − 𝜀)2

2
|l
𝜀+

+ m
(
ÿ𝜀(t) − ÿs(t)

) (l − 𝜀)2

3
|l
𝜀+

+ mÿs(t))
(l − 𝜀)2

2
|l
𝜀+

+M𝜀+

(17)

0 = − p(t)𝜀|𝜀−
0

+ mÿm(t)𝜀|𝜀
−

0
− p(t)(l − 𝜀)|l

𝜀+

+ m
(
ÿ𝜀(t) − ÿs(t)

) (l − 𝜀)

2
|l
𝜀+

+ mÿs(t)(l − 𝜀)|l
𝜀+

+ V(t)s

(18)Mÿm(t) = P(t)

(19)Mÿ𝜀(t) +
3l2

(l − 𝜀)2
Rm −

2l

l − 𝜀
V(t) = P(t)

(20)Mÿs(t) −
3l2

(l − 𝜀)2
Rm +

4l

l − 𝜀
V(t) = P(t)

(21)Y(x, t) = ym(t), x ∀0 to �
−, �− = � − �x, �x → 0

(22)Y(x, t) = y�(t)
l − x

l − �
, x∀�+tol, �+ = � + �x, �x → 0

Fig. 5   The elastic flexure failure mode for simply supported beam 
(after Bhatt et al., 2023, under communication)

Fig. 6   Combined shear-plastic flexure failure mode with hinge propa-
gation (after Bhatt et al., 2023, under communication)
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The dynamic rotational equilibrium equation may be 
derived as:

In the dynamic hinge zone, the external load is fully resisted 
by inertial force as the moment resistance diminishes. How-
ever, for the section beyond the plastic zone, moment resist-
ance is a part of the equilibrium equation with M|�+ = Mo 
(Jones & Alves, 2004). Equations (23) and (24) can be easily 
re-expressed as:

For dynamic plastic zone:

Beyond dynamic plastic zone ( x > 𝜀):

(23)0 =

l

∫
0

− p(t)(l − x)dx + ∫
l

0

mŸ(x, t)(l − x)dx +M𝜀+

(24)
0 = − p(t)𝜀

(
l −

𝜀

2

)
|𝜀−
0

+ mÿm(t)𝜀
(
l −

𝜀

2

)
|𝜀−
0

− p(t)
(l − 𝜀)2

2
|l
𝜀+

+ mÿ𝜀(t)
(
l − 𝜀

2

)2

|l
𝜀+

+M|𝜀+

(25)Mÿm(t) = P(t)

Stage IV (a)–Static plastic deformation along with varying 
support slip:

The hinge forms at the mid-span of the beam along with a 
direct shear-slip at support.

Assuming deflected profile for static plastic response is 
given as (Fig. 8):

 The dynamic rotational and force equilibrium may be writ-
ten as:

Combining Eqs. (28) and (29) with Eq. (27), the equation 
of motion for the SDOF system can be written as:

Stage IV (b)–Static plastic deformation with constant sup-
port slip:

Assuming the profile for static plastic deflected shape as 
(Fig. 9):

(26)
2

3
Mÿ𝜀(t) +

l2

(l − 𝜀)2
Rm = P(t)

(27)Y(x, t) = (ym(t) − ys(t))
l − x

l
+ ys(t), x∀ 0 to l

(28)

0 = −p(t)
l2

2
|l
0
+ m(ÿm(t) − ÿs(t))

l2

3
|l
0
+ mÿs(t)

l2

2
|l
0
+Mm

(29)0 = −p(t)l|l
0
+ m(ÿm(t) − ÿs(t))

l

2
|l
0
+ mÿs(t)l|l0 + Vs

(30)̈Mid − span ∶ ym(t) + 3Rm − 2V(t) = P(t)

(31)Support ∶ Mÿs(t) − 3Rm + 4V(t) = P(t)

(32)Y(x, t) = ym(t)
l − x

l
, x∀ 0 to l

Fig. 7   Plastic flexure failure mode with propagating hinge (after 
Bhatt et al., 2023, under communication)

Fig. 8   Combined shear-plastic flexure failure mode with a hinge at 
mid-span of a beam (after Bhatt et al., 2023, under communication)

Fig. 9   Plastic flexure failure mode with a hinge at mid-span of a 
beam (after Bhatt et al., 2023, under communication)
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The dynamic rotational equilibrium for the system is writ-
ten as:

Alternatively, it may be written in the form of SDOF 
system:

SDOF model including higher modes (Bhatt et al., 
2021)

The frequency and mode shape of a transversely vibrating 
beam

Each system’s mode shape and natural frequency are deter-
mined by the system’s material and geometrical features. In 
Eqs. (35), (36), the following parameters are (Han et al., 1999):

where E indicates Young’s modulus, G signifies shear modu-
lus, I represents the second moment of the cross-section area 
of the beam, and A signifies a cross-section area of the beam.

