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Abstract
In this paper, the analytical method and design charts for finding the exact solutions to the free transverse vibration of the 
exponential axially functionally graded material (AFGM) beams with concentrated tip masses and general boundary con-
ditions are presented. According to the derived formulations, the effects of the elastic supports, attached tip masses, and 
exponential gradient index on the natural frequencies and mode shapes of the AFGM beams with symmetric and asymmetric 
boundary conditions are investigated. First, by solving the differential equation governing the free vibration of the expo-
nential AFGM Euler–Bernoulli beams, exact solutions are obtained. The material properties of beams are assumed to vary 
continuously in the axial direction according to the exponential functions. Second, by applying the general boundary condi-
tions, the matrix of constant factors of the beam is derived explicitly. By setting the determinant of this matrix to zero, the 
natural frequencies of the exponential AFGM beam with the general boundary conditions will be available. In the following, 
the mode shapes and design charts of the AFGM beams can be obtained. The advantages of the proposed formulations are 
accuracy, generality, and simplicity in modeling the various boundary conditions. Results show that tip masses, exponential 
gradient index, and end supports play an influential role in the dynamic behavior of the AFGM beams. Accordingly, the 
results and design charts presented for the first time are helpful for the proper design and finding the identical frequency of 
the exponential AFGM beams, exponential non-uniform beams, and uniform beams with different boundary conditions.

Keywords Axially Functionally Graded Material (AFGM) · Free vibration · Exponential law · Tip mass · Boundary 
conditions

Introduction

Functionally graded materials (FGM) are advanced inho-
mogeneous materials that due to improving the thermal and 
mechanical properties of the structure are widely used in 
engineering structures such as beams and plates. The com-
posite beams made of FGM can be classified into three 
major classes. The first class involves beams whose mate-
rial properties vary through the thickness direction and are 

more commonly known as FGM beams. The second class 
includes beams in which material properties change along 
the axial direction and so-called axially functionally graded 
material (AFGM) beams. The third class consists of beams 
whose material properties vary in both axial and thickness 
directions and are well-known as bi-direction functionally 
graded material (BDFGM) beams. In this study, the behav-
ior of the second class, i.e., AFGM beams is investigated. 
However, the non-uniform homogeneous beams can be con-
sidered the special case of the axially functionally graded 
(AFG) beams with constant material and variable geometry 
(Bambaeechee, 2019).

On the other hand, knowing the dynamic behavior of 
AFGM beams is necessary for the design of these compos-
ite beams. In the last decades, the free vibration of FGM 
beams with the exponential variation of mechanical prop-
erties has been investigated widely and is still receiving 
attention in the literature. Huang and Li, (2010) proposed 
a new approach for the free vibration of the non-uniform 
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AFGM beams with power law and exponential law gradient. 
The Rayleigh–Ritz method and the finite element method 
were applied by Anandakumar and Kim, (2010) to study the 
modal behavior of a three-dimensional functionally graded 
(FG) cantilever beam. Ait Atmane et al., (2011) presented 
the analytical solutions for obtaining the natural frequencies 
of the exponential FGM beams with varying cross-section 
and classical boundary conditions.

The exact free vibration of the exponentially AFGM 
beams with different classical boundary conditions was 
performed by Li et al., (2013). Accordingly, they studied 
the effect of the exponential gradient index on the natural 
frequencies of the beam with various classical end supports. 
Çallıoğlu et al., (2013) analyzed the free vibration of the 
symmetric FG sandwich beam with variable cross-section 
using the mixture rules and laminate theory. The free vibra-
tion of AFG non-uniform beams with different boundary 
conditions was studied by Rajasekaran, (2013) using the dif-
ferential transformation-based dynamic stiffness approach. 
Duy et al., (2014) analyzed the free vibration of FGM beams 
on an elastic foundation and rotational spring supports. Tang 
et al., (2014) derived the exact frequency equations of the 
exponentially non-uniform AFG Timoshenko beam with dif-
ferent classical boundary conditions. The analytical solu-
tion was developed by Liu and Shu, (2014) to study the free 
vibration of the exponential FGM beams with single delami-
nation. The exact natural frequencies of simply supported 
FGM beams with exponentially varying material properties 
were determined by Celebi and Tutuncu, (2014) using the 
plane elasticity theory. Kumar et al., (2015) investigated the 
nonlinear free vibration problem of AFG taper beams with 
the polynomial and exponential varying materials. Şimşek, 
(2015) analyzed the free and forced vibration behaviors 
of the bi-directional FGM Timoshenko beam with vari-
ous boundary conditions. Ebrahimi and Mokhtari, (2015) 
investigated the vibration analysis of spinning exponentially 
FG Timoshenko beams based on the differential transform 
method.

