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Abstract
Estimating the project cost is an important process in the early stage of the construction project. Accurate cost estimation 
prevents major issues like cost deficiency and disputes in the project. Identifying the affected parameters to project cost 
leads to accurate results and enhances cost estimation accuracy. In this paper, extreme gradient boosting (XGBoost) was 
applied to select the most correlated variables to the project cost. XGBoost model was used to estimate construction cost and 
compared with two common artificial intelligence algorithms: extreme learning machine and multivariate adaptive regres-
sion spline model. Statistical indicators showed that XGBoost algorithm achieved the best performance with a coefficient of 
determination (R2 = 0.952) and root mean square error (RMSE = 590,609.782). Due to the reliability of XGBoost model, the 
presented approach can assist project managers in abstracting the influencing variables and estimating the cost of building 
projects. The findings of this study are helpful for the project's stockholder to decrease the errors of the estimated cost and 
take the appropriate decision in the early stage of the construction process.
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Introduction

The construction industry contributes to the social and 
economic wealth of developed and developing countries 
(Myers, 2016; Owusu-Manu et  al., 2019). As a result, 
numerous researchers have studied the enhancement of the 
performance of construction projects (Al-Dhaheri & Burhan, 
2022; Barnes, 1988; Bryde, 2008; Salim & Mahjoob, 2020; 
Wateridge, 1998). A successful performance means the con-
struction project is finished within the three critical criteria: 
cost, duration, and quality (Abbas & Burhan, 2023; Moham-
mad et al., 2021; Pollack et al., 2018). Project quality can 
be controlled during the project's construction phases, while 
cost and duration need to estimate their amount at the begin-
ning of a project (Azman et al., 2013). The project cost is 
considered a determination of project success and owners, 

satisfaction due to its impact on their financial decisions 
(Huo et al., 2018; Matel et al., 2019). Estimating the project 
cost accurately helps decision-makers perform good feasi-
bility studies and monitor the cash flows of construction 
projects (Shehu et al., 2014). Estimating construction cost 
is a complex problem characterized by incomplete informa-
tion, risks, and uncertainties that lead to inaccurate results 
(Ahiaga-Dagbui & Smith, 2012; Fadhil & Burhan, 2022; 
Jing et al., 2019). Underestimated cost leads to cost over-
runs and financial problems for all parties in construction 
projects (Nagham Nawar Abbas & Burhan, 2022; Akintoye, 
2000). To reduce these problems and achieve project objec-
tives, several methods have been proposed in past studies 
to accurately estimate construction cost (Araba et al., 2021; 
Elhegazy et al., 2022; Sharma et al., 2021). Researchers in 
these studies have focused on two approaches, qualitative 
and quantitative methods. The qualitative method depends 
on expert opinion may lead to bias and inaccurate outcomes 
(Alex et al., 2010). Accordingly, recent studies have devel-
oped statistical approaches such as regression analysis (Al-
Momani, 1996; Lowe et al., 2006) and artificial intelligence 
techniques for construction cost estimation (Shutian et al., 
2017; Son et al., 2012). Several factors affect cost estima-
tion, such as project characteristics and external economic 
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parameters. Most of the studies have focused on project 
characteristics and ignore economic parameters. The reason 
behind this is there is no agreement among researchers on 
the impact of economic factors on the project cost, and there 
is little attention to incorporating these variables in the cost 
estimation process (Baloi & Price, 2003; Elhag et al., 2005; 
Gunduz & Maki, 2018; Zhao et al., 2020). This disagree-
ment can be discussed using an inappropriate approach to 
investigate the influencing factors (Zhao et al., 2020). Con-
sequently, there is a need to develop a suitable method to 
explore the impact of significant parameters of construction 
cost estimation (Wang et al., 2022).