The wave numbers denoted as an and bn, are utilized to 
produce the formulation for the mode shape of structural com-
ponents, which results in the solution of the frequency equa-
tion. These wave numbers rely on s and � and are established 
parameters for structural components.

These frequency equations are controlled by the trans-
versely vibrating boundary conditions. The appropriate fre-
quency eq. and mode shape for the simply supported bound-
ary-conditioned beam are shown in Table 1.

Using the aforementioned Eqs. (35) and (36), the mode 
shapes may be obtained once s and � have been evaluated for 
structural elements. The ortho-normalization eq. of the beam’s 
mode shapes is employed to get the value of Cn , as shown in 
Table 2 below.

(33)
0 =

l

∫
0

− p(t)(l − x)dx + ∫
l

0

mŸ(x, t)

(l − x)dx +Mm, Mm = Mo

(34)Mÿ(t) +
2

3
Rm = P(t)

(35)Geometry parameter, s = L

√
A

I

(36)Material parameter, � =

√
E

G

The equation in Table  3 is used to calculate natural 
frequency.

Using mode superposition response of a transverse 
beam subjected to blast load (Chopra, 2012)

Both mode shape and fundamental frequencies of the structure 
under investigation are independent of imposed dynamic load 
and rely on the material and geometric characteristics. Yet, 
in addition to the imposed load, natural frequency and mode 
shape also affect a structure’s dynamic response.

Let’s assume that the load has a uniform distribution with 
a spatial distribution of p(x), and a temporal distribution of 
P(t).

Here, pn indicates uniformly distributed load and pn rep-
resents dimensionless equivalent of load.

Every mode may be thought of as its own separate SDOF 
system. The SDOF system’s natural frequency �n , the dura-
tion of the blast load td , and the pulse shape all affect the 
dynamic amplification factor Dn(t).

The system’s dynamic response in the nth mode is a func-
tion of the time-dependent dynamic amplification factor 
Dn(t) , the mode shape Wn(x) and the “modal participation” 
factor, which is

The dynamic transverse displacement in the nth mode 
examined by Chopra (2012) as

(37)pn = pnL
3∕EI

(38)Pn = ∫
l

0

Wn(x)p(x)dx

(39)yn(x, t) =
Pn

�n

Dn(t)Wn(x)

Table 1   Mode shape and frequency eq. for simply supported beam

S. no Beam theory Frequency equation Mode shape

1 Timoshenko sin(a ∗ l)sinh(b ∗ l) = 0W
n(x) = C

n
{sin(a ∗ x)}

Table 2   Ortho-normalization equation for simply supported beam

The Kronecker delta, denoted by δmn is 1 when n = m and 0 otherwise

S. no Beam theory Equation for ortho-normalizing

1 Timoshenko ∫ l

0
(W

n
(x)�AW

m
(x) + �

n(x)�I�m(x))dx = �
mn

Table 3   Natural frequency for beam

S. no Beam theory Natural frequency

1 Timoshenko
�
n
=

√
a2
n
−b2

n√
1+�2

�
E

�

1

L
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Determination of pressure‑impulse curve 
(iso‑damage curve)

The maximum dynamic response obtained using elastic 
SDOF analysis can represent the required damage level 
(ductility ratio μ = 1) and hence can be used as a governing 
parameter to obtain the Pressure-Impulse curve (iso-damage 
curve). The maximum dynamic response can be written as:

where yst is the static response and Dn,max is the maximum 
time-dependent dynamic load amplification factor.