The non-uniformity effects on the free vibration analysis 
of the non-uniform FGM beams with the exponential law 
and power law were discussed by Hosseini Hashemi et al., 
(2016). A novel method was proposed by Yuan et al., (2016) 
to obtain the exact solutions to the free vibrations of axially 
inhomogeneous and non-uniform Timoshenko beams. Wang 
et al., (2016) analyzed the free vibration of two-directional 
FGM beams with clamped-free and pinned–pinned end sup-
ports. By utilizing the displacement-based semi-analytical 
method, Lohar et al., (2016) presented the natural frequency 
and mode shapes of an exponential tapered AFG beam rest-
ing on an elastic foundation. Using the methods of initial 
parameters in differential form, the analysis of the free 
vibrations of the non-uniform and/or AFG Euler–Bernoulli 
beams with elastically restrained ends was performed by 

Shvartsman and Majak, (2016). In that study, the power 
and exponential functions were utilized for variations of the 
geometrical and mechanical properties. The free transverse 
vibration analysis of AFG tapered Euler–Bernoulli beams 
through the spline finite point method was developed by Liu 
et al., (2016). They assumed the material types including 
power law and exponential law and discussed the natural 
frequencies of the beam with various classical boundary 
conditions. The analytical and numerical method for the free 
vibration of double-axially FGM beams with elastic end sup-
ports and exponential material properties were performed 
by Rezaiee-Pajand and Hozhabrossadati (2016a). Moreover, 
they studied the free vibration analysis of a double-beam 
system joined by a mass-spring device (Rezaiee-Pajand & 
Hozhabrossadati, 2016b).

The Chebyshev collocation method was applied by 
Wattanasakulpong and Mao, (2017) to study stability and 
vibration analyses of carbon nanotube-reinforced compos-
ite beams with elastic boundary conditions. By applying 
the Chebyshev polynomials, natural frequencies and mode 
shapes of tapered and AFG Rayleigh beams were exam-
ined by He et al., (2017). Using the Adomian decompo-
sition method, the vibration analysis of the exponentially 
and trigonometrically tapered beams with nonlinearly axial 
varying FGM properties considering different geometry and 
material taper ratios was studied by Keshmiri et al., (2018). 
Karamanlı, (2018) analyzed the free vibration behavior of 
two-directional FGM beams subjected to various sets of 
classical boundary conditions by employing a third-order 
shear deformation theory. By a similar theory, the vibration 
analysis of FGM beams with elastic support was performed 
by Wattanasakulpong and Bui, (2018) using the Chebyshev 
collocation method. In another work, Wattanasakulpong 
et al., (2018) proposed the Chebyshev collocation approach 
for vibration analysis of FG porous beams based on third-
order shear deformation theory.

The exact natural frequencies and buckling load of the 
FGM tapered beam-column with elastic supports were pre-
sented by Rezaiee-Pajand and Masoodi, (2018). Mahmoud, 
(2019) proposed a general solution for the free vibration of 
the non-uniform AFG cantilevers with tip mass at the free 
end using the transfer matrix method. Based on the new 
hybrid approach, the free vibration and stability analyses of 
AFGM Euler–Bernoulli beams with variable cross-sections 
resting on a uniform Winkler-Pasternak foundation were 
performed by Soltani and Asgarian, (2019). Avcar, (2019) 
investigated the free vibration of imperfect sigmoid and 
power law FG beams with simply supported. The analytical 
solution was presented by AlSaid-Alwan and Avcar, (2020) 
to study the free vibration of FG beams utilizing different 
types of beam theories. By using the Rayleigh–Ritz method, 
Kumar, (2020) investigated the dynamic behavior of an AFG 
beam resting on a variable elastic foundation. Erdurcan and 
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Cunedioğlu, (2020) studied the free vibration of an alu-
minum beam coated with FGM by using a Timoshenko 
beam and FEM theory for both simply supported and can-
tilever beams. The Chebyshev spectral collocation method 
was employed by Sari and Al-Dahidi, (2020) to study the 
vibration behavior of AFG non-uniform multiple beams. 
Avcar et al., (2021) analyzed the natural frequencies of sig-
moid FG sandwich beams in the framework of high-order 
shear deformation theory. The continuous elements method 
was applied by Selmi, (2021) to investigate the free vibration 
bi-dimensional FGM beams. He considered that the mate-
rial properties vary exponentially along the beam thick-
ness and length. By a similar approach, Selmi and Mustafa, 
(2021) analyzed the influences of the gradient indexes and 
the beam slenderness ratio on the natural frequencies of the 
exponential BDFGM beams with simple supports. Chen and 
Chang, (2021) examined the vibration behaviors of BDFGM 
Timoshenko beams with classical boundary conditions, 
based on the Chebyshev collocation method. By a similar 
technique, the flexural vibration analysis of FG sandwich 
plates resting on an elastic foundation with arbitrary bound-
ary conditions was performed by Tossapanon and Wattana-
sakulpong, (2020). Recently, the exact solutions for the free 
transverse vibration of power-law non-uniform AFG beams 
with endpoint masses and general boundary conditions were 
presented by Bambaeechee, (2022). Moreover, Zhao et al., 
(2022) proposed a unified Jacobi–Ritz approach for vibra-
tion analysis of FG porous rectangular plate with arbitrary 
boundary conditions based on a higher-order shear deforma-
tion theory.

