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Abstract
One of the devices for passive structural control is the tuned mass damper (TMD) which consists of a mass, spring, and 
damping. The seismic behavior of structures equipped with tuned mass dampers is influenced by the value of damper com-
ponents. In general, the determination of TMD parameters to achieve optimal seismic behavior is defined in the framework 
of optimization problems. In this paper, the optimal design of TMDs is carried out using different methods and the effect of 
the optimization method on the optimal design of structures equipped with TMD was investigated. For this purpose, three 
strategies based on the meta-heuristic optimization method, inverse reliability (IR) method, and reliability-based optimiza-
tion (RBDO) method are used for the optimum design of TMDs and the seismic responses of the structure are compared for 
each case. In the reliability-based optimization method, the optimal design is performed with the objective function based 
on the target reliability of the structure. The results show that the mass and damping of TMD, respectively, have the most 
and least important in reducing the drift of structure. The reliability index in the structures equipped with TMD is sensitive 
to the mass and stiffness of the TMD and is not sensitive to damping. In addition, the optimal design of TMD was evaluated 
based on the target reliability. The results show that the RBDO strategy has a good ability to explore the search space, and 
the designed TMD with the RBDO method has a good performance in the reduction of seismic responses. However, due to 
the lack of constraints for the design variables domain, the inverse reliability strategy results are unacceptable.

Keywords Reliability · Tuned mass damper (TMD) · Uncertainty · Reliability-based design optimization (RBDO) · Inverse 
reliability (IR) · Colliding body optimization (CBO)

Introduction

In the history of structural engineering, some of the methods 
have been developed to reduce structural responses to con-
trol vibrations under lateral forces (Chang & Soong, 1980; 
Cheng et al., 2008; Dyke et al., 1996; Kaveh et al., 2020a; 
Sadek et al., 1995; Singh & Moreschi, 2001). These methods 
are used to improve structural performance and reduce struc-
tural damage. The tuned mass damper is one of the passive 
control tools that, consists of mechanical details including 
mass, spring, and viscous damper to reduce the structure 
response. The main idea of vibration control using the TMD 

was developed by Den Hartog and studied the response of 
the undamped structures under harmonic loading by adding 
a tuned mass with spring (Den Hartog, 1956).

Considering the effect of TMD parameters on the seismic 
behavior of controlled structures, some studies have differ-
ent approaches to optimally use the capacity of the con-
trol system (Fujino & Abe, 1993; Luft, 1979; Warburton, 
1982). Hadi and Arfiadi (1998) used a genetic algorithm 
to optimize the TMDs parameters. Lee et al. (2006) pre-
sented a new method for optimization of the components 
of TMDs. In recent decades, many meta-heuristic methods 
have been proposed inspired by the phenomena of physics 
and nature to optimize engineering problems. Many of these 
algorithms were used to optimum design of the TMDs (Bek-
das & Nigdeli, 2011; Farzam & Kaveh, 2020, Farzam et al., 
2020; Kaveh et al., 2015a, 2015b, 2020b).

Various types of uncertainties are traceable and identifi-
able in all steps of the design, construction, and maintenance 
of structural systems. These uncertainties can be evaluated 
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using probabilistic models, and reliability analysis can be 
used to assess the safety levels of structural systems based 
on the probability of failure (Ditlevsen, 1982). In general, for 
estimating the probability of failure based on the probabil-
istic model and reliability analysis in the structure, various 
analytical methods such as the first-order reliability method 
(FORM) (Liu & Der Kiureghian, 1991), second-order reli-
ability method (SORM) (Der Kiureghian & Stefano, 1991), 
optimization algorithms (Kaveh et al., 2014) simulation 
methods (Azar et al., 2015; Rashki et al., 2012), response 
surfaces (Chakraborty & Chowdhury, 2016; Goswami et al., 
2016; Hadidi et al., 2017) and neural networks (Vazirizade 
et al., 2017) are used.

Because of the existence of uncertainty in structural 
control systems, the probability of their instability can be 
investigated (Spencer et al., 1992). Based on probabilistic 
optimal control methods, the uncertainties of the structural 
parameters are considered to increase the safety and reliabil-
ity of the structure (Spencer et al., 1994). In some studies, 
the effect of uncertainty in control devices on the reliability 
of the structure has been investigated (Gavin & Zaicenco, 
2007; Guo et al., 2002).

Recently, design methods under uncertainty have been 
widely developed. The reliability-based design optimiza-
tion is used to minimization of the probability of failure 
considering uncertainties that exist in the system. Several 
studies have been proposed for reliability-based optimization 
(Doan et al., 2018; Keshtegar & Hao, 2018; Lehky et al., 
2018; Tu et al., 1999). To achieve a reliable and economical 
design, the RBDO is widely used in structural optimization 
problems (Huu et al., 2016; Le et al., 2017; Liu & Paavola, 
2015; Zhao et al., 2016). In addition, some others studied 
reliability-based optimization in structures equipped with 
passive control devices (Altieri et al., 2018; Chakraborty & 
Roy, 2011; Hadidi et al., 2016; Leger et al., 2017; Mrabet 
et al., 2015).

