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Abstract
It is critical to detect cracks in concrete promptly and effectively to limit further deterioration and to perform timely repairs. 
Several convolutional neural networks have been proposed in recent years for identifying objects varying in their accuracy 
and speed. In this study, the YOLOv7, YOLOv5s, YOLOv5m, and YOLOv5x object identification models were trained for 
crack detection in concrete surfaces. The networks were trained using 1600 images of concrete cracks and analyzed. The 
different YOLOv5 versions and YOLOv7 are compared using assessment measures including F1 score, recall, and mAP. 
The research study found that all of the models predicted encouraging results in terms of crack detection in concrete images. 
According to the results, YOLOv5m and YOLOv5x achieved F1 scores of 0.87 and 0.86, respectively. Differently, YOLO5s 
and YOLOv7 acquired an F1-score of 0.85 and 0.84, respectively. As a result, this research verifies the recently introduced 
deep learning technology, which can replace conventional crack detection and identification techniques with more reliable 
and efficient alternatives.
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Introduction

Infrastructure is essential to any community, such as roads, 
bridges, and buildings. Structural faults and environmental 
changes can negatively affect a structure's dependability over 
time, emphasizing the need for monitoring infrastructure. 
Protecting the integrity of buildings requires identifying any 
responsibility as early as possible. The versatility of concrete 
makes it one of the most frequently used materials in civil 
engineering. In concrete structures and pavements, cracking 
is a common problem, and this structural deterioration can 
threaten safety and reduce service life. There are, however, 
several causes that can lead to concrete fractures.

Consequently, it is critical to determine the location of 
fractures in concrete structures to evaluate their structural 
safety. The most common and earliest method of assessing 
a system's health is visual inspection, which is expensive 
and labor intensive. Furthermore, manual review relies on 
expert judgment and requires highly qualified profession-
als. Due to these restrictions, industry and research have 
developed methods for automatic crack detection. Artificial 
intelligence advancements have made it possible to autono-
mously detect concrete cracks and structural damage. As 
a subfield of machine learning, the use of deep learning to 
handle enormous volumes of data has been shown on a vari-
ety of platforms. Three categories of research projects that 
have utilized deep learning to find fractures include picture 
classification, object identification, and semantic segmenta-
tion. With the help of hidden information in the data, a deep 
learning model with layers layered on top of one another 
may be utilized to predict unique patterns. R-CNN, YOLO, 
and SSD are a few of the architectures that are utilized to 
accomplish object detection in computer vision. In YOLO 
designs, the object detection process is complete after one 
forward propagation of the picture.

Du et al. (8) utilized the YOLO network to swiftly clas-
sify and identify pavement degradation using a novel method 
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for pavement distress identification. Teng et al. (31) carried 
out the YOLOv2 crack detection technique employing 11 
CNN models as the feature extractors. Song Park et al. (27) 
used YOLO for real-time fracture identification and evalu-
ated crack diameters based on the placements of the laser 
beams on the structural surface. Yu (36) used a threshold 
segmentation technique based on the Otsu maximum inter-
class variance to link the grayscale change points in crack 
pictures, merge the noise points with the background, and 
remove background noise from the photos. This work uses 
deep learning based on Yolov5s to find crack information 
in crack pictures. Cui et al. (6) have created a YOLO-v3 
algorithm model that is more effective. Yolo-v3 has been 
enhanced, and it has been discovered that it can more accu-
rately detect concrete erosion damage. Using the edge 
computing paradigm, Kumar et al. (20) propose a real-time 
multi-drone damage detection system that employs YOLO-
v3 to detect damage to high-rise civil structures. Kim and 
Cho (19) proposed a vision-based crack detection algorithm 
to classify and identify cracks using transfer learning accu-
rately. They trained the AlexNet model on the image dataset, 
which consisted of two subsequent image classes. Based on 
natural frequencies and mode shapes, Kaveh and Maniat (15) 
investigated the mechanism for identifying structural dam-
age. MCSS and PSO techniques were used to overcome the 
optimization problem associated with damage identification. 
A U-Net network containing an encoder and decoder frame-
work was presented for automatic crack identification by 
Andrushia et al. (1). They compared the proposed approach 
to existing state-of-the-art methods and found that it was 
accurate with an Intersection over Union of 78.12%. Ye et al. 
(35) gathered a significant number of photos of concrete 
cracks, and they proposed STCNet I, a deep learning-based 
architecture to detect concrete cracks in slabs. Han et al. (9) 