According to a questionnaire survey and Among six influ-
encing groups, Elhag et al. (2005) concluded that market 
conditions have gained the fourth rank in cost influencing 
factors (Elhag et al., 2005). In another study, the authors 
stated that economic variables have a high effect on the final 
cost of the construction project (Akinci & Fischer, 1998; 
Shane et al., 2009). In contrast, Hatamleh et al. (2018) indi-
cated that market conditions had the least impact on cost 
estimation performance (Hatamleh et al., 2018). Several 
studies revealed that market conditions critically impact the 
cost estimation problem (Doloi, 2013; Iyer & Jha, 2005; 
Zhang et al., 2017). According to Zhao et al. (2019), mar-
ket conditions have the most significant value among other 
affecting parameters. Wang et al. (2022) Stated that eco-
nomic variables are more important than the project's param-
eters and have an essential role in improving cost estimation 
accuracy (Wang et al., 2022). One of the significant market 
conditions that affect cost estimation is inflation. Inflation 
significantly impacts the construction industry, especially 
the cost estimation process, due to its effects on material 
prices, labor wages, and equipment costs. These effects 
lead to problems among project parties and cost overruns 
(Musarat et al., 2021).

For the estimation process, several scholars used regres-
sion analysis as a popular method for cost estimation (Al-
Momani, 1996; Lowe et al., 2006). The advantages of this 
method are its simplicity and the ability to produce simple 
results. However, this method has some drawbacks, such as 
it requires a defined mathematical expression and its inabil-
ity to handle nonlinear relationships between input and out-
put variables. In recent studies, soft computing algorithms 
have been used efficiently in construction management 
research and approved their ability to deal with complex 
systems and capture the nonlinear relationship between input 
and output parameters (Aljawder & Al-Karaghouli, 2022; 
Pan & Zhang, 2021). Artificial intelligence (AI) models 
help decision-makers capture historical data and deal with 
incomplete information in the early phases of the construc-
tion project (Almusawi & Burhan, 2020; Altaie & Borhan, 
2018; Kaveh et al., 2008; Wang et al., 2022; Yaseen et al., 
2020). Al-Momani (1996) Used a linear regression model 

to estimate the cost of a construction project based on three 
project characteristics (Al-Momani, 1996). Artificial neural 
network (ANN) was used by Kaveh and Khalegi (1998) to 
estimate the compressive strength of concrete. The study 
revealed the capacity of ANN to predict plain and admixture 
concrete with accepted results (Kaveh & Khalegi, 1998). 
Another study investigated the improved neural network 
called counterpropagation neural net to analyze and opti-
mize large-scale structures (Kaveh & Iranmanesh, 1998). 
The study showed the improved algorithm indicated better 
results than the traditional propagation neural network.

Three AI models named decision tree (DT), support vec-
tor machine (SVM), and ANN were developed to estimate 
construction cost in Turkey (Erdis, 2013). AI models were 
built based on 575 datasets collected from a public con-
struction project and three input parameters, including the 
rate of price -cut, location, and duration of a construction 
project. Shutian et al. (2017) Used a Kalman filter with 
SVM model and multi-linear regression (MLR) to estimate 
construction cost in China (Shutian et al., 2017). The study 
showed that the presented methods are useful in estimat-
ing cost of building projects. A study by Mahalakshmi and 
Rajasekaran (2019) proposed an ANN model for 52 highway 
construction projects (Mahalakshmi & Rajasekaran, 2019). 
The study demonstrated that the ANN model with a back-
propagation algorithm could predict construction cost with 
acceptable accuracy. Linear regression was hybridized with 
a random forest (RF) model to predict the labor cost of a 
BIM project (Huang & Hsieh, 2020). The authors concluded 
that the hybrid model effectively improves the prediction 
performance of labor cost in the BIM project. Three predic-
tion models named multivariate adaptive regression spline 
(MARS), extreme learning machine (ELM), and partial least 
square regression (PLS) were applied to estimate the cost 
of field canal improvement (Shartooh Sharqi & Bhattarai, 
2021). The researchers concluded that the MARS algo-
rithm obtained the best cost prediction accuracy with high 
R-squared and low estimation error. The performance of 
Three AI models named RF, SVM and multi-linear regres-
sion (MLR) were investigated by Shoar et al. (2022) to pre-
dict cost overrun of engineering services of 95 construction 
projects. The study revealed that RF model performed better 
than the other two models in cost estimation.