Another reliability-based method is the inverse reliability 
method, which is classified in the category of optimization 
methods with probabilistic constraints. An inverse reliability 
analysis strategy is defined based on the reliability analysis 
that, uses percentile performance to satisfy probabilistic con-
straints. Der Kiureghian et al. (1994) proposed an iterative 
algorithm based on the modified HL–RF scheme. In some 
studies, this method is used to optimize for target reliability 
(Cheng et al., 2007; Du et al., 2004; Li & Foschi, 1998).

In this paper, according to various methods in optimiza-
tion problems, the optimization of a structure equipped with 
a passive tuned mass damper in deterministic and uncertainty 
conditions is examined. In the deterministic case, the optimal 
design of the tuned mass damper is done using the meta-heu-
ristic algorithm. Then, using the reliability analysis method, 
the reliability index for this structure is calculated, and sen-
sitivity analysis is performed for the structure based on the 

damper parameters. In addition, in uncertainty cases, optimum 
design of the TMD is done with reliability-based design opti-
mization and inverse reliability methods. In reliability-based 
methods, the optimum design is performed based on different 
target reliability, and the exploration ability of these methods 
in the design search space is evaluated.

Reliability analysis

Reliability is defined as the probability of a limit state func-
tion g(X) greater than zero, P{g(X) > 0} (Du, 2005). In other 
words, reliability equals the probability of random variables 
X, falling into the safe region, defined by g(X) > 0. The prob-
ability of failure is defined as the probability P{g(X) < 0}, and 
equals to the probability of random variables X, which existed 
in the fracture region defined by g(X) < 0. If the probability 
distribution function of the random variables X is fx(x) , then 
the probability of failure can be calculated using the following 
integral (Du, 2005): 

and reliability can be calculated as follows:

The probability of failure can be determined approximately 
according to the reliability index (β) in first-order reliability 
method (FORM) as follows Der Kiureghian (2005):

where Pf is failure probability, fx(X) is the probability dis-
tribution function and g(X) is the limit state function that 
divides design regions into failure and safe as g(X) < 0 and 
g(X) > 0 , respectively, using the basic random variables X. 
In many engineering problems, the limit state function g(X) 
is a complex and implicit function. In addition, Φ(.) is the 
cumulative distribution function.

To simplification of the calculation, all random variables 
X =

(
x1, x2,… , xn

)
 with desired distributions are transferred 

to U =
(
u1, u2,… , un

)
 variables with standard normal distri-

bution. Therefore, the probability integral can be written as 
follows:

(1)Pf = P{g(X) < 0} = ∫
g(X)<0

fx(X)dx,

(2)Reliability = 1 − Pf = P{g(X) > 0} = ∫
g(X)>0

fx(X)dx.

(3)Pf = �
g(X)≤0

…� fX(x)dX ≈ Φ(−�),

(4)pf = P{g(U) < 0} = ∫
g(U)<0

𝜙u(u)du,
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where �u(u) is probability distribution function (PDF) in 
U space.

In addition, in the FORM analysis Taylor's first expan-
sion is used to linearization of limit state function g(U) as 
follows Der Kiureghian (2005):

where u∗ is the expansion point and ∇g(u∗) is the gradient of 
the g function at u∗.

In the standard normal space which the random vari-
ables are statistically independent and the limit state func-
tion g(�) is linear, the reliability index ( � ), can be defined 
as the shortest distance from the failure surface ( g(�) = 0 ) 
to the origin. Therefore, the probability of failure ( Pf ) is 
calculated by

where

Thus, the reliability index may be described by Lee et al., 
(2002):

find u; which minimizes � = �u� =
√
uTu.

subjected to g(�) = 0.
The primary goal in the FORM is to search for the most 

probable point (MPP, i.e., U∗ ), that is a point located closest 
to the origin in transformed standard normal space, conse-
quently, � = ‖U∗‖ (Lee et al., 2002).

Hasofer and Lind introduced an iterative algorithm to 
find the MPP (Hasofer & Lind, 1974). This method is used 
for variables with normal distribution, then Rackwitz and 
Flessler (1978) developed this algorithm for random vari-
ables with any desired distribution. Liu and Der Kiureghian 
(1991) improved the HL–RF method to enhance the con-
vergence rate using a merit function. Santosh et al. (2006) 
improved the HL–RF method based on the Armijo rule. 
Recently for searching the MPP, there are various FORM 
algorithms, such as finite-step length (Gong & Yi, 2011), 
non-gradient-based algorithm (Gong et al., 2014), conju-
gate gradient (Farsani & Keshtegar, 2015), chaotic conjugate 
search direction (Keshtegar, 2016), and stability transfor-
mation method (Meng et al., 2017). The improved HL–RF 
method is formularized using the steepest descent search 
direction to find the MPP.