A comprehensive literature review was completed above 
based on the focus on the works related to free vibration analy-
sis of the FGM beams with the exponential variation of the 
material properties. To the best of the authors’ knowledge, 
there is no reported work on the exact solutions of the free 
transverse vibration of the exponential AFGM beams with 
the concentrated tip masses and general boundary conditions. 
Thus, this study aims to get the closed-form expression for 
calculating the exact natural frequencies of the exponential 
AFGM Euler–Bernoulli beams with attached tip masses and 
general boundary conditions. In the following, the mode 
shapes and design charts of the AFGM beams can also be 
obtained. The advantages of the proposed formulations are 
high accuracy, generality, and simplicity to simulate the vari-
ous boundary conditions. Also, it can be applied to the pur-
poseful design of vibrating a wide range of uniform beams, 
non-uniform beams with constant thickness and exponentially 
decaying width, and composite beams. In addition, a similar 
strategy can be used for various material distribution. Accord-
ing to the derived formulations, the effects of the elastic sup-
ports, attached tip masses, and exponential gradient index on 
the natural frequencies and mode shapes of the exponential 
AFGM beams with symmetric and asymmetric boundary 

conditions are investigated in detail for the first time. Results 
show they play an important role in the natural frequencies 
and mode shapes of the AFGM beams. This topic will be very 
important when the design goal is to achieve or not to achieve 
a certain frequency. Accordingly, the results of this study can 
be used for the proper design of the exponential composite 
beams carrying tip masses with different elastic boundary 
conditions. Moreover, the proposed method can be applied to 
study the behavior of the small-scale structures that are gov-
erned by the classical Euler–Bernoulli beam theory.

Free vibration analysis

In this work, the analytical solutions to obtain the exact natural 
frequencies of the exponential AFGM Euler–Bernoulli beam 
with general boundary conditions and attached tip masses are 
derived.

AFGM properties

In this study, the material properties, i.e., modulus of elastic-
ity and mass density of the AFGM beam, shown in Fig. 1, 
are assumed to vary continuously and together in the axial 
direction according to the exponential functions and defined 
as (Li et al., 2013):

where β is the exponential gradient index, x is the axial coor-
dinate, L is the length of the beam, ρ(x) is the volume mass 
density at position x, and E(x) is the modulus of elasticity 
at position x. Also, ρ0 and E0, and ρL and EL, are the mass 
density and modulus of elasticity at x = 0 and x = L, respec-
tively. Here, the subscript “0” means x = 0, and the subscript 
“L” indicates x = L. As a result, the mass per unit length and 
flexural rigidity of the exponential AFGM was obtained as:
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Fig. 1  Schematic of the exponential AFGM beam
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where m(x), K(x), A, and I are the mass per unit length, flex-
ural rigidity, cross-section area, and moment of inertia of 
the AFGM beam, respectively. It should be noted that the 
exponential gradient index, β, can be any rational number. 
In addition, when β = 0, the beam is homogeneous.

Governing differential equation

The free lateral vibration differential equation of an AFGM 
beam of length L with general boundary conditions and tip 
masses in the framework of the Euler–Bernoulli theory, as 
shown in Fig. 2, is given by (Rao, 2019):

where x is the axial coordinate, t is time, w(x,t) is the lateral 
deflection of the beam, K(x) is the flexural rigidity of the 
beam at the position x, and m(x) is the mass per unit length 
of the beam at the position x.

Following the separation of variable analogy, the solu-
tion of Eq. (3) can be expressed as (Rao, 2019):

(2b)K(x) = E(x)I = E0Ie
2�

(
x

L

)
= ELIe

2�

(
x

L
−1

)

(3)
�2

�x2

[
K(x)

�2w(x, t)

�x2

]
+ m(x)

�2w(x, t)

�t2
= 0, 0 ≤ x ≤ L

where Wn(x) is the shape function of the lateral motion 
of the nth vibration mode and ωn is the circular frequency.

Substituting Eq. (4) into Eq. (3), one can get:

If Eqs. (2a) and (2b) are inserted into Eq. (5), it can be 
rewritten as:

By deriving from the latter equation, one can get:

or

Introducing the following quantity

and considering in mind that

Equation (8) simplifies as follows:

where Ωn = �nL
2

√
�0A

E0I
 is the dimensionless natural fre-

quency coefficient of the nth vibration mode.
The general solution of this equation is (Wang & Wang, 

2013):
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Fig. 2  Schematic of the exponential AFGM beam with general 
boundary conditions and tip masses
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where �1 =
√
Ωn − �2  , �2 =

√
Ωn + �2  , �3 =

√
�2 − Ωn  , 

and C1, C2, C3, C4 are unknown constants. Although Ωn > β2 
in most cases, there are situations where Ωn < β2 (Wang & 
Wang, 2013). Herein, just investigated the case Ωn > β2 in 
detail which occurs in most cases.

General boundary conditions and tip masses

The boundary conditions of the exponential AFGM beam, 
in the presence of the concentrated tip masses M0 and ML, 
and constraints with the rotational elastic stiffnesses kR0 and 
kRL, and lateral translational elastic stiffnesses kT0 and kTL 
are expressed as:

which refer to the equilibrium of bending and shear at X = 0, 
respectively, and

which denote the equilibrium of bending and shear at X = 1, 
respectively.

