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Abstract
Balancing time and cost has long been a primary focus of construction project management. In this context, achieving opti-
mal balancing time and cost objectives is crucial. The multi-verse optimizer (MVO) has emerged as a promising stochastic 
optimization algorithm in this field, as it efficiently explores and exploits the search space. This study proposes the MVO 
model as a new tool to address time–cost optimization problems (TCOPs). To evaluate MVO's performance, three bench-
mark test problems were used, each comprising 18 activities. The findings suggest that MVO outperforms other stochastic 
optimization techniques in terms of effectiveness when applied to small-scale TCOPs.

Keywords  Time–cost optimization problem · Multi-verse optimizer · Decision support systems · Project management · 
Evolutionary algorithm

Introduction

In construction project management, optimization is of para-
mount importance as it facilitates the identification of the 
most efficient plan and schedule to ensure project comple-
tion. Efficiently solving time and cost optimization prob-
lems can provide construction companies with a competitive 
advantage (Chen & Weng, 2009). One type of time–cost 
optimization is the Pareto front problem, which aims to 
obtain an optimal solution by minimizing both cost and time 
simultaneously. Alternatively, a simpler approach to solv-
ing time–cost trade-offs may involve finding the minimum 
project duration or project cost separately. Time optimiza-
tion aims to identify feasible methods to reduce the project 
duration without exceeding the revenue generated by early 
project completion, while cost optimization aims to mini-
mize the overall project cost.

Evolutionary algorithms have become increasingly 
popular for solving optimization problems across various 

research fields (Boussaïd et al., 2013). Kaveh and Laknejadi 
(2011) developed a novel Pareto optimization model based 
on particle swarm optimization (PSO), while their work in 
Kaveh and Laknejadi (2013) proposed a new version of the 
memetic Pareto archive evolution strategy for truss structure 
layout optimization. Kaveh and Mahdavi (2019) developed a 
multi-criteria approach based on colliding bodies optimiza-
tion for truss design, and Kaveh and Ilchi Ghazaan (2020) 
presented a vibrating particle system-based technique for 
multi-criteria optimization analysis. Son and Khoi (2020) 
introduced a novel metaheuristic technique inspired by the 
hunting behavior of wild dogs in Africa, while Pham and 
Nguyen (2023) introduced a hybrid sine cosine model for 
addressing cement transport vehicle routing. Kaveh (2014) 
reviewed many recent metaheuristic algorithms in his 
research work.

MVO was introduced by Mirjalili et al. (2016), which has 
demonstrated performance that is comparable to or superior 
to other well-known evolutionary algorithms, including the 
grey wolf optimizer, gravitational search algorithm, and 
PSO. By employing MVO, it is possible to balance explor-
ing new solutions and exploiting existing ones, while also 
avoiding local optimization. Therefore, MVO can serve as a 
valuable tool for solving optimization problems that involve 
both single-objective and multi-objective cases. Considering 
the advantages listed above, it can be concluded that MVO is 
a suitable meta-heuristic method for resolving TCOP.
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The next section provides a summary of the existing lit-
erature on balancing time and cost. "Optimization model 
development" section describes the development process 
of our proposed approach. The outcomes of the validation 
and implementation of our model are presented in "Com-
putational experiments" section. The study concludes with 
a summary of the findings and identifies potential areas for 
future research in "Conclusion" section.

Literature review

PSO introduced by Elbeltagi et al. (2005) has been found 
to be more efficient in addressing cost optimization chal-
lenges when compared to five other evolutionary-based 
algorithms. Yang (2007) presented a new version of PSO 
capable of determining the full set of time–cost Pareto solu-
tions. Zhang and Xing (2010) introduced a fuzzy-based PSO 
that addresses the multi-objective nature of construction 
project management. The discrete model of PSO (DPSO) 
was developed by Aminbakhsh and Sonmez (2016) to 
manage time–cost constraints for complex projects with 
numerous activities and constraints. PSO was also used by 
Aminbakhsh and Sonmez (2017) to find a set of Pareto solu-
tions for large-scale construction projects. Albayrak (2020) 
proposed a GA-PSO algorithm to address the challenge of 
balancing project completion time and cost in resource-con-
strained building projects.