Modified HL–RF method

The iterative equation of the HL–RF algorithm for FORM 
can be defined according to

(5)g(U) ≈ g(u∗) + ∇g(u∗)(U − u∗)
T
,

(6)Pf = Φ(−�) = 1 − Φ(�),

(7)Φ(�) =

�

∫
−∞

1√
2�

exp
�
−
1

2
u2
�
du,

where sk is the step size. In the standard HL–RF method, 
the step size is assumpted as 1. dk is search direction vector, 
that can be calculated as follows (Makhduomi et al., 2017):

in which ∇g
(
Uk

)
 is gradient vector of the limit state func-

tion g() at point Uk , and for random variables with normal 
distribution:

According to Eq. (8), the step size and search direction 
are two effective components in the iterative HL–RF equa-
tion. This iterative equation can be controlled based on the 
step size to find MPP. Therefore, the iterative equation of 
improved HL–RF (iHL–RF) can be obtained from Eq. (8), 
where �k is the adjusted step size. The step size is regulated 
using the merit function as follows:

As it is known, the merit function has a positive value 
m
(
Uk

) ≥ 0 , and it is calculated based on the previous results 
as well as the HL–RF method. Therefore, the step size can 
be calculated as follows Makhduomi et al., (2017):

The first step size is assumpted as 1.5 (i.e., s0 = 1.5 ). 
According to the adaptive step size in Eq. (12), it can be 
concluded that, sk+1 ≤ sk.

In the HL–RF algorithm, similar to other optimization 
methods, the convergence criterion is used. First, the design 
point should be placed close to the limit state surface (Du, 
2005):

That, g0 is a scale factor, usually, the initial step value of 
the limit state function, and e1 is a threshold that is assumed 
to be about 0.001. Second, the design point should be the 
closest point to the origin on the limit state surface. For this 
case, this should be the gradient projection point. For exam-
ple, the gradient vector of the limit state function just has 
to pass the origin. This convergence criterion is defined as

(8)Uk+1 = Uk + skdk,

(9)dk =
∇Tg

(
Uk

)
Uk − g

(
Uk

)

∇Tg
(
Uk

)
∇g

(
Uk

) ∇g
(
Uk

)
− Uk,

(10)

∇g
(
Uk

)
=

{
�g

�u1
,
�g

�u2
,… ,

�g

�un

}
=

{
�1

�g

�x1
, �2

�g

�x2
,… , �n

�g

�xn

}
.

(11)

m
(
Uk

)
=
‖‖‖‖‖
Uk −

∇Tg
(
Uk

)
Uk

∇Tg
(
Uk

)
∇g

(
Uk

)
‖‖‖‖‖
∇g

(
Uk

)2
+

g
(
Uk

)2

g
(
U0

)2 ,

(12)sk+1 =

{
m(Uk−1)
m(Uk)

skm
(
Uk

) ≥ m
(
Uk−1

)

skm
(
Uk

)
< m

(
Uk−1

) .

(13)
||||
g(U∗)

g0

|||| ≤ e1.
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that e2 is a threshold of about 0.001. � is the importance vec-
tor that is a unit vector, so by a scaling to U∗ this criterion 
is expressed as

In FORM analysis, the � vector can be defined by the 
negative and normalized version of the gradient vector:

As the reliability index equals to � = �TU∗ . Thus,

This vector is used to display the relative importance of 
variables. This is the primary importance vector for the vari-
ables that define in the U-space. The higher absolute value 
of α is the most important variable.

Inverse reliability problem

The definition of an inverse reliability problem is that an 
unknown parameter in a reliability problem is determined 
in such a way that the reliability index equals a predeter-
mined amount. An inverse reliability problem is introduced 
to determine the value of a design variable for a certain value 
of the reliability index. Der Kiureghian et al. proposed an 
iterative algorithm based on the modified HL–RF method for 
solving inverse reliability problems (Der Kiureghian et al., 
1994). The limit state function was defined as a function of 
random variables vector and a deterministic design param-
eter θ.

It is assumed that, � is a parameter of the limit state func-
tion G(u, �) = g(x, �) , so � is determined in such a way that 
the reliability index is equal to a target value � = �t . In engi-
neering problems, θ can be selected as one of the structural 
design variables for achieving specific reliability.

Inverse reliability problem is defined as follows:

where ∇u is the gradient operator relative to u. The proposed 
algorithm for solving this equation is similar to the modified 
HL–RF algorithm used to solve FORM. Similar to Eq. (8) in 
the FORM problems, the inverse reliability problem-solving 
algorithm is as follows:

(14)
‖‖‖U

∗ −
(
�TU∗

)
� ≤ e2

‖‖‖,

(15)1 −
�TU∗

‖U∗‖ ≤ e2.

(16)� = −
∇g

‖∇g‖ .

(17)� =
��

�U∗
.

(18)

‖u‖ − �t = 0

u +
‖u‖

��∇uG(u, �)
��
∇uG(u, �) = 0

G(u, �) = 0.

which dk is direction search, sk is a step length, and the merit 
function is defined as

The merit function f consists of two subsets f (1) and 
f (2) . The f (1) confirms that the search point converges to 
a point on the boundary of limit state surface, and the f (2) 
confirms the reliability index converges to the target reli-
ability index at the search point as follows:

To determine the search direction dk , similar to the 
FORM analysis, the linear expansion of the limit state 
function at the design point can be written:

so:

the search direction is as follows:

Intuitively, a combination of directions d(1)
k

 and d(2)
k

 can 
provide a more balanced search path. The expansion of 
d
(1)

k
 is as follows:

(19)
[
uk+1
𝜃k+1

]
=

[
uk
𝜃k

]
+ skdk with 0 < sk ≤ 1,

(20)f (u, �) = f (1)(u, �) + f (2)(u, �)

(21)

f (1)(u, �) =
1

2

‖‖‖‖‖
u −

∇uG(u, �)
T .u

∇uG(u, �)
2
∇uG(u, �)

‖‖‖‖‖

2

+
1

2
c1G(u, �)

2

(22)f (2)(u, �) =
1

2
c2
�‖u‖ − �t

�2
.

