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Abstract
The work presented in this paper concerns the three-dimensional numerical modeling of the mechanical response of function-
ally graded material (FGM) beams subjected to static and cyclic loading. Material properties are varied continuously through 
the thickness of the FGM beam according to the power-law. The FGM beam is discretized by hexahedral finite elements 
type C3D20R. Several numerical examples of FGM beams are studied and the numerical results obtained are compared with 
those of analytical models in the literature.
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Introduction

Functionally graded materials (FGMs) are heterogeneous 
composites typically made from a mixture of metals and 
ceramics. The most distinct characteristics of FGMs are 
their non-uniform microstructures with spatially graduated 
macro-properties. These materials are designed to improve 
and optimize the thermo-mechanical characteristics of struc-
tures at different scales. Most FGM families are gradually 
composed of a refractory ceramic to metal. Typically, FGMs 
are constructed from a mixture of ceramic and metal or a 
combination of different materials.

The ceramic in the FGM provides a barrier against ther-
mal effects and protects the metal against corrosion and oxi-
dation, as the FGM is hard and reinforced by the metal com-
position. These materials have received significant attention 
recently because of their advantages that include decreasing 
the disparity in material properties and reducing thermal 
stresses, as well as their use and growth in the fields of aero-
nautics and aerospace, where they can serve as thermal bar-
riers due to their rich ceramic compositions. FGMs are used 

in a wide range of applications, including in medicine, the 
automotive industry, military equipment, electricity, nuclear 
power, and so on. FGMs are also currently being developed 
for general use as structural members in extremely high-
temperature environments and applications.

Due to the large number of applications of FGMs, several 
studies have been carried out on the mechanical and thermal 
behavior of FGMs, in-depth theoretical and experimental 
studies have been carried out and published on fracture 
mechanics, the distribution of thermal stresses and the treat-
ment of cracks in FGM structures. Among FGM structures 
are the beams that represent a major focus for researchers 
due to their applications.

Many approaches, including shear strain beam theory, 
the energy method and the finite element method, have been 
used. Most of these approaches are based on simplifying 
assumptions.

Li et al. (2010) studied the static bending and the dynamic 
response of FGM beams using the higher-order shear defor-
mation theory “HSDT”. A finite element model (FEM) and 
Navier solutions are developed by Vo et al. (2015) and they 
also used the quasi-3D theory to determine the displace-
ment and stresses of FG sandwich beams for various power-
law index, skin–core–skin thickness ratios and boundary 
conditions.

A new 2-node beam element based on Quasi-3D beam 
theory and mixed formulation is developed by Nguyen 
et al. (2019) for static bending of functionally graded (FG) 
beams, the transverse shear strains and stresses of the 
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proposed beam element are parabolic distributions through 
the thickness of the beam and the transverse shear stresses 
disappear on the top and bottom surfaces of the beam. The 
proposed beam element is free of shear without selective 
or reduced integration.

Chikh (2019) developed various theories of higher-
order with hyperbolic shear deformation beams for bend-
ing of FG beams. These theories are developed as a func-
tion of the assumption of constant transverse displacement 
and variation in axial displacement of the higher-order 
through the thickness of the beam, these theories satisfy 
the zero stress on the top and bottom surfaces of the beam, 
so that a shear adjustment factor is not necessary.

Recently, Khebizi et al., (2019a, 2019b) studied the 
mechanical behavior of FGM beams by a three-dimen-
sional modeling method based on the exact theory of 
Saint Venant, in which the deformation of the section 
of the FGM beam is taken into account. Beams made of 
a single FGM layer as well as a sandwich configuration 
have been studied by Bhandari and Sharma (2020) where 
thin and thick beams have been investigated in terms of 
temperature, displacements and stresses, using a unified 
formulation, they offered many one-dimensional displace-
ments-based beam models that could be easily translated 
into higher-order theories, classical Euler–Bernoulli and 
Timoshenko models. The thermo-mechanical problems 
studied, although they offer a global bending deformation 
are governed by three-dimensional stress fields that call 
for very accurate models. Althoey and Ali (2021) provided 
a simplified method and solution for FGM beam, normal 
and shear stress are analyzed and using two material func-
tions, power-law (P-FGM) and exponential (E-FGM). 
Also, the influence of material functions on FGM beam 
deflection has been investigated through analytical solu-
tion considering simply supported and cantilever FGM 
beams which exhibited a smaller deformation compared 
with homogenous steel beams of the same size and simi-
lar loadings. They concluded from their results that the 
non-dimensional normal stress and shear stress are inde-
pendent of the elastic modulus values of the constituent 
materials, but rather depend on both the ratio of the elastic 
modulus and the location across the beam thickness in the 
E-FGM material function model. Large deflection analysis 
of functionally graded beams based on geometrically exact 
three-dimensional beam theory and isogeometric analysis 
was employed by Nguyen et al. (2022) to model the spatial 
behavior of the beams under different loading conditions. 
Five standard benchmark test cases were conducted to val-
idate the accuracy and efficiency of the proposed approach.