For simplicity, the following dimensionless mass ratios 
(α0, αL), stiffness coefficient (KR0, KRL, KT0, and KTL), 
and stiffness ratios (R0, RL, T0, and TL) are introduced 
(Rezaiee-Pajand et al., 2015; Šalinić et al., 2018):

From above, the corresponding inverse relation between 
stiffness coefficients and stiffness ratios read:

Accordingly, when the stiffness coefficients (KR0, KRL, KT0, 
KTL) vary from 0 to ∞, the corresponding stiffness ratios 
(R0, RL, T0, and TL) take values from 0 to 1. This makes 
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(18)
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1 − RL

,KTL =
TL

1 − TL
.

numerical calculations much easier because one avoids 
seeking the sufficiently large value of spring stiffness coef-
ficients, which would adequately substitute value 1 in spe-
cific numerical calculations (Šalinić et al., 2018). As a result, 
if the stiffness ratios are allowed to become one or zero, 
then the classical restraints can be easily recovered. Also, 
the non-classical supports have stiffness ratios between zero 
and one. For example, the values R0 = T0 = 1 and RL = TL = 0 
correspond to the clamped left and the free right end of 
the beam, respectively. The elastic beam whose stiffness 
of all elastic supports is 50%, is modeled by considering 
R0 = T0 = RL = TL = 0.5. Here, the subscript “0” denotes x = 0, 
and the subscript “L” means x = L.

Substituting the values of X and dimensionless ratios 
defined as Eq.  (17), the boundary conditions of Eqs. 
(13)–(16) can be expressed by the following dimension-
less forms:

where W �
n
(X) =

dWn(X)

dX
 , W ��

n
(X) =

d
2Wn(X)

dX2
 , and W ���

n
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d
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dX3
.

Determination of the natural frequency

By substituting the general solution (12a) into the dimen-
sionless boundary conditions defined in Eqs. (19)–(22), 
for the four integration constants, a homogeneous system 
of four equations can be found as:

or in compact matrix form as follows:
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�

n
(0) = 0

(20)
(1 − T0)W

���

n
(0) + 2�(1 − T0)W

��

n
(0) +

[
T0 − �0Ω

2

n
(1 − T0)

]
Wn(0) = 0

(21)(1 − RL)W
��

n
(1) + RLW

�

n
(1) = 0

(22)
(1 − TL)W

���

n
(1) + 2�(1 − TL)W

��

n
(1) +

[
�LΩ

2

n
(1 − TL) − TL

]
Wn(1) = 0

(23)

⎡⎢⎢⎢⎣

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

C1

C2

C3

C4

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

0

0

0

0

⎤⎥⎥⎥⎥⎦

(24)AC = 0



544 Asian Journal of Civil Engineering (2023) 24:539–557

1 3

where the constant coefficients matrix A for the exponential 
AFGM beams with any rational value of the gradient index 
is given explicitly in Appendix. To have a non-trivial solu-
tion, the determinant of this system must be zero:

Consequently, the positive real roots of this equation are 
the natural frequencies of the AFGM beams with the tip 
masses and elastic end supports. It should be added, that 
these are calculated numerically and using the well-known 
numerical software MAPLE.

Verification and numerical examples

To demonstrate the accuracy and efficiency of the derived 
formulations, three numerical examples, shown in Fig. 3, 
are analyzed in this part. The results are compared with 
those obtained by other researchers in Tables 1, 2, and 3. 
From Tables 1, 2, and 3, it is observed that the proposed 
formulations for computing the natural frequencies have 
high accuracy and are easy to simulate the various classi-
cal and non-classical boundary conditions. Moreover, the 
formulation is applied for a wide range of uniform, non-
uniform and composite beams.

(25)detA = 0

Discussion and parametric studies

The effects of the attached tip masses, elastic supports, and 
exponential gradient index on the natural frequencies and 
mode shapes of the AFGM beams with classical and non-
classical boundary conditions will be investigated in this 
section. Accordingly, the schematics of the case studies 
with non-classical boundary conditions illustrate in Fig. 4. 
Moreover, several design charts for the fundamental natu-
ral frequency of the AFGM beams with various boundary 
conditions will be presented, for the first time.

Effects of the classical boundary conditions 
with various exponential gradient index and tip 
mass

In this section, the effects of the exponential gradient index 
and tip mass at the free end on the natural frequency coef-
ficients Ωn (n = 1,2,3) for beams with symmetric and asym-
metric classical boundary conditions, namely, P–P, C–C, 
F–C, and C–F, are investigated. Here, C means clamped, P 
denotes pinned, and F indicates free. The numerical values 
of Ωn (n = 1,2,3) for these cases are tabulated in Table 4. It 
should be added that according to the same results, depend-
ing on the symmetric or asymmetric boundary conditions 

(a)  Example 1 (β=var., R0=T0=1, RL=TL=0) (b) Example 2 (β=var., R0=RL=0, T0=TL=1) 

(c) Example 3 (β=0.0, R0=RL=T0=TL=var.) 

L

w (x,t)

ρ(x) , E(x)

x

x=0 x=L

L

w (x,t)

ρ (x) , E (x)

kRLkR0

kT0 kTL

x=0 x=L

x

L

w (x,t)

ρ(x) , E (x)

x=0 x=L

x

Fig. 3  Schematic of the exponential AFGM beams with classical boundary conditions and homogeneous beam with symmetric elastic boundary 
conditions in numerical examples
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and the positive or negative sign of the exponential gradient 
index, this classification is considered.