used CNNs and digital image processing to detect cracks 
in images. They trained the AlexNet-based CNN network 
efficiently and achieves 98.26% accuracy on test data. Kaveh 
and Zolghadr (18) integrated a developed multi-agent meta-
heuristic method named CPA with a guided modal strain 
energy-based structural damage detection system. Chow 
et al. (5) present a one-stage automated detection approach 
for concrete surface defects. EfficientNetB0, the backbone 
network, and the detector are two parts of their model. The 
average accuracy for cracks and exposed bars is 76.4% and 
89.9%, respectively, according to the results. Bang et al. 
(3) suggested that structural degeneration can be identified 
and quantified using deep learning by employing structured 
lights and a depth sensor. For detecting three types of surface 
defects, they sued Faster R-CNN with Inception Resnet v2. 
According to the results, the proposed method can identify 
structural damage with high accuracy. Kang et al. (12) used 
concrete surface images with complicated backgrounds to 
evaluate the overall performance of the advanced hybrid 
concrete crack segmentation technique. Kaveh and Mahdavi 
(16) assessed the application of two meta-heuristic algo-
rithms for identifying steel truss damage. Results show that 
for determining the specific location of damaged structural 
components, the ECBO algorithm outperforms the CBO 
approach. Joshi et al. (10) presented a deep learning-based 
architecture for identifying and segmenting concrete-based 
material defects. For training and testing, they used an image 
dataset of 3000 surface cracks. Each image's cracks were 
manually labeled using a bounding box and segmented mask. 
Yang et al. (33) used AlexNet, VGGNet13, and ResNet18 to 
detect and recognize structural cracks. They then trained the 
YOLOv3 model on crack images to identify crack targets. 
For concrete crack detection, Wan et al. (32) developed a 
novel strategy combining deep learning with a single-shot 

Fig. 1  YOLOv5-based detection network design
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multi box detector. As a result of the suggested method, the 
crack identification process is significantly improved. Li 
et al., (21, 22) recommended ATCrack for automatic crack 
detection. In ATCrack, a symmetrical structure consisting 
of an encoder and a decoder is used to predict end-to-end 
cracks. Kaveh (13) evaluated the using of meta-heuristic 
algorithms to address specific key optimization issues in 
civil engineering. His research looked into how recently 
developed meta-heuristic algorithms can be applied in vari-
ous actual situations. Liu et al. (23) presented a U-Net-based 
method for detecting concrete cracks. Based on compari-
sons between U-Net and DCNN, U-Net is found to be more 
elegant, more robust, and more effective than DCNN. Based 
on the result, the AP of the Faster-R-CNN process was 95%. 
Liu et al. (24) presented a generative adversarial network for 
automatic crack inspection. Compared to the deblurring 

model, the proposed model achieves remarkable improve-
ments in concrete crack images. Kaveh and Zolghadr (17) 
examined structural damage detection utilizing changes in 
natural frequencies, presented as an inverse optimization 
problem. Ren et al. (29) proposed CrackSegNetto carry out 
dense pixel-wise crack segmentation. Compared to tradi-
tional image processing and existing deep learning-based 
crack segmentation algorithms, the proposed model exhibits 
much greater accuracy. Kaveh and Dadras (14) applied an 
enhanced variation of the optimization method known as 
the TEO algorithm to solve a damage detection problem. 
The locations and extents of damage are accurately iden-
tified several scenarios using noise-and noise-free modal 
input. Li et al., (21, 22) employed various image recognition 
networks for verification, and the YOLO-v4 model is used 
as the main body of the lightweight convolutional neural 
network. A combination of the YOLOv5s-HSC algorithm 
and three-dimensional photogrammetric reconstruction was 
proposed by Zhao et al., (37) for the exact identification of 
damages in concrete dams. Mishra et al. (26) presented a 
two-stage automated concrete crack detection system based 
on YOLOv5. They used a total of 40,000 photos to train the 
deep learning model that was created.