To investigate the impact of influencing parameters on 
the construction cost problem, most researchers have used 
relative importance index, correlation statistics, structural 
equation modeling, and factor analysis (Cheng, 2014; Gun-
duz & Maki, 2018; Iyer & Jha, 2005). However, bias could 
occur in these techniques because the collected data depends 
on opinions and questionnaire surveys. Also, the traditional 
statistical methods used the linear correlation between input 
and output parameters, which led to an error in capturing the 
nonlinear relationship of the complex system. As a result, 
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mistakes are demonstrated in ranking influencing param-
eters and cost estimation results. It can be seen that tradi-
tional approaches cannot deal with the uncertainties and 
complexity of construction projects. Consequently, there is 
a necessity to develop an effective tool that can produce 
accurate cost estimation results. In recent years, a new AI 
algorithm called extreme gradient boosting (XGBoost) has 
been adopted to handle the complex nature of engineering 
problems. It is an efficient AI algorithm and has been used 
efficiently as a feature selector and a predictor by civil engi-
neering researchers (Chakraborty et al., 2020; Chen & Gues-
trin, 2016; Falah et al., 2022; Tao et al., 2022).

The current research was done to investigate the efficiency 
of AI techniques in feature selection and prediction of con-
struction cost estimation. Therefore, the research objectives 
are: (1) evaluate the ability of XGBoost, ELM, and MARS 
models in predicting construction cost estimation, and (2) 
examine the efficiency of XGBoost algorithm in selecting 
the influencing parameters of the cost estimation process 
incorporating inflation and project characteristics effects. 
This study contributes to the body of knowledge by helping 
decision-making identify and monitor the crucial parameters 
of cost estimation in a quantitative approach and enables 
project parties to compare the planning and estimated cost 
during the construction phase. The outcome of this study 
helps the project's stockholder decrease the errors in cost 
estimation and take the appropriate decision to reduce these 
defects.

Construction cost dataset description

The dataset of the construction cost was gathered from build-
ing projects in Iraq. The data were collected using the sur-
vey of building documents for nineteen construction projects 
built for the period between 2016 and 2021. The collected 
data includes seven parameters named area of ground floor 
(GFA), total area of floor (TFA), duration (D), number of 
elevator (EN), floor number (FN), type of footing (FT), and 

inflation (F). from the survey and reviewing of projects, doc-
uments, project characteristics were gathered while inflation 
information was taken from the open-source central Iraqi 
bank (https://​cbiraq.​org/). The statistical measures of the 
cost dataset, including minimum, maximum, mean, median, 
standard deviation, skewness, and kurtosis, are illustrated 
in Table 1. The statistical measures show that the mean 
number of project cost is 2177699 $. The minimum and the 
maximum values of the duration are equal to 122 days and 
787 days. It can be recognized that the value of kurtosis of 
the most gathered parameters is less than 3, which indicates 
that the collected data is normally distributed.

Methodology

Extreme gradient boosting (XGBoost)

Extreme gradient boost algorithm is a new development 
of a tree-based boosting model introduced as an algorithm 
that can fulfill the demand of prediction problems (Chen & 
Guestrin, 2016; Friedman, 2002). It is a flexible model, and 
its hyperparameters can be tuned using soft computing algo-
rithms (Eiben & Smit, 2011; Probst et al., 2019). The most 
important reason behind the success of XGBoost is the algo-
rithm's flexibility and ability to scale to billions of param-
eters in the distributed system. These properties make the 
algorithm more accurate and faster than the existing algo-
rithm. Whereas, the traditional methods used trial and error 
and personal experience to choose the optimal parameters 
of the algorithm. Gradient boosting aims to produce more 
robust models by combining weak learners in an iterative 
process. In every iteration, the loss function can be reduced 
using the residual of the previous trees (Zhang et al., 2019). 
Every training tree can be modeled based on the residual 
of the previous predictors, and the new tree is added to the 
developed model for updating the residual value. XGBoost 
has proven successful results among tree models such as 
random forest, gradient boosting tree, and AdaBoost. The 

Table 1   Statistical 
characteristics of the collected 
datasets

Minimum Maximum Mean Median Std. deviation Skewness Kurtosis

GFA (m2) 200 5320 1608 1382 1172.561 1.246 1.035
TFA (m2) 344 9800 3456 2800 2480.113 0.879 − 0.152
FN 1 6 2.913 2 1.714 0.574 − 1.079
EN 0 4 0.989 1 1.124 0.939 − 0.057
FT (raft = 1; 

seper-
ated = 2)

– – – – – – –

F (%) 0.1 7.5 2.758 1.9 2.386 0.651 − 0.931
D (days) 122 787 373.5 351.5 157.519 0.729 0.208
C ($) 26,756 6,451,519 2,177,699 1,434,969 1,787,809 0.779 − 0.632

https://cbiraq.org/
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reason behind this effectivity is its ability to be scalable in 
all scenarios of prediction problems and the fast running of 
the system on a single machine.