From Table 4, it is deduced that the minimum and maxi-
mum of the natural frequency occur in the first mode of 
the uniform beam with C–C and P–P boundary conditions, 
respectively. Furthermore, for the C–C beam as the abso-
lute value of β increases, the natural frequency coefficients 
increase. There is a similar situation for the P–P beam, 
except for the first natural frequency coefficient. On the other 
hand, as the exponential gradient index increases, the natu-
ral frequency coefficients of C–F and F–C beams increase 
and decrease, respectively. Accordingly, depending on the 
boundary conditions and mode of the vibration, changing the 
value of the exponential gradient index can cause a decrease 
or increase in the natural frequency of the exponential 
AFGM beam. For example, increasing the value of β from 
-1 to 1 can raise the fundamental natural frequency coeffi-
cient (Ω1) of the F–C AFGM beam to 3.4 times. Although, 
this effect is lighter for the symmetric beam. Moreover, the 
natural frequencies of the exponential AFGM beam decrease 
with the increasing tip mass. Accordingly, the presence of 
tip mass as much as homogeneous beam mass at the free end 
can reduce the fundamental natural frequency coefficient 
(Ω1) of the F–C beam by more than 50%, regardless of β.

Furthermore, Table 4 shows that two symmetric AFGM 
beams with symmetric exponential gradient indexes have 
the same natural frequency. On the other hand, two asym-
metric AFGM beams with mirror boundary conditions and 
symmetric exponential gradient indexes have the same natu-
ral frequency. It is reminded that the uniform beams with 
C–F and F–C boundary conditions have the same natural 
frequencies but for the exponential AFGM beams, the cor-
responding results are different. The physical reasons for the 
differences in results for the exponential AFGM beams with 
C–F and F–C boundary conditions return to the equivalent 
lateral stiffness and tip mass. Accordingly, for the negative 
gradient index (corresponding to the trend of decreasing the 
flexural rigidity), the equivalent lateral stiffness of the C–F 
beam is larger than the F–C beam. Therefore, the natural 
frequencies of the C–F beam are larger than F–C beams with 
a negative gradient index. This phenomenon for the positive 
gradient index is inverted. In other words, for the positive 
gradient index (corresponding to the trend of increasing 
flexural rigidity), the equivalent lateral stiffness of the F–C 
beam is larger than the C–F beam. Therefore, the natural 
frequencies of the F–C beam are larger than C–F beams 
with a negative gradient index. However, the natural fre-
quency decreases in the presence of tip mass, regardless of 
the boundary conditions.
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Table 2  The first three dimensionless natural frequencies of simply supported exponential AFGM beam for various β (Example 2)

β Ωn Present Kumar (2020) Soltani and 
Asgarian (2019)

He et al., (2017) Hosseini Hashemi 
et al., (2016)

Li et al., (2013) Ait Atmane 
et al., (2011)

0.5 n = 1 9.77291 9.7731 9.7729 – 9.77300 – 9.773
n = 2 39.57036 39.5641 39.5704 – 39.56988 – 39.570
n = 3 88.97052 88.9004 88.9705 – 88.82628 – 88.970

1.0 n = 1 9.48725 – – 9.487253676 9.48689 9.48725 9.487
n = 2 39.85232 – – 39.85231597 39.85245 39.85232 39.852
n = 3 89.40520 – – 89.40520185 89.40458 89.40520 89.450

Table 3  The square root of the first three dimensionless natural frequencies of elastic supported homogeneous beam for various R0 = RL = T0 = TL 
(Example 3)

β √Ωn R0 = RL = T0 = TL

1/2 5/6 10/11

Present Bambaeechee 
(2019)

Lai et al., (2008) Present Bambaeechee 
(2019)

Present Bambaeechee 
(2019)

Lai et al., (2008)

0.0 n = 1 1.18564 1.1856 1.1856 1.76346 1.7635 2.08826 2.0883 2.0883
n = 2 2.23331 2.2333 2.2333 2.97286 2.9729 3.27087 3.2709 3.2709
n = 3 5.06314 5.0631 5.0631 5.63928 5.6393 5.90693 5.9069 5.9069

(a) Case 1 (β=0.5, RL=TL=var.) (b) Case 2 (β=±0.5, R0=RL=var., T0=TL=var.) 