In this study, we present a three-dimensional modeling of 
the static and cyclic response of FGM beams using the finite 
element method, in which the FGM beams are modeled by 
hexahedral elements type C3D20R (see Fig. 3).

Distribution of mechanical properties of FGM beams

FGMs consist of a combination of two or more materi-
als with different structural and functional properties, in 
which the mechanical properties are distributed among 
these materials in an ideal way to improve the performance 
of their general structure. Generally, FGMs are made of 
a mixture of ceramic and metal (see Fig. 1). The ceramic 
constituent offers high-temperature resistance due to its 
low thermal conductivity. In contrast, the ductile metal 
component prevents fracture caused by stresses due to a 
high-temperature gradient in a very short period of time.

The most distinct characteristics of FGMs are their 
non-uniform microstructures with macro-properties that 
graduate in space. Consequently, their mechanical proper-
ties vary gradually and continuously from one surface to 
another through the thickness and can be defined by the 
variation of the fractions of volume.

Figure 1 shows that the properties of materials, such 
as Young's modulus (E) and Poisson's ratio (ν), at the top 
and bottom beam surfaces vary continuously through the 
thickness (z axis), whereas E = E(z) and ν = ν(z).

Poisson's ratio has a very small impact on strain when 
compared to Young's modulus. Therefore, Poisson's ratio 
can be assumed to be constant (2019b; Ben-oumrane et al., 
2009; Delale & Erdogan, 1983; Guenfoud et al., 2016; 
Hadj et al., 2016; Khebizi et al., 2019a). However, Young's 
modulus varies through the thickness of the FGM beam 
according to the power-law (P-FGM), exponential, Mori 
Tanaka or sigmoid distribution.

The distribution methods of the mechanical properties 
of FGM beams are presented in detail in the work of Khe-
bizi et al., (2019a, 2019b).

In the present work, we considered that the Young's 
modulus varies according to the power-law as following:

where P is the power-law exponent, Et and Eb denote 
Young’s modulus at the top and bottom beam surfaces, 
respectively.

(1)E(z) = Eb + (Et − Eb) ×
(

z

h
+

1

2

)p

Fig. 1   FGM beam
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Figure 2 clearly shows that Young's modulus changes rap-
idly near the bottom surface for p < 1 and increases rapidly 
near the top surface for p > 1.

Formulation of C3D20R finite element

In this study, the twenty-node brick element (C3D20R) with 
reduced integration points (3 × 3 × 3) is employed (Fig. 3). 
This element behaves very well in bending and rarely exhib-
its hour-glassing despite the reduced integration. The dis-
placement of each element is a continuous function of the 
nodal displacement using the shape functions of displace-
ment and geometry (iso-parametric formulation) according 
to Dhondt (2004).

In classical finite element formulations, a predeter-
mined set of material properties is used for each element 
so that the property field is constant within an individual 
element. To model a continuously non-homogeneous 
material, the property function of the material must be 
discretized according to the mesh size of the elements. 
This approximation can provide large discontinuities 
according to the formulation set by Smith (2011). Since 
in the elastic analysis of FGMs, each Gaussian point of 
the element has its own stress–strain curve, the assump-
tion of constant properties for each element may lead to 
invalid results. Therefore, the graded finite element is 
highly preferable for modeling problems dealing with 
non-homogeneous materials. Zafarmand and Kadkhodayan 
(2019) recommended that in the case of 3D elastic analy-
sis, the second-order three-dimensional continuum (solid) 
elements should be considered. These elements provide 
higher accuracy than the first-order ones for smooth prob-
lems that do not involve severe element distortions and are 
very effective in bending dominated problems. The domain 

in local coordinates for a hexahedral C3D20R element is 
a cube extending from − 1 to + 1 (− 1 ≤ g, h, r ≤ 1) along 
each coordinate axis. This element contains 20 nodes, they 
are located at the vertices and in the middle of the edges 
as shown in Fig. 3. The node numbering convention used 
in Abaqus for this element is presented by Smith (2011), 
where the corner nodes are numbered first, followed by the 
mid-side nodes for second-order elements is also shown 
in Fig. 3. Furthermore, Liew and Rajendran (2002) have 
shown that the reduced integration points are the so-called 
superconvergent points, in which the stress is one order 
more accurate than in any other point. However, because 
of reduced integration, so-called zero-energy modes can 
arise, leading to hour-glassing.