The regularized objective loss function ‘f(L)’ for Lth in 
XGBoost model can be expressed as shown below:

where n represents the number of observations; ŷ(i)
L

 is the 
estimation of observation ith for iteration L; l(−) represents 
the loss function; and Ω is the regularization term which is 
computed using the following expression:

where N denotes the number of nodes in each leaf, and � and 
� are two symbols used to manage regularization.

The number of trees in XGBoost model is optimized 
using the following equation to produce the best results as 
follows below:

Furthermore, second-order Taylor expansion is applied 
for managing objective functions, as shown in the follow-
ing equation:

where gi is equal to �ŷL−1 l
(
y(i), ŷL−1

)
 and represents the first-

order derivatives of loss functions; hi is �ŷ2
L−1

l
(
y(i), ŷL−1

)
 and 

reflects the second-order derivatives of loss functions; K is 
a constant number.

To select input parameters, XGBoost model is consid-
ered a robust algorithm for such kinds of these problems. 
XGBoost efficiently builds boosting trees parallel to choose 
the essential parameters based on their weight (Friedman, 
2002). gain, cover, and frequency are the popular approaches 
used by XGBoost for ranking evaluation. The gain evaluates 
the contribution of each feature in developing the predic-
tion model. The cover revealed the number of the actual 
values for each feature and the frequency shows the number 
of features in the gradient boosted trees. The mathematical 
equation of ranking evaluation can be expressed as below:

(1)f (L) =

n∑
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(5)Nv =

L∑
L=1

X=1∑
l=1

I
(
Vl
L
, v
)
,

where L represents iterations, number, N is the nodes' num-
ber in each leaf, and (Vl

L
) is the feature for the node I , and 

I() is the indication term and (Vl

L
, v) can be calculated using 

the following expression. The graphical scheme of XGBoost 
algorithm is presented in Fig. 1.

Extreme learning machine (ELM)

An extreme learning machine is a powerful ANN method char-
acterized by simplicity and a non-iterative method for training 
a single-layer neural network (Kardani et al., 2021; Shi-fan 
et al., 2021). ELM algorithm can reach optimum performance 
more efficiently than the traditional ANN. A linear function 
has been used as an activation function for the input and output 
layer, and for the hidden layer, the method applied a sigmoid 
activation function (Hou et al., 2018). In the training process, 
ELM utilizes random weights for hidden neurons, and then it 
uses a Moore–Penrose Pseudo-inverse function to determine 
the weight in the output layer. This process makes the ELM 
model quickly and enables it to deal with many different trans-
fer functions (Huang et al., 2004, 2006). The mathematical 
equation of the training ELM model is presented below:

where ti represents the outcome vector and xi refers to the 
input vector. Equation (7) can be written in the following 
expression:

where H represents the output of the hidden layer, � is a 
matrix that denotes the connection weights between the 
hidden and output layer, and T  is the matrix of output pre-
dicted value depending on N training sets. To develop ELM 
model, the presented procedure is following: first, create 
random weights for the hidden layers, then generate H and 

(6)(Vl

L
, v) = f (x) =
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T , which represent the matrix of the hidden and output layer, 
and finally calculate the weight of the output layer using the 
below equation:

(10)𝛽 = H†T ,

where H† refers to the Moore–Penrose Pseudo-inverse func-
tion. The graphical scheme of ELM model is illustrated in 
Fig. 2.