If the damage criterion is restricted to ym = yc, where yc 
is the critical response, as proposed by Li and Meng (2002) 
dimensionless pressure-impulse curve can be obtained as:

(40)ym = ystDn,max

(41)Pressure co-ordinate ∶
ym

yc
=

ystDn,max

yc
= 1 → P =

Po

Kym
=

yst

yc
=

1

Dn,max

(42)

Impulse co-ordinate ∶ I =
I

ym

√
KM

=
ptd

2
=

yst�ntd

2yc
=

�ntd

2Dn,max

Thus, obtaining values of maximum dynamic amplifica-
tion for variable blast load cases, the Pressure Impulse curve 
can be plotted using the equations mentioned above.

Results and discussion

Validation of SDOF systems

The aforementioned CSDOF formulations in the proceed-
ing section have been validated using experimental study 
on simply supported beam (Wu, 2012; Xu et al., 2014). 
The dynamic response predicted using the above two for-
mulations and existing SDOF (Bigg/ Krauthammer) for-
mulation is compared with limited experimental informa-

tion available. The data regarding the geometric/ material 
properties of the beams and the blast load is summarized 
in Table 4 subsequently.

Frequencies are calculated and illustrated in Table 5 
below for the above mentioned simply supported beam 
using Tables 1, 2, and 3.

The maximum deflection at mid-span and support 
experimentally measured and forecast using various SDOF 
models is shown in Table 6.

Pressure‑impulse diagrams

Fourteen blast load scenarios emcompassing a range of 
the blast’s intensity have been taken into consideration 
for the generation of the pressure-impulse diagrams. The 
near-blast load situation is susceptible to the impulsive 
asymptote (high peak pressure and short duration). In con-
trast, distant blast load instances with protracted duration 

Table 4   Illustration of example under consideration

Properties of the beam
Area moment of 

inertia (I)
0.000032 m4 Poisson’s ratio 0.2

Density (ρ) 2400 kg/m3 Shear factor 0.822
Cross-sectional area 

(A)
0.04 m2 Slenderness ratio 70.71

Length (L) 2.0 m Young’s modulus 
(E)

25.7 GPa

Modulus of rigidity 
(G)

12.5 GPa

Blast loading charateristics
Charge distance (m) 1.5 po (MPa) 12.42
Charge weight 

(TNT) (kg)
8.3 td (ms) 0.276

Table 5   Timoshenko’s theory 
for simply supported beams 
is used to calculate the wave 
numbers and frequencies

Mode Timoshenko

n Wave number an Wave number bn Natural frequency ωn Ortho-normal 
Constant Cn

1 3.14 3.12 245.79 0.28
2 6.28 6.19 951.23 0.28
3 9.42 9.12 2103.44 0.29
4 12.56 11.88 3654.38 0.29
5 15.71 14.42 5554.24 0.29
6 18.85 16.73 7751.75 0.29
7 21.99 18.79 10.198.35 0.29
8 25.13 20.60 12.850.52 0.29
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and comparatively lower peak pressure are susceptible 
to quasi-static asymptote. Figure 10 displays pressure-
impulse (iso-damage) diagrams predicted using Bigg’s 
elastic SDOF model, SDOF model based on Timoshenko 
beam theory for 1 and 8 modes and coupled elastic SDOF 
model.

All of the aforementioned methods leads to convergence 
in the pressure-impulse diagrams for distant blast scenar-
ios (quasi-static asymptote). While in the event of a near 
blast (Impulsive asymptote), pressure-impulse diagrams 
obtained using Bigg and Timoshenko mode 1 demonstrate 
convergence and pressure-impulse diagrams predicted 
using coupled SDOF model approaches that obtained 
using Timoshenko model including higher modes.

Effect of flexibility

For employing beam theory to determine a structure’s 
dynamic response subjected to blast load, flexibility plays a 
crucial role (Bhatt et al., 2021). Pressure-impulse diagrams 
are produced for three beams having different flexibility 

(slenderness ratio-90.38, 70.71, 54.23) by using Timoshenko 
beam theory considering the first 8 modes (represented 
using s) and elastic coupled SDOF system methodology 

Table 6   Results and 
observations

Method Flexural response Direct shear response 
(Maximum support 
slip)Mid-span deflection Rotation at the 

support

Biggs’ 42.0 mm 2.4° –
Experimental 33.6 mm – –
Euler–Bernoulli (1 mode) 40.6 mm – –
Timoshenko (1 mode) 40.4 mm 2.89° –
Coupled SDOF 35.8 mm 2° –

Fig. 10   A comparison of cou-
pled SDOF dynamic regime of 
Pressure-Impulse diagram
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Timoshenko beam theory
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(represented using CR-s). The attempt is to capture the effect 
of flexibility on the structure’s response subjected to a vary-
ing range of blast load. It is apparent from Figs. 11 and 12 
that as the flexibility of the structural element decreases, 
the Pressure-Impulse diagram shifts towards a quasi-static 
regime, implying less severity towards blast loads.