(23)
G(u, �) = G

(
uk, �k

)
+
(
∇uG

(
uk, �k

)
, u − uk

)
+

�G
(
uk, �k

)
��

(
� − �k

)

(24)u = −�t

∇uG
(
uk, �k

)
‖‖‖∇uG

(
uk, �k

)‖‖‖

(25)

� = �k +

[
∇uG

(
uk, �k

)
, uk

]
− G

(
uk, �k

)
+ �t

‖‖‖∇uG
(
uk, �k

)‖‖‖
�G(uk ,�k)

��

(26)d
(2)

k
=

⎡⎢⎢⎢⎣

−�t
∇uG(uk ,�k)

‖∇uG(uk ,�k)‖ − uk

[∇uG(uk ,�k),uk]−G(uk ,�k)+�t‖∇uG(uk ,�k)‖
�G(uk ,�k)

��

⎤⎥⎥⎥⎦

(27)

d
(1)

k
=

⎡
⎢⎢⎢⎢⎣

[∇
u
G
�
u
k
, �

k

�
, u

k
] − G

�
u
k
, �

k

�
���∇u

G
�
u
k
, �

k

����
2

∇
u
G
�
u
k
, �

k

�
− u

k

0

⎤⎥⎥⎥⎥⎦
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the new direction search vector is as follows:

An appropriate choice for a1 and a2 is as follows:

Colliding bodies optimization algorithm 
(CBO)

The Colliding bodies optimization algorithm is defined based 
on a collision between some pair of bodies, and after the colli-
sion, these bodies move toward minimum energy level (Kaveh 
& Mahdavi, 2014). Consider two moving bodies with masses 
of m1 and m2 and velocities of v1 and v2 , in which one object 
collides with another object. According to the laws of physics, 
the total momentum and energy of the system after and before 
the collision are conserved. It can be expressed as

and

where v1 , v2 , v
′

1
 and v′

2
 are the velocities of the bodies before 

and after the collision, respectively. m1 and m2 are the masses 
of the first and second body, respectively; also Q is the 
kinetic energy loss due to collision.

After a collision, the velocities of bodies pair can be deter-
mined as

where � is coefficient of restitution (COR) of two colliding 
bodies, which defined as

for realistic objects, � is in the range of 0 and 1.

(28)dk = a1d
(1)

k
+ a2d

(2)

k
with a1 + a2 = 1

(29)a1 =
f (1)

(
uk, �k

)

f
(
uk, �k

)

(30)a2 =
f (2)

(
uk, �k

)

f
(
uk, �k

)

(31)m1v1 + m2v2 = m1v
�

1
+ m2v

�

2

(32)
1

2
m1v

2
1
+

1

2
m2v

2
2
=

1

2
m1v

�2
1
+

1

2
m2v

�2
2
+ Q

(33)v
�

1
=

(
m1 − �m2

)
v1 +

(
m2 + �m2

)
v2

m1 + m2

(34)v
�

2
=

(
m2 − �m1

)
v2 +

(
m1 + �m1

)
v1

m1 + m2

,

(35)� =

|||v
�

2
− v

�

1

|||
||v2 − v1

||
=

v�

v
.

In the CBO algorithm, the agents Xi are assumed to be 
the Colliding Bodies (CB). The particles set are divided 
into two same groups including stationary and moving par-
ticles, where the particles move towards each other, and 
a collision occurs between pairs of particles. After this 
event, the positions of the particles are updated according 
to their new velocities.

A summary of the steps in the CBO algorithm is as 
follows:

Step 1. The initial positions of CBs are generated ran-
domly in the search space:

where X0
i
 is the initial value of the ith CB; Xmin and Xmax are 

the lower and upper bound of the variables; rand is a random 
value in the range of 0 to 1, and 2n is the number of CBs.

Step 2. The mass of the body for each CB is determined 
as

where fit(i) illustrates the cost of the ith agent. It is clear that 
a CB with a large mass displays a good performance than 
the lightest ones.

Step 3. The CBs sorted based on the cost in increasing 
order. The sorted CBs are divided into two same groups. 
The good CBs are stationary bodies with zero velocity 
before the collision. Therefore

The bad CBs are moving agents, that move toward the 
stationary agents. These moving bodies have a velocity of 
before collision as follows:

where xi and xi−n are the position vectors of the ith CB 
in the moving group and its pair in the stationary group, 
respectively.

Step 4. After the collision, the velocity of particles in 
each group is determined as follows:

After the collision the moving CBs have velocity as 
follows:

and, the velocity of stationary CBs is

(36)X0
i
= Xmin + rand

(
Xmax − Xmin

)
i = 1, 2,… , 2n,

(37)mk =

1

fit(k)∑n

i=1

1

fit(i)

k = 1, 2,… , 2n,

(38)vi = 0i = 1, 2,… , n.