Fig. 1   Graphical scheme of 
XGBoost model

Fig. 2   Graphical scheme of 
ELM model
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Multivariate adaptive regression spline model 
(MARS)

MARS model is a nonlinear machine learning algorithm 
has been introduced to explore the nonlinearity of com-
plex systems using piecewise segments (Friedman, 1991; 
Ikeagwuani, 2021; Naser et al., 2022). MARS model is a 
nonparametric method, and it is called a curve-based algo-
rithm (Wu & Fan, 2019). The algorithm is similar to a tree-
based model using the iterative approach in the learning 
process and selecting the critical features in the prediction 
problem. MARS model revealed better efficiency than other 
machine learning algorithms like ELM and SVM models 
(Guo et al., 2022; Shartooh Sharqi & Bhattarai, 2021; Wu 
& Fan, 2019). The concept of developing MARS model is 
as follows: At first, The MARS model changes the nonlinear 
regression model to a multiple linear regression model for 
the training dataset. Training data are divided into several 
groups to develop the linear regression model for each sec-
tion. Each section has boundaries called the knots, which 
are identified using the adaptive regression algorithm. In 
each group of the divided data, the MARS model creates 
a basic function (BF) to represent the relationship between 
input and predicted parameters, as shown in the mathemati-
cal equation below:

where x is the value of the input variable and t  represents 
the threshold value.

This process is called a forward phase, where the algo-
rithm chooses the optimum input variables of predicted 
models. The final phase of the MARS model is called the 
backward phase. The algorithm eliminates unused param-
eters selected in the early phase to improve the prediction 
process's performance. The elimination of unnecessary 
parameters is achieved using a pruning algorithm based on 
generalized cross-validation (GCV), which is calculated as 
shown below:

where Oi represents the real value; N is the number of the 
dataset; f

(
xi
)
 is the estimated value, M is the number of 

basic functions, and C(M) represents the penalty factor. d 
ranges between 2 and 4 and represents the optimization cost 
of BFs. The final step in the MARS model is combining the 
BF function to get the predicted outcome of the developed 
model. Figure 3 provides the structure of MARS model.

(11)BF = max(0, x − t) =

{
x − t, if x ≥ t

0, otherwise,

(12)GCV(M) =
(1∕N)

∑N

i=1 (Oi−f (xi))
2

(1−(C(M)∕N))2
,

C(M) = (d + 1) ×M,

Fig. 3   Systematic scheme of 
MARS model
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Modeling process and performance 
evaluation

This study uses R programming language to develop the 
presented AI models. XGBoost was taken as a feature selec-
tor due to its ability to handle nonlinear and complex rela-
tionships. The libraries named xgboost, ggplot2, and Matrix 
were used to ease the selection process of input parameters. 
To run the XGBoost algorithm, xgboost function was used 
with max.depth (10), eta (0.3), nrounds (100), and xgb.
importance functions were applied to illustrate the best input 
selection. For the prediction process, XGBoost's parameters 
were tuned using expand.grid function. The hyperparameters 
were tuned as follows: nrounds set as 75:150 to determine 
the number of iterations; eta sets as 0.001, 0.01, 0.1 to con-
trol the learning rate of the algorithm; xgbtree the boosting 
method; max depth used as 5, 8, 10; gamma sets as 0, 1, 2; 
minchildweight (2); subsample (0.6); and colsamplebytree 
(0.8). For MARS model, two libraries named plotrix and 
earth were applied. The function expand.grid was used to 
control hypermeters of the algorithm such as degree and 
nprune; Degree sets as 1:8; and prune used as 1:100 with 
length.out (10). In the case of ELM model, the libraries 
kernlab, elmNNRcpp, and Matrix were applied. The ELM 
model parameters were set as nhid (100) to represent the 
number of hidden layers; actfun (sin) to control the activa-
tion function, and init. weights (uniform_positive) to choose 
the initial weight in the ELM. The integration of XGBoost 
with AI models is presented in Fig. 4.

Dataset was split into two phases, 70% for training and 
30% for testing. The outcome of the AI models was evalu-
ated by using statistical methods, including r-squared, mean 
absolute percentage error (MAPE), root mean square error 

(RMSE), mean absolute error (MAE) (Shehu et al., 2014) 
as shown in the following equations:

where yp and ya represent the predicted and actual values of 
construction cost; ya is the average value of the actual data 
of construction cost, and N signifies the number of construc-
tion projects.