According to Smith (2011), the interpolation function 
is given as below:

Fig. 2   Variation of Young's 
modulus through the thickness 
of P-FGM beam
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All the iso-parametric solid elements are integrated 
numerically by reduced integration. For the second-order 
elements, Gauss integration is used because it is efficient 
and especially adequate to the polynomial product inter-
polations used in these elements. For the 20-node brick 
elements, the interpolation function given in Eq. (2) can 
be rewritten as:

The isoparametric shape functions NI can be written as 
(Smith, 2011):

where

and the superscript I denotes the node of the element. The 
last four vectors ΓI

�
 , ( � has a range of four), are the hourglass 

base vectors, which are the deformation modes associated 
with noenergy in the 1-point integration element but result-
ing in a non-constant strain field in the element.

(2)

u = −1∕8(1 − g)(1 − h)(1 − r)(2 + g + h + r)u1
−1∕8(1 + g)(1 − h)(1 − r)(2 − g + h + r)u2
−1∕8(1 + g)(1 + h)(1 − r)(2 − g − h + r)u3
−1∕8(1 − g)(1 + h)(1 − r)(2 + g − h + r)u4
−1∕8(1 − g)(1 − h)(1 + r)(2 + g + h − r)u5
−1∕8(1 + g)(1 − h)(1 + r)(2 − g + h − r)u6
−1∕8(1 + g)(1 + h)(1 + r)(2 − g − h − r)u7
−1∕8(1 − g)(1 + h)(1 + r)(2 + g − h − r)u8

+1∕4(1 − g)(1 + g)(1 − h)(1 − r)u9
+1∕4(1 − h)(1 + h)(1 + g)(1 − r)u10
+1∕4(1 − g)(1 + g)(1 + h)(1 − r)u11
+1∕4(1 − h)(1 + h)(1 − g)(1 − r)u12
+1∕4(1 − g)(1 + g)(1 − h)(1 + r)u13
+1∕4(1 − h)(1 + h)(1 + g)(1 + r)u14
+1∕4(1 − g)(1 + g)(1 + h)(1 + r)u15
+1∕4(1 − h)(1 + h)(1 − g)(1 + r)u16
+1∕4(1 − r)(1 + r)(1 − g)(1 − h)u17
+1∕4(1 − r)(1 + r)(1 + g)(1 − h)u18
+1∕4(1 − r)(1 + r)(1 + g)(1 + h)u19
+1∕4(1 − r)(1 + r)(1 − g)(1 + h)u20

(3)� = NI(g, h, r)�I sum on I

(4)
NI(g, h, r) = 1∕8ΣI + 1∕4gΛI

1 + 1∕4hΛI
2 + 1∕4rΛI

3

+ 1∕2hrΓI
1 + 1∕2grΓI

2 + 1∕2ghΓI
3 + 1∕2ghrΓI

4

(5)

ΣI = [+1,+1,+1,+1,+1,+1,+1,+1],

ΛI
1
= [−1,+1,+1,−1,−1,+1,+1,−1],

ΛI
2
= [−1,−1,+1,+1,−1,−1,+1,+1],

ΛI
3
= [−1,−1,−1,−1,+1,+1,+1,+1],

ΓI
1
= [+1,+1,−1,−1,−1,−1,+1,+1],

ΓI
2
= [+1,−1,−1,+1,−1,+1,+1,−1],

ΓI
3
= [+1,−1,+1,−1,+1,−1,+1,−1],

ΓI
4
= [−1,+1,−1,+1,+1,−1,+1,−1],

In the uniform strain formulation, the gradient matrix BI 
is defined by integrating over the element as (Smith, 2011):

where Vel is the element volume and I has a range of three.
In the centroidal strain formulation the gradient matrix 

is BI simply given as:

which has the following antisymmetric property:

It can be seen from the Eqs. (2)–(9) that the centroidal 
strain formulation reduces the amount of effort required to 
compute the gradient matrix. This cost saving also extends 
to strain and element nodal force calculations because of 
the antisymmetric property of the gradient matrix. However, 
the centroidal strain formulation is less accurate when the 
elements are skewed. For hexahedron elements in a parallel-
epiped configuration, the uniform strain approach is identical 
to the centroidal strain approach according to Smith (2011).