In addition to PSO, the genetic algorithm (GA) is fre-
quently employed as an algorithm for addressing the 
time–cost efficiency considerations. Hegazy (1999) employs 
genetic algorithms (GAs) as the basis for solving time–cost 
balancing problems. Zheng et al. (2005) proposed a multi-
objective model based on GA to determine a set of Pareto 
time–cost solutions. Eshtehardian et al. (2008) presented a 
hybrid GA for solving the fuzzy version of time–cost opti-
mization. Sonmez and Bettemir (2012) proposed an inte-
grated method based on GA to address time–cost balancing 
problems. The GA was also utilized by Naseri and Ghasbeh 
(2018) to analyze time and cost for mitigating the negative 
effects of project delays.

Ng and Zhang (2008) proposed an algorithm based on 
ant colony behavior (ACO) as an optimization approach for 
managing time and cost constraints in construction projects. 
Afshar et al. (2009) developed a novel algorithm based on 
ant colony optimization (ACO) to tackle the problem of pro-
ject time–cost management. Kalhor et al. (2011) introduced 
a hybrid optimization algorithm based on ACO to deal with 
uncertain factors in time–cost optimization. The shuffled 
frog-leaping (SFL) technique was employed by Elbeltagi 
et al. (2007) to optimize project cost. Ashuri and Tavakolan 
(2015) proposed an SFL model to overcome the complex 
issue of achieving optimal time, cost, and resource allocation 

in project planning. Abdel-Raheem and Khalafallah (2011) 
proposed an optimization algorithm inspired by the behavior 
of electrons to address the challenge of cost management. 
An optimization technique that merges two metaheuristic 
algorithms was proposed by Kaveh et al. (2015) to allo-
cate resources and tackle the time–cost trade-off problem. 
Bettemir and Talat Birgönül (2017) employed a network 
analysis algorithm (NAA) that utilizes the principle of mini-
mum cost-slope to derive optimal or near-optimal solutions 
for the TCOP. Toğan and Eirgash (2019) proposed a multi-
objective optimization algorithm (NDS-TLBO) using the 
nondominated sorting concept in combination with teach-
ing–learning-based optimization to effectively solve the 
TCOP. Son and Nguyen Dang (2023) presented a hybrid 
technique based on the sine cosine algorithm to address the 
large-scale TCOP.

The TCOP has been extensively investigated using vari-
ous stochastic optimization approaches, such as PSO, GA, 
SFL, etc. However, the MVO algorithm has not been fre-
quently utilized in previous studies addressing this problem. 
This knowledge gap motivated the research team to propose 
an MVO-based model for tackling the TCOP.

Optimization model development

Multi‑verse optimizer

The MVO algorithm was inspired by three fundamental con-
cepts of the multi-verse theory: white holes, black holes, 
and wormholes. It uses white/black hole tunnels for explo-
ration and wormhole tunnels for exploitation within the 
search space. The algorithm represents solutions based on 
universes, in which each variable corresponds to an asteroid 
within that cosmos. The quality of a universe can be evalu-
ated through its inflation rate, which is calculated using a 
specific objective function.

The algorithm employs the white/black hole concept to 
represent the exploration processes. MVO suggests that uni-
verses with a higher inflation rate are more likely to gener-
ate white holes, while those with a lower inflation rate are 
more likely to produce black holes. Universes with higher-
quality solutions are more likely to emit entities through 
white holes, while those with lower quality tend to receive 
more entities via black holes. Additionally, regardless of 
their inflation rates, all entities within universes may expe-
rience stochastic displacements toward the most successful 
universe through the utilization of wormholes.