Results and discussion

Statistical evaluation

In this study, XGBoost was applied as a robust algorithm for 
prediction and input selection. The results of feature com-
binations of construction cost prediction are presented in 
Table 2. It can be seen that the most correlated variable to 
cost estimation is inflation. The second input combination is 
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�
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⋅
�
ya − ya
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�
ya − ya

�2

⎞⎟⎟⎟⎠

2

,

(14)MAPE =
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||||,
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2

n
,
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���
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,

Fig. 4   Processing phases of the 
applied models
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the inflation and total floor area. The most correlated param-
eters in the third combination are inflation, total area of floor, 
and area of ground floor. The rest of feature combinations 
are reported in Table 2.

Statistical indicators of the introduced machine learning 
algorithms for the training/ testing phase are presented in 
Tables 3 and 4. The results showed that XGBoost model 
achieved an outstanding performance for the training phase, 
where all input combinations attained R2 more than 0.8. 
ELM model illustrated a good enhancement in prediction 
accuracy for all model combinations when increasing the 

number of input variables. For all the developed AI mod-
els, the best results were attained by XGBoost-M6, where 
R2 = 0.97822, RMSE = 268,500.0294, MAE = 166,301.5715, 
and MAPE = 0.22701. For the testing division, XGBoost 
model shows a noticeable performance of cost prediction 
for all combinations with r-squared more than 0.8 except 
M1, where R2 reduces to 0.66. The best prediction accu-
racy was achieved by XGBoost-M5, where R2 = 0.95216, 
RMSE = 590,609.7821, MAE = 332,157.171, and 
MAPE = 0.0875. MARS model indicated less prediction 
performance than the other AI models with r-squared less 
than 0.78 except M3 and 4, which attained R2 > 0.8. the best 
performance was attained by MARS-M3 with R2 = 0.86203 
and RMSE = 730,717.4588. for ELM model, the best com-
bination was revealed using five input variables where ELM-
M5 achieved R2 = 0.86005 and MAPE = 0.26184.

Figures 5, 6, and 7 depict the scatter diagram for the 
applied models for the testing part. It can be seen that 
XGBoost model revealed an excellent improvement in the 
prediction performance when increases the input variables 
and the best results were gained by XGBoost-M5 with 
R2 = 0.95. For ELM model, the developed algorithms indi-
cated good prediction accuracy for all input combinations 

Table 2   Feature combinations selected by XGBoost

Models Feature combinations

M1 C = F

M2 C = F,TFA

M3 C = F,TFA,GFA

M4 C = F,TFA,GFA,D

M5 C = F,TFA,GFA,D , FN
M6 C = F,TFA,GFA,D , FN, EN
M7 C = F,TFA,GFA,D , FN, EN, FT

Table 3   Performance measurements of the applied models for the 
training division

R2 RMSE MAE MAPE

XGBoost model
M1 0.83881 673,221.9041 501,543.3362 0.73382
M2 0.84867 626,349.0281 444,491.725 0.51656
M3 0.95058 383,449.4023 246,906.7032 0.43818
M4 0.96473 325,415.6342 212,591.1021 0.33242
M5 0.95901 327,553.6062 226,749.5562 0.38002
M6 0.97822 268,500.0294 166,301.5715 0.22701
M7 0.97853 270,774.5197 170,766.6061 0.24218
ELM model
M1 0.77669 760,883.3087 586,218.6132 0.83649
M2 0.79993 720,190.1008 517,265.5828 0.4951
M3 0.84081 642,433.1251 484,766.3293 0.54611
M4 0.85456 614,644.2939 455,212.7321 0.51885
M5 0.84242 639,167.0795 483,191.602 0.56233
M6 0.85526 612,580.7163 467,137.5367 0.70894
M7 0.83845 647,826.2112 482,758.1373 0.72025
MARS model
M1 0.72866 838,810.8081 656,991.3137 0.75273
M2 0.72267 870,423.9231 612,268.7411 0.86023
M3 0.77317 770,308.2773 515,229.9608 0.75458
M4 0.81012 703,924.2808 476,741.9313 0.75793
M5 0.83006 665,282.635 409,738.5077 0.64087
M6 0.79683 728,222.516 499,940.0069 0.78483
M7 0.78041 758,228.0846 501,818.4464 0.78978

Table 4   Performance measurements of the applied models for the 
testing division