Figure 13 shows Pressure-Impulse diagrams predicted 
for slenderness ratio 90.38 using the SDOF model based on 
Timoshenko beam theory including the first 8 modes and 
Coupled SDOF system. Both the diagrams slightly deviate 
for very near blast scenarios. The Timoshenko SDOF model 
shows an over-conservative response. Figure 14 shows Pres-
sure-Impulse diagrams predicted for slenderness ratio 70.71 
using the SDOF model based on Timoshenko beam theory 
including the first 8 modes and coupled SDOF system. Both 
the diagrams converge. Figure 15 shows Pressure-Impulse 
diagrams predicted for slenderness ratio 54.23 using SDOF 
model based on Timoshenko beam theory including the first 

8 modes and coupled SDOF system. P-I diagram produced 
based on Timoshenko beam theory shifts towards the quasi-
static regime.

Effect of shear capacity and flexure capacity ratio 
(Vo/ Rm)

Figure 16 shows Pressure-Impulse (iso-damage) diagrams 
predicted using Coupled elastic SDOF model for various Vo/
Rm (i.e., 0.416, 1, 1.57, 2, 2.6). Figure 17 indicates the mag-
nified dynamic regime of the P-I diagram shown in Fig. 16. 
The attempt is to capture the effect of the ratio of shear 
capacity and flexure resistance on the response of structural 
elements for varying blast scenarios and accordingly identify 
the failure mode.

It is envisaged from Figs. 16 and 17 that with increased 
Vo/Rm, response shifts towards the “quasi-static zone”, 
ductile behavior of the structure can be observed. In the 
impulsive zone, we observe shear failure (brittle failure), 
with increased Vo/Rm ratio for a given beam, we can move 
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our failure zone from brittle shear failure towards ductile 
flexure failure.

Conclusion

The response of the structure or structural part subjected 
to blast load has been obtained in the form of a P-I curve 
by including the contribution of higher modes through the 

application of the superposition approach and Coupled 
SDOF approach.

Higher modes significantly influence the response of a 
structural element against blast load, as is clear from the 
results derived in the form of Pressure-Impulse (iso-damage) 
curves. It should be observed that these iso-damage (P-I) 
curves for the blast in the dynamic and impulsive regime 
are very different from those derived using the traditional 
SDOF paradigm.

Using Timoshenko beam theory including higher modes, 
traditional SDOF approach and Coupled SDOF approach, 

Fig. 16   Pressure-Impulse 
diagram using coupled SDOF 
system for variable Vo/Rm ratio
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comparison research was conducted to examine the vari-
ance in response of a structure subjected to blast load. The 
P-I curve obtained using the traditional SDOF approach 
and Timoshenko beam theory considering first mode dis-
play convergence, while the curve obtained using the Cou-
pled SDOF approach converges with that obtained using 
Timoshenko beam theory including higher modes. The 
response of the structure in the form of Pressure-Impulse 
curves obtained using various aforementioned approaches 
is heavily influenced by flexibility. The Pressure-Impulse 
curve obtained moves towards the non-conservative side 
(quasi-static regime) as flexibility of structural element 
decreases. The effect of shear-flexure capacity ( Vo∕Rm ) ratio 
is also studied for Coupled SDOF approach. As ( Vo∕Rm ) 
ratio increases for a beam, the response shifts towards quasi-
static regime for the given blast load case, indicating ductile 
(flexure) behavior.

In the event of a near-field explosion, higher modes (flex-
ure and shear) are understandably important. The current 
analysis demonstrates that the formulation of Timoshenko 
produces an accurate response regardless of the structure’s 
flexibility. The Coupled SDOF technique is a viable alterna-
tive for achieving response for varied blast ranges without 
experimenting with number of modes parameter in a much 
simplified way.
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