YOLOv5 network architecture

The YOLO method is a well-known single-stage detection 
technique. The YOLO series method is a deep learning-
based approach that detects targets more quickly and accu-
rately than SSD and R-CNN. Many image object detec-
tion applications use the YOLO method. Initially, it was 
developed as a single-stage detection method by Redmon. 
It converts the object detection challenge into a regression 
problem by dividing the image into a grid and forecasting 
the object.

Redmon et al. (28) updated the YOLO algorithm and 
implemented a new algorithm called YOLOv2, which 
utilizes Darknet-19 as a feature extractor network and 
improves recall using anchor frames. Recently, the YOLO 
series was upgraded, and two new versions (YOLO ver-
sion 5 and YOLO version 7) are available. Both versions 
have included state-of-the-art algorithms, making them 
more efficient and adaptable to object detection. They pro-
posed a concrete crack detector based on the YOLO v7 
and YOLOv5 networks. The results from the two models 
were compared among themselves. The second section 
presents an overview of the architecture of YOLOv5 and 
YOLOv7 (Lu et al., 25). The next Section discusses the 
network performance and database generation techniques. 
Next, a comparison and analysis of the actual detection 
results follow, along with the evaluation metrics and train-
ing outcomes. As a single-stage target detection algorithm, 

Fig. 2  CSPNet network struct

Fig. 3  Focus network struct
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the YOLOv5 method has gained popularity because of 
its straightforward processes, high detection speed, and 
high accuracy. Figure 1 depicts the YOLOv5 network 
architecture.

Compared to YOLOv4, YOLOv5 continues to employ 
the CSP design and adds the CSP design to the backbone 
and neck to improve the network's ability to fusion fea-
tures. The backbone of YOLOv5 uses the Focus network 
to divide the feature maps, increasing input channels by 
four while decreasing the algorithm's computational time. 
Each frame in the last YOLO series corresponds to one 
positive sample, and each existing structure can only be 
predicted by one previous frame during training. How-
ever, with YOLOv5, the number of positive samples is 
increased, and many preceding frames can anticipate every 
actual frame during training, which speeds up the mod-
el's training efficiency. The YOLOv5 series, as opposed 
to earlier iterations, comes in four versions: YOLOv5s, 
YOLOv5m, YOLOv5l, and YOLOv5x. Among these four 
versions of structures, the significant difference is achieved 
by varying the depth multiplier and width multiplier by 
varying the number of residual components in different 
cross-phase partial networks (CSPNs) to create networks 
of varying depths and by using varying numbers of con-
volution kernels in a variety of focusing structures and 
CSPNs to produce networks that are of various widths. 
The CSPDarknet architecture is employed as the backbone 
feature extraction network for YOLOv5. A residual net-
work can be made more accurate by adding many depths. 
Jump connections are used by residual fast in YOLOv5 to 
overcome the gradient disappearance problem that comes 
with extending the network. As shown in Fig. 2, the back-
bone feature extraction network uses a CSPN to divide the 

residual block stack into two parts. The central part stacks 
the residual blocks, while the remaining residual edges are 
attached to the end between them after some processing.

The Focus network structure is employed in the YOLOv5 
feature extraction process. Figure 3 illustrates the Focus 
architecture and as shown in the figure. The slicing pro-
cedure is carried out before the input image reaches the 
backbone and each image is divided into four complemen-
tary images with no information lost by taking every other 
pixel from each image. Compared with the original RGB 
three-channel design, the input channels have been increased 
by four, the number of stitched-together images has been 
increased to 12, and the generated image is combined to 
produce a down-sampled image. The Focus network image 
slicing process converted the original 640 × 640 pixel image 
into 320 × 320-pixel feature maps. Since YOLOv5m has 48 
convolution kernels, an additional convolution operation is 
carried out to produce 320 × 320 × 48 feature maps. As a 
result of the Focus network structure's slicing of input pic-
tures, computations can be minimized and calculation per-
formance can be boosted.

PANet networks are designed to enhance features by 
combining shallow and deep features. The FPN in YOLOv4 
is based on the spatial pyramid pooling SPP module. In 
YOLOv5, the backbone feature extraction network is based 
on the SPP module. A-Max pool layer with various-size 
pooling kernels is used to pool the retrieved features to 
the maximum extent possible. The bottom route is directly 
connected rather than pooled, and the results are channel 
stitched to extend the network's perception range.