(c) Case 3 (β=0.5, RL=TL=var., α0=var.) (d) Case 4 (β=±var., R0=RL=T0=TL=var., α0=αL=var.) 
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Fig. 4  Schematic of the exponential AFGM beams with non-classical boundary conditions in parametric studies
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Table 4  The first three 
dimensionless natural frequency 
coefficients Ωn, n = 1, 2, 3 of the 
exponential AFGM beams with 
classical supports and various 
values of β and tip mass

β Ωn Symmetric boundary 
conditions

Asymmetric boundary conditions

P–P C–C F–C C–F

α0 = 0 α0 = 1 αL = 0 αL = 1

− 1.0 n = 1 9.4872 22.9377 1.8405 0.7274 6.2626 3.0888
n = 2 39.8523 62.4227 18.1721 13.8581 26.5835 18.9815
n = 3 89.4052 121.7227 58.3886 49.2366 66.3744 50.8958

− 0.5 n = 1 9.7729 22.5116 2.5653 1.0733 4.7349 2.2167
n = 2 39.5703 61.8596 20.0383 15.0355 24.2018 17.5475
n = 3 88.9705 121.1079 59.8708 49.9211 63.8644 52.1586

0.0 (uniform) n = 1 9.8696 22.3732 3.5160 1.5573 3.5160 1.5573
n = 2 39.4784 61.6728 22.0344 16.2501 22.0344 16.2501
n = 3 88.8264 120.9033 61.6972 50.8958 61.6972 50.8958

0.5 n = 1 9.7729 22.5116 4.7349 2.2167 2.5653 1.0733
n = 2 39.5703 61.8596 24.2018 17.5475 20.0383 15.0355
n = 3 88.9705 121.1079 63.8644 52.1586 59.8708 49.9211

1.0 n = 1 9.4872 22.9377 6.2626 3.0888 1.8405 0.7274
n = 2 39.8523 62.4227 26.5835 18.9815 18.1721 13.8581
n = 3 89.4052 121.7227 66.3744 50.8958 58.3886 49.2366

(a) First mode (b) Second mode

(c) Third mode
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Fig. 5  Plot the first three dimensionless natural frequencies in case 1
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Effects of the non‑classical boundary conditions

In Figs. 5 and 6, variations of the first three dimensionless 
natural frequencies Ωn (n = 1,2,3) of the exponential AFGM 
beams (β = 0.5) to various quantities of the rotational and 
translational stiffness ratios (i.e., T0, R0, TL, and RL) are 
plotted.

Asymmetric boundary conditions (Case 1)

In this case, the free-supported exponential AFGM beam 
(β = 0.5) with the translational and rotational springs at x = L 
(Fig. 4(a)) is studied. As seen in Fig. 5, as the stiffness ratios 
RL = TL increase from 0 (corresponding to F–F beam) to 1 
(corresponding to F–C beam), the natural frequencies of the 
AFGM beam increase. This effect is more pronounced as the 
rotational and translational stiffness ratios RL = TL are more 
than 0.9. In other words, the translational stiffness sensitiv-
ity (slope of the TL-Ωn curve) is higher when the stiffness of 
the translational spring kTL is more than 90%. Accordingly, 
increasing stiffnesses of the elastic support RL = TL from 10 
to 50% and 100% can increase the fundamental frequency 

of the AFGM beam in case 1 by about 2.95 and 12.33 times, 
respectively.

Symmetric boundary conditions (Case 2)

In this case, the symmetric elastic supported exponential 
AFGM beam (β = 0.5) with two translational and rotational 
springs at x = 0 and x = L (Fig. 4(b)) is investigated. Accord-
ing to Fig. 6, as the stiffness ratios R0 = RL = T0 = TL increase 
from 0 (corresponding to the F–F beam) to 1 (corresponding 
to the C–C beam), the natural frequencies of the AFGM 
beam increase smoothly. Also, the value of Ω1 is almost 
independent of the rotational stiffness, except in the limit 
state T0 = TL = 1 (corresponding to the P–P beam). It should 
be noted that when T0 = TL = 1, the trend of increasing fre-
quencies is more intense and there is a significant differ-
ence between the values of Ωn (n = 1,2,3) with other states. 
Accordingly, increasing stiffnesses of the elastic support 
R0 = RL = T0 = TL from 10 to 50% and 100% can raise the 
first dimensionless natural frequency coefficient Ω1 of the 
AFGM beam in case 2 to 2.99 and 46.40 times, respectively.

(a) First mode (b) Second mode

(c) Third mode
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Fig. 6  Plot the first three dimensionless natural frequencies in case 2
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From the comparison of Figs. 5 and 6, it is concluded that 
translational stiffness has relatively more influence on the 
natural frequencies than rotational stiffness.

Effects of the tip mass with asymmetric boundary 
conditions (Case 3)

Schematic of the third case study and variations of the first 
three dimensionless natural frequencies versus the mass 
ratio, α0, are plotted in Fig. 4(c) and Fig. 7, respectively. Fur-
thermore, the sample results of the corresponding numerical 
values of Ωn (n = 1,2,3) for this case are listed in Table 5.

According to Fig. 7, increasing the tip mass ratio causes 
a reduction in the values of Ωn (n = 1,2,3) of the beam. 
This effect is more pronounced for the high stiffness and 
low tip mass ratios. From Fig. 7 and Table 5, it is observed 
that increasing the tip mass ratio from 0 to 1 can decrease 
the first dimensionless natural frequency coefficient Ω1 
of the AFGM beam for the low, moderate, high, and fully 
stiffness ratios in case 3 by about 28%, 30%, 42%, and 
53%, respectively.