Numerical applications and discussion

Simply supported P‑FGM beam subjected to static 
loading

In this section, we study a simply supported FGM beam 
(Fig. 4), for which the ratio between its length and height 
(L/h) is equal to 5. The bottom surface of the beam is 
assumed to be aluminum (Al), while its top surface is 
assumed to be pure alumina (Al2O3). The distribution 
of material properties through the thickness of the FGM 
beam is achieved by the power-law (P-FGM). The mechan-
ical properties of aluminum are Em = 70 GPa and �m = 0.3 , 
while the same properties for alumina are Ec = 380 GPa 

(6)�
I =

1

Vel
∫ Vel

NI
i
(g, h, r)dVel

(7)NI
i
(g, h, r) =

�NI

�xi

(8)BI
i
= NI

i
(0, 0, 0)

B1

i
= B7

i

B3

i
= B5

i

B2

i
= B8

i

(9)B4

i
= B6

i
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and �c = 0.3 . This beam is subjected to a uniformly dis-
tributed load of q = 10 N/m (Fig. 4).

The P-FGM beam is modeled in this work using Abaqus 
software. Figure 5 shows the mesh of the beam consisting 
by hexahedral elements type C3D20R characterized by 20 
nodes with 27 integration points.

The three-dimensional field of vertical displacement 
and normal stresses field �xx of the FGM beam are shown 
in Figs. 6 and 7, respectively.

The results of deflection along the length of the mean-
line of the beam (W), the normal stresses σxx at mid-span 
of the FGM beam (x = L/2) and the shear stresses �xz at the 
level of the support (x = 0), obtained by the finite element 
method, are shown in Figs. 8 and 9, respectively.

Fig. 4   Simply supported FGM beam subjected to a uniformly distrib-
uted load

Fig. 5   Mesh of P-FGM beam consisting by 80,000 C3D20R elements

Fig. 6   Three-dimensional vertical displacement field of FGM beam obtained by Abaqus software for different values of P 

Fig. 7   Three-dimensional normal stress field σxx of FGM beam obtained by finite element method using Abaqus software for different values of 
P 
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Discussion

From Fig. 8, we can clearly see that the vertical displace-
ment increases with increasing P of the FGM beam. This 
is due to the influence of Young’s modulus, which is high 
for the ceramic (P = 0) compared to that of the metal 
(P = + ∞).

Figure 9 shows that the variation of normal stresses 
�xx through the thickness of the FGM beam is not linear. 
In contrast, for the isotropic beams (pure ceramic or pure 
metal), the variation of the normal stress is linear. It can 
also be seen that the distribution of the shear stresses, �xz , 
through the thickness of the FGM beam is parabolic and 
asymmetric. The maximum value of the shear stress is 
located at a point above the mid-plane of the FGM beam. 

For the reason of simplicity, we present the numerical 
results in terms of non-dimensional quantities.

The various non-dimensional parameters used are:
Tables 1, 2 and 3 present the non-dimensional deflec-

tions, normal stresses and shear stresses of the FGM beam, 
respectively.

Table 1 shows the maximum non-dimensional deflec-
tion of the P-FGM beam, where we note an excellent agree-
ment between the results obtained by our model and those 
obtained by other authors (Li et al., 2010, Vo et al., 2015, 
Nguyen et al., 2019 and Chikh, 2019). Table 2 and Fig. 10 
also show good convergence of the results of non-dimen-
sional normal stresses of the P-FGM beam obtained by the 
various models.

Table 3 and Fig. 11 show that the non-dimensional shear 
stress obtained by our investigation with the finite element 
method is close to that obtained by other models in the 
literature.

Generally, we observe that the numerical values 
obtained by our model are in good agreement with the 
analytical results given by Li et al. (2010) and Vo et al. 

(10)Displacementw
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(2015) with Navier’s theory, Vo et al. (2015) with a finite 
element model, quasi-3D theory (Nguyen et al., 2019) and 
hyperbolic shear deformation theories (Chikh, 2019).