A total of three feature layers must be retrieved in the 
feature usage section to identify objects in YOLOv5. There 
are three feature layers in the feature extraction network 

Fig. 4  PANet network structure
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CSPDarknet network: the middle layer is CSP1_3, the 
lower intermediate layer knows as CSP1_3, and the bottom 
layer knows as CSP2_1. The FPN layer network can assist 
in feature extraction and feature fusion by various feature 
layers after acquiring three efficient feature layers. As seen 
in Fig. 4, PANet is a network design where P and N stand 
in for several layers of feature data. YOLOv5 employs the 
PANet design in three functional feature layers—CSP1_3, 
CSP1_3, and CSP2_1 to achieve the fusion of feature infor-
mation from the three scale feature layers.

YOLOv7 network architecture

In this study, YOLOv7 is used for more precise crack detec-
tion by processing images of the concrete crack surface with 
an increased degree of speed and accuracy than synchronous 
techniques. Figure 5 illustrates the YOLOv7 network struc-
ture (localization and techniques 2022).

The preprocessing process for YOLOv7 is similar to 
that of YOLOv5, including mosaics, adaptive image scal-
ing, and adaptive anchor boxes. YOLOv7 uses the Mosaic 
data improvement approach enhanced by the CutMix data 
improvement technique in the training process. Unlike 
Mosaic's data augmentation technique, which uses four ran-
domly resized, arranged, and cropped, images, CutMix only 
requires two images. By combining several images into one, 

Fig. 5  YOLOv7 network structure
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this enhancement technique reduces network training time 
and memory usage while increasing dataset variety and net-
work detection accuracy. YOLOv7’s backbone layer consists 
of MP, E-ELAN, and Bconv layers in Fig. 6, while the con-
volution layer, BN layer, and activation function comprise 
the BConv layer. Figure 7 shows the schematic design of 
the BConv layer.

Different kernels' convolution layers are represented by 
different-colored Bconv modules. In the first BConv mod-
ule, k and s are 1, Second BConv module has k = 3 and 
s = 1, whereas the third BConv module has k = 3 and s = 2. 
It should be emphasized that the colored Bconv modules 
primarily discriminate between k and s, but not between 
input and output. In YOLOv7, an extended ELAN is pro-
posed based on ELAN to regulate gradients' shortest and 
longest paths, improving deep learning and convergence. By 
extending, shuffling, and merging cardinality, the YOLOv7 
E-ELAN increases the network's learning capacity without 
obliterating its gradient path.

During the construction of E-ELAN, the structure of the 
block is modified on its own, while the architecture of the 
transition layer remains unchanged. A group convolution 
is applied to all computing blocks in the computing layer, 
including the number of channels, and expands their chan-
nel and cardinality. Figure 8 depicts the E-ELAN layer, 
which is similarly made up of several convolutions. A fea-
ture map is produced by each computational block, which 
is then subjected to the following procedures: connect the 
g groups that were created by randomly rearranging the g 
group parameters of the feature map. Each set of feature 
maps has the same number of channels as initially designed, 
and to integrate the cardinality, the g group's feature maps 
need to be added.

Figure 8 illustrates the different convolutions that make 
up the E-ELAN layer.

Figure 9 illustrates the structure of the MP layer. This 
branch has the same input and output channels, and the 
output's size (length and breadth) is half the input's length 
and width. Using maximum pooling, the top branch is first 
cutting the length and breadth in half, then cutting the chan-
nel in half with BConv. The bottom unit splits the channel 
in half using the first BConv, and the length and width are 
divided in half using the second BConv.

In YOLOv7, the head segment is similar to YOLOv5, 
the down sampling module is moved to the MPConv layer, 
and the CSP module is replaced with E-ELAN. The head 
layer consists of SPPCPC layers, numerous BConv layers, 
numerous MPConv layers, numerous Catconv layers, and 
RepVGG block layers that output three heads sequentially. 
The diagram of YOLOv7's Head section is shown in Fig. 10.

The SPPCSPC layer module is created using the pyramid 
pooling method and the CSP structure, and it still has numer-
ous branches. The input will be split into three halves and 

Fig. 6  Structure of the YOLOv7 backbone
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distributed across several units, and the output will be the 
concatenated information. Figure 11 shows the architecture 
of the SPPCSPC layer.