R2 RMSE MAE MAPE

XGBoost model
M1 0.66322 1,141,949.801 736,321.8604 0.64118
M2 0.8554 726,844.6512 550,674.9322 0.33461
M3 0.86972 859,466.6779 560,469.2227 0.24263
M4 0.90535 705,627.2557 402,050.3197 0.17322
M5 0.95216 590,609.7821 332,157.171 0.0875
M6 0.88614 906,337.0054 638,437.6939 0.27955
M7 0.8712 842,285.5216 564,264.8955 0.23297
ELM model
M1 0.62558 1,200,899.141 821,912.9956 0.62408
M2 0.8137 828,387.7434 635,262.9907 0.42241
M3 0.8377 777,982.897 562,190.5526 0.33338
M4 0.84264 758,649.9922 526,958.7476 0.32656
M5 0.86005 732,387.351 476,386.9595 0.26184
M6 0.79751 857,455.4889 637,808.5125 0.32674
M7 0.76792 920,453.6042 675,721.6844 0.33527
MARS model
M1 0.61958 1,265,364.669 910,970.8102 0.55136
M2 0.7787 907,643.8118 649,858.8521 0.25386
M3 0.86203 730,717.4588 573,230.6743 0.3102
M4 0.82683 839,332.8152 575,758.8835 0.30234
M5 0.77935 1,004,475.6 650,489.3751 0.3262
M6 0.7266 1,024,789.776 649,903.1701 0.27644
M7 0.69415 1,117,299.421 682,735.8779 0.30479
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Fig. 5   Scatter plot graph of 
XGBoost model over the testing 
phase



2436	 Asian Journal of Civil Engineering (2023) 24:2427–2442

1 3

Fig. 6   Scatter plot graph of 
ELM model over testing phase
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Fig. 7   Scatter plot graph of 
MARS model over testing phase
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except M1 where R2 is less than 0.7 as shown in Fig. 6. 
MARS model shows less prediction accuracy than the 
other applied models and MARS-M3 has gained the best 

performance with a coefficient of determination equal to 
0.862 as depicted in Fig. 7.

Box plot and spider plot are another graphical tools 
were used to illustrate the performance metrics of the intro-
duced AI algorithms as presented in Figs. 8 and 9. Figure 8 
indicated that the minimum relative error was reflected by 
XGBoost-M5 followed by MARS-M3 and ELM-M5. The 
graphical results showed that XGBooat-M5 model presented 
a significant reduction in residual error and minimum posi-
tive error without a negative outlier. ELM-M5 revealed the 
maximum negative error with one outlier point using five 
input variables. Figure 9 shows the comparison results of AI 
models using statistical metrics in the form of spider plot. 
The findings showed that XGBoost-M5 gained the high-
est r-squared and lowest performance errors than the other 
models. Figure 9 also showed that although MARS-M3 and 
ELM-M5 have an equal R2, MARS-M3 attained higher abso-
lute error than ELM-M5.

Figure 9 was constructed to demonstrate the relation-
ship between the developed models and actual cost based 
on 3 statistical matrices (i.e., RMSE, correlation, standard 
deviation) was illustrated by Taylor diagram (Taylor, 2001) 
as depicted in Fig. 10. The developed diagram showed 
that the closest position to the actual point was achieved 
by XGBoost-M5 with a correlation coefficient maxed out 
0.95. The visualization results revealed that XGBoost model 
achieved the nearest distance to the observation points than 
ELM and MARS models, which refers to the efficiency of 
the XGBoost approach in cost estimation problems.

Validation against past studies

Over the past years, numerous studies have been conducted 
on cost estimation. A study by Juszczyk (2018) evaluated 
the ability of SVM model in the construction cost estima-
tion of the residential building. The researcher revealed 