The transfer of entities between universes through white/
black hole tunnels is represented using a roulette wheel 
mechanism (RWM), as described by Eq. (2). The occurrence 
of white holes is determined using this mechanism, which is 
based on a standardized inflation rate.
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Consider that:

where d and n are the number of parameters solutions (uni-
verses), respectively:

where oj
i
 indicates the jth parameter of ith solution; Ui shows 

the ith solution, NI(Ui) is the standardized inflation rate of 
the ith solution; α1 is a random number in the range from 0 
to 1; and oj

k
 indicates the jth parameter of kth solution chosen 

by RWM.
In Fig. 1, objects traveling through wormholes are rep-

resented by white points. In the MVO algorithm, the for-
mation of wormhole tunnels between a universe and the 
best-performing universe established so far is a regular 
occurrence. The equation that characterizes this mecha-
nism is shown below:
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where Oj represents the jth parameter of the best solution 
formed so far; TDR is traveling distance rate; WEP is worm-
hole existence probability; lbj and ubj denote the lower and 
upper bounds of the jth parameter, respectively; oj

i
 indicates 

the jth parameter of ith solution; and α2, α3, α4 present ran-
dom values that range from 0 to 1.

Figure 2 provides a visualization of the TDR and WEP. 
TDR determines the rate of displacement of an entity toward 
the best-performing universe using a wormhole. As shown 
in Eq. (4), the value of this parameter decreases with each 
iteration to improve the accuracy of local search and explo-
ration in the vicinity of the current best universe in the MVO 
algorithm. On the other hand, the WEP parameter regulates 
the probability of wormhole existence in the universe. It 
increases linearly with each iteration, as shown in Eq. (5).

where p = 6 intensity of exploitation over the iterations; l and 
L represent the current and maximum iteration numbers; the 
values of min and max, which are 0.2 and 1, respectively.

Proposed model for TCOP

Each construction activity can be performed in sev-
eral manners, taking into consideration the resources, 
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Fig. 1   Conceptual model of the proposed MVO algorithm Fig. 2   Relationship between WEP and TDR
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technology, and equipment employed. Each operational 
choice is characterized by a distinct time and cost attrib-
uted to it. The primary aim of balancing time and cost, 
which is typically referred to as minimizing the overall 
project cost, can be expressed as follows:

where PC is the overall project cost; SCdc and SCic are the 
overall direct and indirect costs respectively, cadc,i is the 
direct cost of the ith activity; cic is the daily indirect cost of 
the project.subject to:

(6)PC = SCdc + SCic =

m∑
i=1

cadc,i + PD × cic

where PD is the project duration; Tas,i and Taf,i are the start 
and finish time of the ith activity, respectively; di is the dura-
tion of the ith activity.

During the optimization process, the preferred alterna-
tive is determined based on its lower total project cost, and 
if both options have equal overall project costs, the option 
with a shorter completion time is chosen. In the rare case 
where both options have equivalent time and cost, the opti-
mal choice is randomly selected.

The MVO algorithm is represented through both a 
pseudo-code (Table 1) and a flowchart (Fig. 3). Table 2 sum-
marizes the set of parameters used, which proved to be an 
effective combination for the MVO optimization process. 
The MVO algorithm for the TCOP was coded in Python. 
The device used for testing all instances of the TCOP was 
equipped with an i7-8750H 2.20 GHz CPU and 8.0 GB of 
RAM.

Computational experiments

The case studies reported by Feng et al. (1997), consist 
of 18 activities and incorporate alternative approaches as 
recommended by Hegazy (1999), as shown in Table 3. The 

(7)PD = max
i=1,…,m

(Tas,i + da,i) = max
i=1,…,m

(Taf ,i)

Table 1   Pseudo-code of the MVO for TCOP
Input: Population size (i) and number of iterations (N)
Output: The best solution and its fitness value.
Begin
Create project network; Generate random solution;
while (the end condition is not met) do

Determine Project Duration (Eq. (7)); Calculate Project Cost (Eq. (6));
   SU = Sorted solutions; NI = Normalize Project Cost;

for (each schedule i) do
         Update TDR (Eq. (4)); Update WEP (Eq. (5)); Black_hole_index = i;

for (each activity j) do
            alpha_1=rand ([0,1]);

if alpha_1<NI(U_i) then
               White_hole_index = Roulette_wheel_selection(-NI);
               U(Black_hole_index,j)= SU(White_hole_index,j);
               alpha_2=rand([0,1]);

if alpha_2 < WEP then
                  alpha_3=rand ([0,1]);
                  alpha_4=rand ([0,1]);

if alpha_3<0.5 then
                     o_i,j=Best solution_j + TDR∗(( ub_j – lb_j) ∗ alpha_4 + lb_j);

else
                     o_i,j=Best solution_j - TDR∗(( ub_j – lb_j) ∗ alpha_4 + lb_j);
Return: The best solution
End