Catconv, another layer enabling deeper networks to learn 
and converge more effectively, operates similar to E-ELAN, 
and Fig. 12 illustrates how it works.

The REP layer's structure differs during deployment and 
training. Training adds a 1 × 1 convolution branch based on 
a 3 × 3 convolution. When adding a BN branch, three output 
branches are added if the input and output channels and h 
and w are the same. The unit's parameters are re-parameter-
ized and assigned to the main branch, and the 3 × 3 convolu-
tion output is used in Fig. 13.

Performance metrics

A variety of metrics, including precision, recall F1 score, and 
mean average precision (mAP), is used for evaluating Deep 
learning models. These metrics provide insights into the per-
formance of deep learning models and can be used to com-
pare different models. Precision is a measure of the accuracy 
of the classifier when it predicts positive examples. Recall is 
a measure of the ability of the classifier to find all positive 
samples. The F1 score is a weighted average of precision and 
recall. The mAP is an overall measure of performance that 
considers both precision and recall models that can be tuned 
for specific applications by optimizing for these metrics. For 
example, if high precision is desired, then the model should be 

Fig. 7  Structure of the BConv layer

Fig. 8  E-ELAN layer structure

Fig. 9  MP lay structure
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tuned to achieve high precision. Conversely, if a high recall is 
desired, then the model should be tuned to achieve high recall. 
In general, the F1 score is a better metric than either precision 
or recall alone. However, each metric has its strengths and 
weaknesses. For example, precision is more important than 
recall in applications where false positives are more costly 

than false negatives. Conversely, recall is more important than 
precision in applications where false negatives are more costly 
than false. The true positive, true negative, false positive, and 
false negative (FN) characteristics are used to establish the pre-
cision, recall, and F1 score. When the model properly detects 
the positive class, the result is TP.TN is the result when the 

Fig. 10  YOLOv7 head structure

Fig. 11  SPPCPC layer structure
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model properly detects the negative class. The model returns 
FP when uncracked concrete is detected as cracked. The result 
is FN when the model detects a crack as uncracked concrete. 
As indicated in Eq. 1, precision is the percentage of correctly 
identified cracks to total detected cracks.

(1)Precision =
TP

TP + FP
.

The recall is the percentage of properly identified cracks 
about the total number of cracks as observed in Eqs. 2 and 3 
defines the dice coefficient.

(2)Recall =
TP

TP + FN

(3)F1 =
2TP

2TP + FP + FN
.

Fig. 12  Catconv layer structure

Fig. 13  Rep layer structure
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Defect detection accuracy is measured using precision 
and recall. The average precision is defined by the area under 
a precision-recall curve and the (average precision) AP val-
ues take accuracy and recall into account and are given as 

the area under the P-R curve and mAP is equal to the AP 
value for each class.

AP =

1

∫
0

P(R)dR

Fig. 14  Examples of images 
with labels and bounding boxes

Fig. 15  Process of the research design
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Dataset and initial evaluation

A collection of 1600 inspection images of concrete surfaces 
from the robflow website was used for this study Hyegeun 
(2022). All of the training images contained cracks and 
concrete backgrounds. To evaluate the performance of the 
network, data were divided into training and validation data. 

mAP =
1

N

N
∑

i=1

AP
i
.

Annotated images with cracks are shown in Fig. 14. For 
crack detection, each image's label was kept in a text file 
with four coordinates that described a rectangle box.

Results and discussion

This study compares the performance of the YOLOv7 
model with the other state-of-the-art object detection model 
YOLOv5. The YOLO models are trained to detect cracks 
in photos of concrete cracked surfaces. A computer with 
the following configuration was used for these tests: The 

Fig. 16  Examples of concrete crack detection for trained models
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technique was built using the PyTorch library, two Intel 
Xeon@2.3 GHz CPU, 64 GB access memory; and a Tesla 
k80 12 GB GPU. A total of 100 photos of cracked surfaces 
are used to test the model's accuracy. To evaluate the per-
formance of the YOLO network, three different weights of 
the YOLO version 5 network and YOLOv7 were assessed 
on their performance using a dataset of 1600 concrete sur-
face images. Prediction outcomes of the models applied to 
new data were examined to confirm their generalizability 
for use in selecting machines in the future which is shown 
in Fig. 15.