Fig. 8   Relative error plot for the developed models over the testing 
phase

Fig. 9   Spider plot for the presented AI models over testing phase

Fig. 10   Taylor plot for the 
applied algorithms over the 
testing phase
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that the presented model attained low MAPE with a range 
between 7% and 8.19. In another study, SVM model was 
also investigated for cost estimation of bridge construction 
(Juszczyk, 2019). The developed model showed its ability 
in cost estimation with a coefficient of determination equal 
to 0.94. Genetic algorithm (GA) was coupled with ANN 
by Hashemi et al. (2019) to enhance the results of esti-
mated cost. The study concluded that ANN-GA achieved 
good prediction performance with an accuracy equal to 
0.94. XGBoost model was compared with twenty predicted 
models to measure the estimated cost of field canal projects 
by (Elmousalami, 2020). The researcher indicated that the 
presented model achieved high prediction accuracy with 
R2 = 0.929. It can be recognized that previous studies made 
good efforts to enhance the effectiveness of cost estimation 
process; however, they have focused on exploring project 
characteristics and ignoring other factors such as economic 
factors. Also, they demonstrated little attention to feature 
selection algorithms and hybrid models. This study is dif-
ferent from the previous studies by (1) investigating both 
project characteristics and economic factors represented by 
inflation, (2) using a recent AI algorithm (XGBoost) for fea-
ture selection and prediction and validating it with ELM and 
MARS models, and (3) the hybrid model achieved an excel-
lent prediction accuracy using only five input parameters 
with R2 equal to 0.952.

Discussion

Applying hybrid models in complex prediction processes 
like cost estimation enhances prediction accuracy and 
reduces estimation error. The results of XGBoost in the 
input selection process revealed that the most correlated 
variables to cost estimation is inflation. This result is agreed 
with Wang et al. (2022) who concluded that economic fac-
tors are more important than project characteristics. Analysis 
of the predicted models showed that all AI algorithms are 
able to estimate construction cost because all the developed 
models achieved an acceptable prediction performance. 
XGBoost model exhibited excellent performance in cost 
estimation using five input variables (i.e., inflation, total 
area of floor, area of ground floor, duration, floor number), 
where R2 = 0.952 and MAPE = 0.087 as reported in Table 4. 
The poorest accuracy was achieved using one input param-
eter, where XGBoost attained R2 < 70 as illustrated in Fig. 5. 
For ELM model, the best statistical indicators were gained 
using five input parameters where RMSE = 732,387.351 and 
MAE = 476,386.9595. The scatter plot diagram revealed 
that applying models on datasets with 2–5 input parameters 
achieved high prediction outcomes with R2 more than 0.8 as 
shown in Fig. 6. The lowest performance was revealed by 
ELM-M1 with R2 = 0.625 and high mean absolute error as 
shown in Table 4. MARS model attained good prediction 

accuracy using three variables with a coefficient of determi-
nation maxed out 0.8 depicted in Table 4. The comparison 
results revealed that XGBoost model outperformed ELM 
and MARS models with R2 more than 0.9 using four and five 
input variables. Spider plot revealed that XGBoost algorithm 
gained excellent performance metrics and outperformed 
ELM and MARS models as shown in Fig. 9. The visualiza-
tion results showed the reliability of XGBoost model in cost 
estimation by having the least residual error and nearest dis-
tance to the actual point as demonstrated in Figs. 8 and 10.

Conclusion

Estimating the construction cost accurately is an important 
issue in construction management studies. This study intro-
duces XGBoost model as an input selector and a predictor 
to enhance cost estimation accuracy. XGBoost model was 
compared with two well-known AI algorithms named ELM 
and MARS models. The study was conducted based on data-
sets collected from nineteen construction projects. Tabulated 
metrics and graphical schemes were constructed to examine 
the applied AI models. The feature selection results revealed 
that inflation is the most correlated parameter to project cost 
followed by project characteristics. The comparison analysis 
between the predictive models showed that all the developed 
models exhibited efficient predictability when the number 
of input parameters increased. The tabulated results showed 
that XGBoost model gained an excellent performance in all 
input combinations with r-squared maxed out 0.8 except M1 
where the coefficient of determination was reduced to 0.663. 
The study revealed that incorporating inflation with project 
characteristics enhances the accuracy of the estimated cost. 
The study found that XGBoost gains the highest prediction 
results using five input variables. Furthermore, the study 
showed that XGBoost model provided an excellent capac-
ity in feature selection and prediction processes within a 
complex cost estimation system. This study focuses on the 
impact of project characteristics and inflation on the cost 
estimation modeling of building projects. Studying the 
impact of the other influencing variables can enhance the 
accuracy of the cost estimation process. For future study, 
more affected variables like the characteristics of the client 
and other stakeholders can be explored to increase cost esti-
mation accuracy. Also, other recent versions of AI models 
like deep neural network can be investigated to reduce the 
error of construction cost estimation.
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