Fig. 3   Flowchart of the MVO 
for TCOP

Table 2   Parameter settings of the MVO model

Parameter Description Value

N Number of iterations 250
i Number of solutions 200
min Minimum value 0.2
max Minimum value 1
p Exploitation intensity 6
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network diagram of the 18 activities can be found in Fig. 4. 
It is estimated that there are 5.90 × 109 potential schedules 
for this project. In Case study 1, the daily indirect costs 
amount to $200, and the project deadline is set at 110 days. 
The contractual penalties incurred for delays are $20,000 
per day, while incentives of $1000 per day are available 
for early completion. Case study 2 features daily indi-
rect expenses of $1500, whereas case study 3 showcases 

indirect expenses totalling $500 per day. Table 4 presents 
the optimal solutions for case studies 1, 2, and 3. The eval-
uation of MVO's performance was carried out ten times 
for each of the three case studies, and the resulting mean 
deviation (MD) from the optimal schedule is presented 
in Tables 5, 6 and 7. The MVO algorithm successfully 
attained the globally optimal solutions in all ten trials for 
the three problems within 50,000 schedules.

Table 3   18-activity data for Case studies 1, 2 and 3

Act. Logical Option 1 Option 2 Option 3 Option 4 Option 5

di (days) cadc,i (USD) di (days) cadc,i (USD) di (days) cadc,i (USD) di (days) cadc,i (USD) di (days) cadc,i (USD)

1 – 14 2400 15 2150 16 1900 21 1500 24 1200
2 – 15 3000 18 2400 20 1800 23 1500 25 1000
3 – 15 4500 22 4000 33 3200 – – – –
4 – 12 45,000 16 35,000 20 30,000 – – – –
5 1 22 20,000 24 17,500 28 15,000 30 10,000 – –
6 1 14 40,000 18 32,000 24 18,000 – – – –
7 5 9 30,000 15 24,000 18 22,000 – – – –
8 6 14 220 15 215 16 200 21 208 24 120
9 6 15 300 18 240 20 180 23 150 25 100
10 2, 6 15 450 22 400 33 320 – – – –
11 7, 8 12 450 16 350 20 300 – – – –
12 5, 9, 10 22 2000 24 1750 28 1500 30 1000 – –
13 3 14 4000 18 3200 24 1800 – – – –
14 4, 10 9 3000 15 2400 18 2200 – – – –
15 12 12 4500 16 3500 – – – – – –
16 13, 14 20 3000 22 2000 24 1750 28 1500 30 1000
17 11, 14, 15 14 4000 18 3200 24 1800 – – – –
18 16, 17 9 3000 15 2400 18 2200 – – – –

Fig. 4   Network diagram of the 
18-activity for Case studies 1, 
2 and 3

Table 4   Optimal solution of Case studies 1, 2 and 3

Case study Project duration Detail duration of the corresponding activity (days) Project cost

CS1 110 [14, 25, 33, 20, 30, 24, 18, 16, 15, 15, 20, 22, 24, 18, 12, 30, 14, 9] 128,270
CS2 110 [14, 25, 33, 20, 30, 24, 18, 24, 15, 15, 20, 22, 24, 18, 12, 30, 14, 9] 271,270
CS3 110 [14, 25, 33, 20, 30, 24, 18, 24, 15, 15, 20, 22, 24, 18, 12, 30, 14, 9] 161,270
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Case study 1

In comparison to more advanced methods, MVO has 
been demonstrated to be one of the superior algorithms 
for small-scale TCOPs. As evidenced by the results in 
Table 5, MVO outperformed GA (Hegazy, 1999; Sonmez 
& Bettemir, 2012) for case study 1. The optimal value can 
be obtained by employing a hybrid genetic algorithm with 
simulated annealing (HA) (Sonmez & Bettemir, 2012), the 
discrete version of PSO (DPSO) (Aminbakhsh & Sonmez, 
2016), the network analysis algorithm (NAA) (Bettemir & 
Talat Birgönül, 2017), or MVO.