It is reminded that the result, in this case, can be used 
for the AFGM beam with β = -0.5 and mirror boundary 
conditions.
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(c) Third mode
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Fig. 7  Plot the first three dimensionless natural frequencies in case 3

Table 5  Sample results of the first three dimensionless natural fre-
quencies for case 3

α0 Ωn RL = TL

0.1 (low stiffness) 0.5 (moder-
ate stiffness)

0.9 (high stiffness)

0.0 n = 1 0.3840 1.1333 2.9390
n = 2 1.5873 4.1257 7.5564
n = 3 22.7788 24.4981 29.3623

0.5 n = 1 0.3183 0.9216 2.1055
n = 2 1.1953 3.0597 5.9724
n = 3 16.7877 18.4992 22.8895

1.0 n = 1 0.2762 0.7898 1.7061
n = 2 1.0854 2.7869 5.6729
n = 3 15.8931 17.6548 22.0763
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Effects of the exponential gradient index 
with symmetric boundary conditions (Case 4)

In Fig. 4(d) and Fig. 8, respectively, the schematic of the 
fourth case study and variations of the first three dimen-
sionless natural frequencies versus the exponential gradient 
index, β, are presented. Moreover, the sample results of the 
corresponding numerical values of Ωn (n = 1,2,3) for this 
case are tabulated in Table 6.

According to Fig. 8 and Table 6, it is deduced that for the 
AFGM beam with the symmetric elastic boundary condi-
tions and tip masses, the minimum natural frequency always 
occurs for the homogeneous beam. Also, the variation of the 
natural frequencies is symmetrical to the variation of the 
exponential gradient index when the boundary conditions 
are symmetrical.

Furthermore, it is found that the values of Ωn (n = 1,2) 
increase as the stiffness and mass ratios increase simulta-
neously, regardless of β. This trend for the third mode is 

(a) First mode (b) Second mode

(c) Third mode
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Fig. 8  Plot the first three dimensionless natural frequencies in case 4

Table 6  Sample results of the first three dimensionless natural fre-
quencies for case 4

Note: Values are from Eq.  (12a) except for the value with asterisks, 
which is from Eq. (12c)

|β| Ωn R0 = RL = T0 = TL = α0 = αL

0.1 0.5 0.9

0.0 (homoge-
neous)

n = 1 0.4301 0.9985 2.5277
n = 2 1.4292 2.5580 4.5888
n = 3 17.6342 14.9381 19.9150

0.5 n = 1 0.4414 1.0158 2.5590
n = 2 1.5046 2.6943 4.7302
n = 3 17.7722 15.0440 20.0868

1.0 n = 1 0.4733* 1.0597 2.6364
n = 2 1.7337 3.1269 5.1829
n = 3 18.1986 15.3708 20.6069
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different and complex. Results show that for a homogeneous 
beam (β = 0) and AFGM beam (β = 0.5) with the simultane-
ous increase of each of the values of Ri, Ti, and αi (i = 0, 
L) from 0.1 to 0.9, the first natural frequency coefficient 
Ω1 increases by about 5.88 and 5.80 times. Accordingly, 
the increasing effect of stiffness ratios is greater than the 
decreasing effect of tip mass ratios. On the other hand, 
increasing the exponential gradient index from 0 to 1 can 
increase the value of Ω1 of the symmetric AFGM beam for 
the low, moderate, and high stiffness ratios by about 10%, 
6%, and 4%, respectively.

Effects of the tip masses and various boundary 
conditions on the mode shapes

The first three mode shapes of the exponential AFGM beam 
(β = 0.5) in cases 1 through 4 with various values of the vari-
able parameters are plotted in Fig. 9. Those are obtained by 
solving the Eq. (23) by assuming C1 = 1 and inserting it in 
Eq. (12a). Figure 9 illustrates that the tip mass (according to 
cases 1 and 3) and boundary conditions (according to cases 
2 and 4) have a significant influence on the mode shapes of 
the AFGM beam, as expected. Also, the mode shapes of the 

Fig. 9  Plot the first three mode shapes of the AFGM beam (β = 0.5) in a case 1 with RL = TL = 1, b case 2 with R0 = T0 = RL = TL = 1, c case 3 with 
RL = TL = 1 and α0 = 1, and d case 4 with R0 = T0 = RL = TL = 0.9 and α0 = αL = 0
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AFGM beam are always asymmetric because the material 
distribution is asymmetric.

Design charts for various boundary conditions

In this section, the design charts for the fundamen-
tal dimensionless natural frequency coefficient of the 
exponential AFGM beam (β = 0.5) and homogenous 
beam (β = 0.0) in the range Ω1 = 0.5 to Ω1 = 4 for cases 1 
through 4 are illustrated in Fig. 10 and Fig. 11, respec-
tively. Those are degenerated from the characteristic 

equation (Eq.  (25)) assuming a specific value of Ω1. 
From Figs. 10–11, in addition to confirmation of previ-
ous results, the possible combinations of the boundary 
conditions for specified fundamental natural frequen-
cies are available. For example, the exponential AFGM 
beam (β = 0.5) in case 1 with RL = 0.2 and TL = 0.6, 
or RL = 0.8 and TL = 0.4, case 2 with T0 = TL = 0.35, 
case 3 with RL = TL = 0.6 and α0 = 0.8, and case 4 with 
R0 = T0 = RL = TL = 0.4 and α0 = αL = 0.2 has the same fun-
damental natural frequency (Ω1≈1). Moreover, for known 

Fig. 10  Design charts for the fundamental dimensionless natural frequency (Ω1) of the AFGM beam (β = 0.5) with various boundary conditions
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boundary conditions, the design charts can be easily used 
to determine the value of Ω1.