The results are impressive, with the model detecting 
cracks with high accuracy. Figure 16 depicts some of the 

suggested network’s testing outcomes. The model can 
identify cracks of different sizes and locations. The video 
on the concrete cracks runs for 10 s in MP4 format using 
Yolov7. The result of the video detection for concrete cracks 
is shown in Fig. 17. The proposed model can detect cracks 
in real-time, without human intervention. This makes the 
proposed approach ideal for portable devices such as smart-
phones and tablets.

The precision curves of several models are shown in 
Fig. 18. The comparison curve shows that during the first 
training step, all four models increase rapidly as training 
increases. The YOLOv7 model's curve increases gradu-
ally with visible fluctuation, and the amplitude variation is 

Fig. 17  Video test result
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noticeable. The precision of YOLOv5m and YOLOv5x with 
extensive parameters rise the fastest.

As shown in Fig. 19, the recall curves of YOLO models 
are trained for 100 epochs. During the first 20 epochs, 
accuracy increases dramatically with epoch number. The 
YOLOv5m and YOLOv5x models have the highest recall. 
The YOLOv5m and YOLOv5x models had the highest 
recall. However, all the models performed well overall, 
and any of them could be used depending on the user's 
specific needs.

Figure 20 shows the accuracy results of the YOLOv5 
models at (a) mAP@0.5. The accuracy increases rapidly 
with the epoch. The mAP value of the YOLOv5m model is 
greater than the other models, as shown in Fig. 20.

Figure 21 depicts the trained model's precision–recall 
curve. The PR curves show how accuracy and recall are 
related. mAP@50 was calculated using the area under the 
curve. Therefore, it is better if the PR curve is close to the 
upper right corner. It is found that YOLOv5m is located 
closer to the top right corner, indicating a high accuracy 
and recall.

Figure 22 depicts the F1-score of the YOLO models. In 
object detection, the confidence threshold specifies the like-
lihood that an estimated bounding box includes an object. 
The F1 score curve detection findings show that the F1 score 
values of the YOLOv5m and YOLOv5x are greater than 
those of the other models.

Table 1 displays the proposed model's results for concrete 
crack detection. The greatest mAP@0.5 and mAP @0.5:0.95 
values are found in the YOLOv5m model, suggesting the 
maximum accuracy.
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Table 1  Identification results for concrete crack detector

Model mAP @0.5 mAP 
@0.5:0.95

Precision Recall F1-score

YOLOv7 0.89 0.69 0.91 0.79 0.84
YOLOv5s 0.90 0.67 0.91 0.81 0.85
YOLOv5m 0.92 0.73 0.91 0.85 0.87
YOLOv5x 0.90 0.74 0.89 0.85 0.86
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The results showed that YOLOv5m and YOLOv5x had 
F1-scores of 0.87 and 0.86, respectively.

The precision of the YOLOv7, YOLOv5s, and 
YOLOv5m is 0.91, and the accuracy of the YOLOv5x 
models is 0.89. The recall of the YOLOv7 and YOLOv5s 
is 0.79 and 0.81, respectively, and in the YOLOv5m and 
YOLOv5x models, recall is the highest. Results show that 
YOLOv5 outperforms YOLOv7 models in terms of both 
speed and accuracy, making it a promising solution for 
real-time object detection applications.

Conclusions

Concrete is a widely used material in the infrastructure 
system. Thus, detecting concrete defects is crucial for 
reducing maintenance costs. Despite this, elements such as 
shrinkage and temperature changes, and structural crack-
ing quickly affected by concrete's inherent properties. 
Cracks are often the most intuitive and reliable indicator 
when assessing the structural performance. This study pro-
poses an object detection approach for detecting numerous 
concrete defects faster and more straightforwardly. Four 
versions based on YOLO object detection were trained and 
tested to detect cracks. For training, variety of concrete 
images labeled with concrete cracks are employed. It was 
found that the YOLOv5m and YOLOv5x models outper-
formed other models in terms of F-1 score and mAP@50. 
These models offer more accurate and reliable detection 
of objects in images and videos, making them the perfect 
choice for security and surveillance applications.
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