For illustrating the effect of the index P on the deflec-
tion of the FGM beam under a uniformly distributed static 
load, the non-dimensional deflection, the non-dimensional 
normal stress, and non-dimensional shear stress are shown 
in Figs. 12, 13 and 14, respectively. We note that increas-
ing the index parameter of the material P reduces the stiff-
ness of the FGM beam and therefore leads to an increase 
in deflections and normal stresses. This is due to the fact 
that the higher values of P correspond to a high portion 
of metal compared to the ceramic part, which makes this 
FGM beam more flexible.

The evolution of the non-dimensional shear stresses 
through the thickness of the P-FGM beam for various 
parameters of the material P is shown in Fig. 14. The influ-
ence of the index P is unlimited and its increase leads to a 
decrease in the shear stress.

Simply supported P‑FGM beam subjected to cyclic 
loading

In this section, we study the behavior of an FGM beam 
(Fig.  15) simply supported (L = 2.5  m, h = 0.5  m and 
b = 1.0 m) and subjected to a cyclic load with a maximum 
value of 100 Kn. This cyclic load is applied at the mid-
span of the beam (Fig. 15). The history of cyclic loading 
is shown in Fig. 16.

The bottom surface of the beam is assumed to be alu-
minum (Al), while its top surface is assumed to be pure 
alumina (Al2O3). The mechanical properties are varied 
through the thickness of FGM beam according to the 
power-law distribution method (P-FGM). The mechani-
cal properties of aluminum are Em = 70 GPa , �m = 0.3 , and 
those of alumina are Ec = 380 GPa , �c = 0.3.

In this work, we model the P-FGM beam using Abaqus 
software based on the finite element method. Figure 17 

Table 1   Maximum non-
dimensional deflection of the 
midline of P-FGM beam

P = 0 P = 0.5 P = 1 P = 2 P = 5 P = 10

Present model 3.1658 4.9298 6.2695 8.1029 9.9331 10.9328
Li et al. (2010) 3.1657 – 6.2599 8.0602 9.7802 10.8979
Vo et al. (2015) with Navier’s theory 3.1397 – 6.1338 7.8606 9.6037 10.7578
Vo et al. (2015) with a FEM model 3.1397 – 6.1334 7.8598 9.6030 10.7572
Quasi-3D theory Nguyen et al. (2019) 3.1388 – 6.1316 7.8570 9.5992 10.7526
HPSDT (model 1) Chikh (2019) 3.1577 4.8189 6.2465 8.0402 9.7461 10.8613
HPSDT (model 2) Chikh (2019) 3.1654 4.8285 6.2594 8.0674 9.8263 10.9375

Table 2   Non-dimensional 
normal stress �

xx
 (x = L/2, 

z = h/2) of P-FGM beam

P = 0 P = 0.5 P = 1 P = 2 P = 5 P = 10

Present model 3.7984 4.9507 5.7698 6.6399 7.3993 8.0503
Li et al. (2010) 3.8020 – 5.8837 6.8812 8.1030 9.7063
Vo et al. (2015) with Navier’s theory 3.8005 – 5.8812 6.8818 8.1140 9.7164
Vo et al. (2015) with a FEM model 3.8020 – 5.8840 6.8860 8.1190 9.7220
Quasi-3D theory Nguyen et al. (2019) 3.7994 – 5.8793 6.8792 8.1101 9.7108
HPSDT (model 1) Chikh (2019) 3.7849 4.9688 5.8548 6.8443 8.0531 9.6517
HPSDT (model 2) Chikh (2019) 3.8014 4.9916 5.8827 6.8813 8.1086 9.7102

Table 3   Non-dimensional 
shear stress �

xz
 (x = 0, y = 0) of 

P-FGM beam

P = 0 P = 0.5 P = 1 P = 2 P = 5 P = 10

Present model 0.6563 0.6803 0.6755 0.6485 0.5902 0.6287
Li et al. (2010) 0.7500 – 0.7500 0.6787 0.5790 0.6436
Vo et al. (2015) with Navier’s theory 0.7233 – 0.7233 0.6622 0.5840 0.6396
Vo et al. (2015) with a FEM model 0.7291 – 0.7291 0.6661 0.5873 0.6439
Quasi-3D theory Nguyen et al. (2019) 0.7233 – 0.7233 0.6622 0.5839 0.6396
HPSDT (model 1) Chikh (2019) 0.6294 0.6471 0.6294 0.5633 0.4758 0.5305
HPSDT (model 2) Chikh (2019) 0.7303 0.7475 0.7303 0.6674 0.5869 0.6432
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shows the mesh of the beam consisting of hexahedral 
C3D20R elements.