(39)vi = xi − xi−ni = n + 1,… , 2n,

(40)v
�

i
=

(
mi − �mi−n

)
vi

mi + mi−n

i = n + 1,… , 2n

(41)v
�

i
=

(
mi+n + �mi+n

)
vi+n

mi + mi+n

i = 1,… , n
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where � is COR that controls the exploration and exploita-
tion rates. Therefore, the COR decreases linearly from unit 
value to zero and is defined as

where iter and itermax are the numbers of current and maxi-
mum iterations, respectively.

Step 5. The new positions of CBs are determined based on 
the velocities of CBs after the collision. Therefore, the new 
positions of moving CBs are

In addition, the new position of each stationary CB is

where Xnew
i

 is the new position of the ith moving and station-
ary CB after the collision.

Step 6. The solution route is repeated from Step 2 until the 
termination criterion is satisfied.

Passive structural control: tuned mass 
dampers

The equation of motion for an N-degree of freedom structural 
model with shear frame system equipped with tuned mass 
damper that, installed at the top floor can be written as

where M, C, K are mass, stiffness and damping matrices with 
the formulations as follows:

(42)� = 1 −
iter

itermax

,

(43)Xnew
i

= Xi−n + randov
�

i
i = n + 1,… , 2n

(44)Xnew
i

= Xi + randov
�

i
i = 1,… , n,

(45)MẌ + CẊ + KX = P(t)

(46)M =

⎡
⎢⎢⎢⎢⎢⎣

m1

m2

∶ ∶

mN

md

⎤⎥⎥⎥⎥⎥⎦

(47)K =

⎡
⎢⎢⎢⎢⎢⎣

k1 + k2 −k2
−k2 k2 + k3 −k3

−k3 . .

. . kN + kd kd
kd kd

⎤⎥⎥⎥⎥⎥⎦

(48)C =

⎡
⎢⎢⎢⎢⎢⎣

c1 + c2 −c2
−c2 c2 + c3 −c3

−c3 . .

. . cN + cd cd
cd cd

⎤⎥⎥⎥⎥⎥⎦

where mi , ki and ci is the mass, stiffness and damping of 
the ith floor (i = 1, 2, …,N), respectively; and md , kd and cd 
are the mass, stiffness and damping of tuned mass damper, 
respectively. In addition, xi represent the lateral displacement 
of ith floor.

The equation of motion can be solved by state-space 
equation as

where Z(t) is the state vector, and A and B are the system 
states. In addition, R and Q are the system matrices where 
defined based on the type of the expected output Y:

It should be noted that, if the external loading is the base 
acceleration (earthquake loading), vector P(t) can be defined 
as

Formulation of problem

The performance of a structure equipped with a tuned mass 
damper is influenced by the values of damper parameters. 
Therefore, by solving an optimization problem, the tuned mass 
damper can be optimally designed. In this section, the strate-
gies used to optimize the tuned mass damper parameters are 
described.

Optimization strategy 1, meta‑heuristic 
optimization method

Meta-heuristic methods are generally used to optimal design 
of tuned mass dampers. These methods are population-based 
approaches that, try to solve the optimization problem by sam-
pling in the search space. In this method, unknown parameters 
are selected as design variables, and an objective function is 
used to minimize. In addition, the constraints of the problem 

(49)X(t) =
[
x1 x2 … xN xd

]

(50)Ż(t) = AZ(t) + BP(t)

(51)Y(t) = RZ(t) + QP(t)

(52)Z(t) =

[
X(t)

Ẋ(t)

]

(53)A =

[
0 I

−M−1.K −M−1.C

]

(54)B =

[
0

M−1

]

(55)P(t) = M{1}N+1ẍ(t)g
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are defined for design variables that, should be within the 
acceptable domain.

The formulation of this strategy defined as.

The objective function is defined based on the ratio of max-
imum controlled structural inter-story drift to maximum drift 
in an uncontrolled structure. In this strategy, the CBO algo-
rithm is used to solve the optimization problem. All param-
eters of the structure and the damper parameters are assumed 
to be deterministic. In addition, after the optimum design of 
the TMD, the reliability index is calculated for the structure 
using FORM.

Optimization strategy 2, inverse reliability‑based 
optimization

In this strategy, the seismic behavior of the structure is 
expressed using probabilistic modeling. As a result, structural 
parameters such as mass, stiffness, and damping of the floors 
are selected as random variables. The damper parameters, such 
as mass ( md ), stiffness ( kd ), and damping ( cd ) of TMD, are 
selected as unknown parameters and are optimized using the 
inverse reliability method for target reliability ( �t).

Optimization strategy 3, efficient reliability‑based 
optimization

The meta heuristic methods in solving an optimization prob-
lem have a high convergence rate; however, the reliability 
of the structure is not considered in the optimal design. In 
addition, the inverse reliability methods are gradient-based 
and need to calculate the gradient relative to random vari-
ables and unknown parameters so, with an increase of the 

Find ∶ Design Variables =
{
md, kdandcd

}
.

To minimize ∶ Objective Function =

(
Max. Controlled Drift

Max. Uncontrolled Drift

)
.

⎧
⎪⎨⎪⎩

mdmin
≤ md ≤ mdmax

kdmin
≤ kd ≤ kdmax

cdmin
≤ cd ≤ cdmax

Find � =
{
md, kd and cd

}
.