Case study 2

The MVO algorithm has demonstrated superior performance 
(Table 6) compared to GA (Zheng et al., 2005), the hybrid 
algorithm based on the ant colony system (ACS-TCO) 
developed by Ng and Zhang (2008), the ant colony system 
(ACS), and ACS-SGPU that combine ant colony system and 
a global updating strategy proposed by Zhang and Thomas 
Ng (2012) for achieving optimal outcomes. In terms of 
providing high-quality solutions, MVO can be competed 
with by other methods, such as Pareto-based PSO (PFPSO) 
(Aminbakhsh & Sonmez, 2017) and hybrid teaching learn-
ing-based optimization (NDS-TLBO) (Eirgash et al., 2019).

Case study 3

The suggested MVO algorithm exhibited superior perfor-
mance (Table 7) compared to the ACO, SFL, PSO, memetic, 
and genetic algorithms (Elbeltagi et al., 2005) for solving 
case study 3. Other modern techniques that can rival the 
proposed MVO in terms of providing high-quality solutions 
are the Electimize algorithm (Abdel-Raheem & Khalafallah, 
2011), ACS, and ACS-SGPU (Zhang & Thomas Ng, 2012).

Conclusion

The present study has introduced the Multi-Verse Optimizer 
(MVO) as a novel approach to tackling time–cost optimiza-
tion problems (TCOP) in small-scale projects. The compu-
tational experiments conducted have demonstrated the abil-
ity of MVO to produce high-quality solutions for TCOP, 
outperforming other optimization algorithms in terms of 
solution quality and computational efficiency. Specifi-
cally, MVO was able to obtain high-quality solutions with 
only 8000 schedules, compared to the 50,000 schedules 
required by other optimization methods. While the results 
of this study are promising, it is important to note that the 
application of MVO was limited to small-scale TCOPs. In 
practice, construction projects often involve complex and 
large-scale TCOPs, which may require the development of 
more advanced MVO-based methodologies to address multi-
dimensional decision-making in selecting the optimal time 
and cost allocations. Therefore, future research should focus 
on employing MVO to tackle complex large-scale TCOPs 
and propose methodologies for multi-dimensional decision-
making in construction project management.
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Table 5   Mean deviation from the optimal solution for Case study 1

Algorithm No. of runs MD (%)

GA (Hegazy, 1999) 1 8.139
GA (Sonmez & Bettemir, 2012) 10 2.170
HA (Sonmez & Bettemir, 2012) 10 0.000
DPSO (Aminbakhsh & Sonmez, 2016) 10 0.000
NAA (Bettemir & Talat-Birgönül, 2017) – 0.000
MVO (This study) 10 0.000

Table 6   Mean deviation from the optimal solution for Case study 2

Algorithm No. of runs MD (%)

MAWA-GA (Zheng et al., 2005) 1 0.903
ACS-TCO (Ng & Zhang, 2008) 1 0.018
ACS-SGPU (Zhang & Thomas-Ng, 2012) 1 0.698
ACS (Zhang & Thomas-Ng, 2012) 1 0.018
PFPSO (Aminbakhsh & Sonmez, 2017) – 0.000
NDS-TLBO (Eirgash et al., 2019) – 0.000
MVO (This study) 10 0.000

Table 7   Mean deviation from the optimal solution for Case study 3

Algorithm No. of runs MD (%)

GA (Elbeltagi et al., 2005) 20 2.171
MA (Elbeltagi et al., 2005) 20 0.759
PSO (Elbeltagi et al., 2005) 20 0.415
ACO (Elbeltagi et al., 2005) 20 3.351
SFL (Elbeltagi et al., 2005) 20 2.960
Electimize (Abdel-Raheem & Khalafallah, 

2011)
20 0.000

ACS-SGPU (Zhang & Thomas-Ng, 2012) 1 0.000
ACS (Zhang & Thomas-Ng, 2012) 1 0.000
MVO (This study) 10 0.000
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