By comparison of Fig. 10 and Fig. 11, it is concluded 
that the design charts of the homogeneous and inhomoge-
neous beams are very close to each other with symmetric 
boundary conditions. Nevertheless, there are the main 
differences between design charts of the homogeneous 
and inhomogeneous beams with asymmetric boundary 
conditions.

Conclusions

In this study, the analytical method and design charts for 
finding the exact solutions to the free transverse vibra-
tion of the AFGM beams with attached concentrated tip 
masses and general boundary conditions were presented 
in the framework of the Euler–Bernoulli theory. The mate-
rial properties of AFGM beams were assumed to vary in 
the axial direction according to the exponential functions. 
The proposed formulations have high accuracy and effi-
ciency and are usable for uniform, non-uniform, and com-
posite beams. Moreover, a similar strategy could be used 

Fig. 11  Design charts for the fundamental dimensionless natural frequency (Ω1) of the homogeneous beam (β = 0.0) with various boundary con-
ditions
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for evaluating the other new variables in the free vibra-
tion analysis. According to the derived formulations, the 
effects of elastic supports, attached tip masses, and expo-
nential gradient index on the natural frequencies and mode 
shapes of the exponential AFGM beams were discussed. 
Results show those play an important role in the natural 
frequencies and mode shapes of the AFGM beams. This 
topic would be very important when the design goal is to 
achieve or not to achieve a certain frequency. Accordingly, 
the results and design charts of this study could be used for 
the proper design of the exponential composite beams and 
homogeneous beams carrying tip masses with different 
elastic boundary conditions. Also, the exact solutions were 
reported in graphical and tabular forms and could be used 
as the benchmark for FEM and other numerical solutions.

Based on the parametric studies, the following impor-
tant points are concluded:

• The natural frequencies of the AFGM beam decrease 
with the increasing tip mass ratio while increasing with 
increasing stiffness ratios. However, translational stiff-
ness has relatively more influence than rotational stiff-
ness.

• Depending on the boundary conditions and mode of the 
vibration, changing the value of the exponential gradient 
index β can cause a decrease or increase in the natural 
frequency of the exponential AFGM beam. Although, 
this effect is lighter for the symmetric beam.

• Asymmetric AFGM beams with mirror boundary con-
ditions and mirror gradient index have the same natural 
frequency. For example, the natural frequencies of the 
free-clamped beam with exponential gradient index β are 
equal to the clamped-free beam with exponential gradient 
index -β.

• Symmetric AFGM beams for mirror gradient indexes 
have the same natural frequency. For example, the natural 

frequencies of the pinned-pinned beam with exponential 
gradient index β and -β are identical.

• The presence of tip mass as much as homogeneous beam 
mass at the free end of the free-clamped AFGM beam 
can reduce the fundamental natural frequency of the 
beam by more than 50%.

• For the symmetric AFGM beam with the non-classical 
boundary conditions, the minimum natural frequency 
occurs for the uniform beam. Nevertheless, for the simply 
supported AFGM beam, the maximum of the first natural 
frequency takes place in the homogeneous beam.

Appendix

The elements of the constant coefficients matrix, A for the 
exponential AFGM beam with carrying tip masses and var-
ious elastic boundary conditions in the framework of the 
Euler–Bernoulli theory are as follows:

(A-1)A11 = (�2
1
− �2)(1 − R0) − R0�

(A-2)A12 = �1
[
2�(1 − R0) + R0

]

(A-3)A13 = −(�2
2
+ �2)(1 − R0) − R0�

(A-4)A14 = �2
[
2�(1 − R0) + R0

]

(A-5)A21 =
[
−�(� 2

1
+ � 2) + Ω2�0

]
(1 − T0) − T0

(A-6)A22 = �1
(
� 2

1
+ � 2

)
(1 − T0)

(A-7)A23 =
[
� (� 2

1
− � 2) + Ω2�0

]
(1 − T0) − T0

(A-8)A24 = �2
(
� 2 − � 2

1

)
(1 − T0)

(A-9)A31 = e−�
{[
(�2

1
− �2) cos(�1) − 2��1 sin(�1)

]
(1 − RL) +

(
� cos(�1) + �1 sin(�1)

)
RL

}

(A-10)A32 = e−�
{[
(�2

1
− �2) sin(�1) + 2��1 cos(�1)

]
(1 − RL) +

(
� sin(�1) − �1 cos(�1)

)
RL

}

(A-11)A33 = e−�
{[
−(�2

2
+ �2)cosh(�2) + 2��2 sinh(�2)

]
(1 − RL) +

(
� cosh(�2) − �2 sinh(�2)

)
RL

}

(A-12)A34 = e−�
{[
−(�2

2
+ �2) sinh(�2) + 2��2 cosh(�2)

]
(1 − RL) +

(
�sinh(�2) − �2 cosh(�2)

)
RL

}
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