Subject to ∶

⎧
⎪⎪⎨⎪⎪⎩

� = �t

g(u, �) = 0

u +
u

∇uG(u, �)
∇uG(u, �) = 0.

unknowns, the complexity of the problem increases. As a 
result, combining these two methods can increase the effi-
ciency of the strategy.

This method can be defined as follows:

where u is the vector of random variables, and u∗ is the MPP.
To solve this optimization problem, the combination of 

two CBO and FORM methods is used as a double loop. 
Figure 1 illustrates the problem-solving flowchart for this 
strategy. In addition, considering that the value of the reli-
ability index is calculated using the FORM for each parti-
cle of CBO, Constraints of inverse reliability problem in 
Eq. (16) will be satisfied.

Numerical study

There exist several benchmark examples in the literature 
for comparative studies of the optimization of tuned mass 
dampers. Here, in this study one example with two cases has 
been selected, and applied three strategies for optimization 
of tuned mass dampers, for decreasing the response of the 
structure based on target reliability.

The case study selected for evaluating the application of 
the design strategies consists of a planer model of an 11 
story shear frame structure. This structure has already been 
employed in several projects investigating the efficiency of 
seismic control (Azar et al., 2011; Pourzeynali et al., 2007; 
Rahbari et al., 2013; Shayeghi et al., 2009). A representation 
of the structural model equipped with a tuned mass damper 
is shown schematically in Fig. 2. Table 1 shows some prop-
erties of the system, such as mass and stiffness of stories. 
The damping ratio for the first two modes of this building 
is taken 5%, and Rayleigh’s damping matrix can be then 
calculated from Eq. (56):

where

Find ∶ Design Variables
{
md, kd and cd

}
.

To minimize ∶ Objective Function||u∗ − �t
||

Subject to ∶

⎧
⎪⎨⎪⎩

mdmin
≤ md ≤ mdmax

kdmin
≤ kd ≤ kdmax

cdmin
≤ cd ≤ cdmax

,

(56)C = a1M + a2K,
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where �1 and �2 are the frequency of the first and second 
modes.

The structural model in uncontrolled and controlled 
cases has been analyzed numerically under El-Centro 
1940 NS earthquake horizontal component with peak 
ground acceleration PGA = 0.349 g. It should be noted 
that this record has been selected as an external excitation 
to evaluate the presented method. It is clear that to design 
a control system for a specific site, the desired record can 
be selected with a proper acceleration scale factor in the 
analysis and optimization.

In Example1 the mass of TMD was taken constant and 
equal to 3% of total mass ( md = 66 tons ). The lower bound 
and upper bound values of the stiffness are 0 and 5000 
kN/m, while the lower bound and upper bound of damping 

(57)
a1 = �

2�1�2

�1 + �2

a2 = �
2

�1 + �2

,

are 0 and 40 kN-s/m, respectively. In Example2 the mass 
of TMD is assumpted as a design variable.

The maximum drift of stories are taken as a target, so 
the objective function can be written as

Then the limit state function can be selected as

To describe the uncertainty and reliability analysis, the 
parameters of structure such as mass, stiffness, and damping 
of each story are selected as random variables. The random 
variables are used with the lognormal distribution that, the 
deterministic value of parameters (Table 1) is assumed as 
the mean value, and the standard deviation is 10% of the 
mean value.

To better compare all three optimization strategies results, 
first, the damper is optimized using the CBO method, and 
the reliability index is calculated based on these designed 

(58)Objective function =
Max controlled drift

Max uncontrolled drift
.

(59)
g(x) = (Max controlled drift) − (Max uncontrolled drift).

Fig. 1  Double-loop flowchart of the efficient reliability-based optimization algorithm
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parameters. The obtained reliability index is selected as the 
target reliability for the other two strategies. Therefore, the 
results obtained from all three design methods can be com-
pared for the same level of reliability.

Results and discussion

As the first case, the problem of optimum design of TMD 
using CBO and reliability analysis of structure equipped 
with TMD is presented. For this case, the convergence his-
tory of objective function based on maximum inter-story 
drift using CBO algorithm and the convergence history of 
reliability index using FORM are given in Fig. 3a, where 
the minimum objective function is 0.6774, and the optimum 
designed TMD parameters are presented in Table 2. Accord-
ing to Fig. 3b, the reliability index for this optimum designed 
TMD with the uncertainty of structural parameters and drift-
based limit state function is 2.741. This value is selected as 
the target reliability index for RBDO and IR strategies.

As mentioned, the behavior of a structure equipped with 
TMD is influenced by the damper parameters. Using the 
importance vector, it is possible to determine the relative 
importance and effect of each parameter of the TMD. The 
importance vector is calculated by reliability analysis based 
on the limit state functions of the maximum drift and the 
maximum lateral displacement. In this reliability analysis, 
TMD parameters were selected as random variables. Table 2 
shows the components of the importance vector for the TMD 
parameters. According to these results, the mass of TMD is 
the most effective parameter in controlling maximum drift, 
and its damping has the least effect. In addition, to control 
maximum lateral displacement, the mass of TMD has the 
greatest effect, and the stiffness and the damping of TMD 
have almost the same effect on the damper performance.