The results obtained are shown in the following 
figures.

Discussion

From Fig. 18, we can clearly see that the vertical dis-
placement at point G (x = L/2, y = 0 and z = 0) changes 

(a) Non-dimensional normal stress   for P=0 (b) Non-dimensional normal stress   for P=1

(c) Non-dimensional normal stress   for P=5 (d) Non-dimensional normal stress   for P=10
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Fig. 10   Non-dimensional normal stress �
xx

 (x = L/2) through the thickness of P-FGM beam, comparison between different models
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alternately. This is due to the nature of the load (cyclic 
inverted) applied to the FGM beam, with the maximum 
displacement corresponding to the maximum loading for 
each type of FGM beam. The value of the displacement 
at point G increases with increasing material parameter P 

of the FGM beam from P = 0 (pure ceramic) to P = + ∞ 
(pure metal).

It is noteworthy that in Figs. 19 and 20, relating to the 
normal stresses at points A and B, respectively, the values 
of these stresses are also evolved in an alternating manner 

(a) Non-dimensional shear stress  for P=0 (b) Non-dimensional shear stress  for P=0.5

(c) Non-dimensional shear stress  for P=1 (d) Non-dimensional shear stress  for P=5

(e) Non-dimensional shear stress  for P=10
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according to the nature of the load applied on the FGM 
beam. This load results in simultaneous positive and nega-
tive normal stresses and alternating between points A and 
B. However, the value of the normal stresses engendered 
on the upper surface (compressive stresses) at point A is 
greater compared to the normal stresses engendered on 
the lower surface (tensile stresses) at point B. This is due 
to the graduation of the value of the material parameter P 
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Fig. 12   Variation of non-dimensional deflection w in function of 
index parameter P of FGM beam
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Fig. 13   Variation of non-dimensional normal stress σxx in function of 
index parameter P of FGM beam
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Fig. 14   Variation of non-dimensional shear stress �
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 in function of 
index parameter P of FGM beam

Fig. 15   Simply supported FGM beam subjected to a cyclic load
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Fig. 16   Cyclic loading history
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from the upper surface to the lower surface of the FGM 
beam.

Figure 21 illustrates the change in the resulting shear 
stresses in the FGM beam at point O. We also note that these 
stresses change alternately and inversely with the change 
in the values and direction of the load applied on the FGM 
beam. The results of these stresses are equal values between 
them regardless of the change of the value in the material 
parameter P.

The force–displacement curve at point G of the P-FGM 
beam shown in Fig. 22 shows that there is a linear rela-
tionship between the applied force and the resulting dis-
placement. The presence of two positive and negative limit 

values indicates that there is a change in the direction of 
the load applied to the FGM beam.

It can clearly be seen that the stress–strain curves at 
points A and B on the P-FGM beam shown in Figs. 23 and 
24, respectively, are line diagrams.

Figure 25 presents the curve of the evolution of the 
shear stresses at point O as a function of the strain at the 
same point of the P-FGM beam. We also note the exist-
ence of a linear relation between the shear stresses and 
the strain, where we recorded the lowest strain rate for the 
all-ceramic and all-metal beams, respectively.

Conclusion

In this study, a hexahedral finite element type C3D20R 
“quadratic brick element” characterized by 20 nodes with 
27 integration points (3 × 3 × 3) was utilized for the numer-
ical analysis of the static and cyclic behavior of simply 
supported P-FGM beams.

The performance, reliability and versatility of the 
C3D20R element have been evaluated through numerical 
bending applications of FGM beams. The results obtained 
from the static study were compared with analytical solu-
tions from the literature. These comparisons have shown 
that the arrows and the stresses obtained are identical 
and also that the results obtained by studying the P-FGM 
beams subjected to a cyclic load are very acceptable.

Therefore, our three-dimensional modeling based on 
hexahedral finite elements of the C3D20R type implanted 
in the Abaqus calculation code was able to simulate and 
describe the static and cyclic behavior of FGM beams.
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Fig. 21   Shear stress at point C 
(x = 0, y = 0, z = 0)
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Fig. 23   Normal stress–strain curve at point A (x = L/2, y = 0 and 
z = + h/2)
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Fig. 24   Normal stress–strain curve at point B (x = L/2, y = 0 and 
z = − h/2)
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Fig. 25   shear stress–strain curve at point O (x = 0, y = 0 and z = 0)
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