A sensitivity analysis has been carried out using a limit 
state function based on the maximum drift to evaluate the 
effect of uncertainty in structural parameters and TMD 
parameters on the reliability of seismic behavior of the struc-
ture. Results concerning the influence of the structural and 
TMD parameters on the reliability of structure are shown 
in Fig. 4.

Also, a sensitivity analysis has been carried out using 
different values of mass, stiffness, and damping of TMD, 
and the variation of reliability of structure has been also 
investigated. Figure 5a presents the sensitivity of the seismic 
reliability of the controlled structure relative to TMD param-
eters. From Fig. 5a, one can notice that the reliability index 
in a structure equipped with a TMD has a high sensitivity 
to the damper mass. This is while the damping has the least 
effect on the reliability of structure based on the maximum 
drift. Each parameter changes around the optimal values 
determined by the CBO strategy. It is observed that the high-
est reliability index does not necessarily occur in optimal 
amounts of this strategy. This event can be related to the 
lack of the reliability concept in this optimization strategy.

Figure 5b–d presents the sensitivity of the maximum 
seismic responses such as acceleration, drift, and lateral 

Fig. 2  Structural model equipped with a tuned mass damper

Table 1  Properties of the building for case study

Story Mass ( ×103kg) Stiffness 
( ×103kN∕m
)

1 215 468
2 201 476
3 201 468
4 200 450
5 201 450
6 201 450
7 201 450
8 203 4.37
9 203 4.37
10 203 4.37
11 176 3.12
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displacement of the controlled structure relative to TMD 
parameters variation. As can be seen, the maximum seismic 
responses of the structure are sensitive to the mass and stiff-
ness of TMD. Given that, the objective function is defined 
based on the drift, the minimum inter-story drift and lateral 
displacement occur for optimal values, while the accelera-
tion of stories is minimized for other values.

As the second case, the optimal design of TMD is done 
using reliability-based methods and compared with the 
meta-heuristic optimization method. For this purpose, the 
reliability-based design optimization (RBDO) and inverse 
reliability (IR) strategies are used. To compare the results of 
design strategies, the target reliability is selected equal with 
the reliability index of the structural model equipped with 
TMD that, designed by CBO algorithms. For this case study, 
two numerical examples have been used.

Example 1 In this example, the mass of TMD was taken con-
stant ( md=66 ton), and the parameters of damping ( cd ) and 
stiffness ( kd ) were selected as design variables in the CBO 
algorithm (strategy 1). The lower bound and upper bound 
values of the stiffness are 0 and 5000 kN/m, while the lower 
bound and upper bound of damping are 0 and 40 kN-s/m, 
respectively. After performing the CBO, optimum values 
for damping and stiffness of TMD are found. For estimated 
optimal values, the reliability index based on the maximum 
drift is calculated and selected as the target reliability index 
for strategies 2 and 3. In the following, the optimal value of 
each parameter is calculated using RBDO and IR strategies 
for the target reliability. Table 3 presents the TMD param-
eters designed by all three strategies. In addition, the maxi-
mum seismic responses of the structure for optimal values of 

Fig. 3  a Convergence history of the objective function in CBO algorithm. b Convergence history of reliability index in FORM

Table 2  Importance of TMD parameters in the reliability of the structure

� m
d
(kg) k

d
(kN.∕m) c

d
(kN.s∕m)

Design by CBO – 66 × 10
3

3.242 × 10
3 26.475

Importance  Max. Drift 2.836 − 0.9675 0.2496 − 0.0402
 Max. Displacement 2.348 0.6875 − 0.5264 − 0.5003

Fig. 4  Effect of stractural and TMD parameters on reliability index 
based on max. drift
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each optimization strategy are shown in Fig. 6. Comparing 
the results of each three strategies shows that, the RBDO 
method has a good ability to explore the search space. In 
addition, using the inverse reliability (IR) method, the target 
reliability is obtained for a smaller amount of damping ( cd ), 
but it does not lead to appropriate seismic behavior.

Example 2 In this example, the design is done for a higher 
level of reliability. Therefore, to find the optimum param-
eters of TMD, use three design variables including mass 

( md ), stiffness ( kd ), and damping ( cd ). The lower bound and 
upper bound values are 0 and 100 tons for the mass, 0 and 
8000 kN/m for the stiffness, and 0 and 75 kN-s/m for the 
damping, respectively. Table 4 presents the TMD parameters 
designed by all three strategies. In addition, the maximum 
seismic responses of the structure for optimal values of each 
optimization strategy are shown in Fig. 7. Comparison of 
the results of the CBO and RBDO methods show that, for 
the same combination of TMD parameters and the same 
reliability index, optimal design in the RBDO method leads 
to a further reduction in the seismic responses. The results 
obtained by the IR method for target reliability, reduce the 
seismic responses of the structure compared with the CBO 
method. However, due to the lack of the constraints defined 
for design variables, the TMD parameters are not within the 
defined range. This method is a gradient-based algorithm, 
and it does not have the ability to explore the entire search 
space.
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Table 3  TMD optimum parameters calculated by CBO, RBDO and 
IR for Example 1

Strategy � m
d
(kg) k

d
(kN.∕m) c

d
(kN.s∕m)

CBO 2.741 66 × 10
3

3.2420 × 10
3 26.475

RBDO 2.741 66 × 10
3

3.2434 × 10
3 26.396

IR 2.741 66 × 10
3

3.3992 × 10
3 16.885
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Using the CBO algorithm, the percentage of reductions 
in maximum story displacements are between 22.24% and 
38.44% with mean value of 31.45%. The maximum dis-
placement of the top story is reduced to 0.1238 m from 
0.1593 m (22.24% reduction). That is while using the 
RBDO strategy, the percentage of reductions in maximum 
story displacements is between 33.56% and 36.99% with 
mean value of 35.44%, and the maximum displacement 
of the top story is reduced to 0.1035 m from 0.1593 m 
(35.01% reduction). In addition, using the IR strategy, 
the percentage of reductions in maximum story displace-
ments are between 33.30% and 38.02% with mean value 
of 35.76%, and the maximum displacement of the top 
story is reduced to 0.1005 m from 0.1593 m (36.90% 
reduction).

For drift response of stories, using the CBO algorithm, 
the maximum and mean of reductions in maximum story 
drifts are 38.24% and 16.02%, respectively. The maxi-
mum drift of the first story is reduced to 0.01388 m from 
0.02235 m (37.87% reduction). Using the RBDO algo-
rithm, the maximum and mean of reductions in maximum 
story drifts are 36.99% and 22.16%, respectively. The max-
imum drift of the first story is reduced to 0.01408 m from 
0.02235 m (36.99% reduction). Using the IR algorithm, 
the maximum and mean of reductions in maximum story 
drifts are 38.02% and 23.13%, respectively. The maxi-
mum drift of the first story is reduced to 0.01385 m from 
0.02235 m (38.02% reduction). For acceleration response 
of stories, using the CBO algorithm, the maximum and 
mean of reductions in maximum story acceleration are 
28.68% and 14.23%, respectively. Using the RBDO algo-
rithm, the maximum and mean of reductions in maximum 
acceleration are 29.37% and 15.94%, respectively. Using 
the IR algorithm, the maximum and mean of reductions 
in maximum story acceleration are 31.44% and 17.80%, 
respectively.

It should be noted that, although the percentage of 
reduction in some stories is less than those of the other 
works, the mean value of this parameter is more than that 
of the other ones. Therefore, one can conclude that the 
performance of TMD optimized with the present approach, 
in absorbing seismic energy and reducing total story dis-
placement, is better than those of the previous works.
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Fig. 6  Comparison of peak story responses for Example 1. a Dis-
placement. b Drift. c Acceleration

Table 4  TMD optimum parameters calculated by CBO, RBDO and 
IR for Example 2

Strategy � m
d
(kg) k

d
(kN.∕m) c

d
(kN.s∕m)

CBO 3.093 99.94 × 10
3

5.3561 × 10
3 54.549

RBDO 3.1 96.47 × 10
3

4.7968 × 10
3 74.889

IR 3.1 107.34 × 10
3

5.3209 × 10
3 99.729
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Conclusion

The overall objective of this paper was to study the effect 
of uncertainty on the behavior of structures equipped with 
TMD and determine the optimum parameters of TMD that 
result in utmost reduction in the structural response to 
earthquake loading in uncertainty conditions. The CBO, 
a good operation optimization algorithm in engineer-
ing problems, is used to estimate optimum parameters 
of TMD in deterministic conditions. In addition, relia-
bility-based design optimization and inverse reliability 
methods are used in uncertainty conditions. The objec-
tive function used in this study is based on the maximum 
drift of stories. However, to make the results comparable 
for all strategies, the target reliability index weas used. 
In the numerical studies, an 11-story shear building is 
considered.

In the first case study, TMD parameters were optimized 
using the CBO algorithm, and reliability was calculated 
using the FORM algorithm. To investigate the importance 
of each damper parameter in reducing seismic responses, 
important vector analysis was used. The results show that 
the mass and damping of TMD, respectively, have the 
most and least importance in reducing the drift of struc-
ture. In addition, to reduce the lateral displacement, the 
damper mass has the most effect, and the damper stiffness 
and damping have the same importance for reducing the 
maximum displacement of the structure. Then, sensitivity 
analysis was performed to investigate the effect of each 
damper parameter on the reliability of the structure based 
on the drift. The results show that the reliability index in 
the structures equipped with TMD is sensitive to the mass 
and stiffness of the TMD and is not sensitive to damping. 
In addition, sensitivity analysis of seismic responses of 
structures such as displacement, drift, and acceleration 
of stories compared to TMD parameters shows that the 
structural responses are sensitive to the mass, stiffness, 
and damping, respectively.

In the second case study, the optimal design of TMD 
was evaluated based on the target reliability. In Example 
1, the design of the TMD was performed with two design 
variables (stiffness and damping of TMD). The results 
showed that the RBDO strategy has a good ability to 
explore the search space. In Example 2, the design of the 
TMD was performed with three design variables (mass, 
stiffness, and damping of TMD). The results showed that 
the designed TMD with RBDO method has a good perfor-
mance in the reduction of seismic responses. However, due 
to the lack of constraints for the design variables domain, 
the IR strategy results are unacceptable.
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Fig. 7  Comparison of peak story responses for Example 2. a Dis-
placement. b Drift. c Acceleration
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