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Abstract
A novel and efficient method is presented for identifying the location and severity of damage in structural elements using 
vibration modes and circular natural frequency. This method is based on sensitivity analysis of the structure and allows for 
model updating of a given structural finite element construct using the iterative process of the Levenberg–Marquardt algo-
rithm. The proposed approach is superior in its capability of locating and estimating the severity of structural damage in 
the presence of noise or incomplete response. The efficiency and performance of the proposed method are assessed through 
numerical case studies.

Keywords  Inverse problems · Damage detection · Sensitivity analysis · Levenberg–Marquardt algorithm · Finite element 
method · Model updating · Optimization

Introduction

Inverse problems are of particular interest in various scien-
tific and engineering disciplines such as structural health 
monitoring, seismology, non-destructive evaluation (NDE), 
medical diagnosis and geophysics/submarine detection. In 
recent years, many studies have been conducted to develop 
effective approaches for damage detection in structural 
components. A significant progress has been achieved in 
obtaining numerical solutions of these problems during the 
past years (Kaveh et al. 2014; Kaveh et al. 2019a, b; Kaveh 
and Zolghadr 2017a, b; Kaveh and Dadras 2018; Kaveh and 
Mahdavi 2016; Saberi and Kaveh 2015).

Several numerical treatments of inverse problems are cat-
egorized as nonlinear. The efforts made over the last decades 
to overcome these nonlinear mathematical challenges can 
be categorized into two categories: qualitative methods and 
iterative algorithms.

Qualitative methods are characterized by an inverse scat-
tering solution. These methods detect the obstacle (damage) 

from far- and/or near-field measurements of the scattered 
field which avoids the incorrect model assumption (Cakoni 
and Colton 2005). These qualitative methods may be clas-
sified as topological sensitivity (TS) (Bonnet and Guzina 
2004; Gallego and Rus 2004; Guzina and Bonnet 2004), 
factorization method (FM) (Kirsch 2002), linear sampling 
method (LSM) (Dehghan Manshadi et  al. 2014, 2018; 
Dehghan Manshadi and Khaji 2014; Khaji and Dehghan 
Manshadi 2015), the probe method (Potthast 2006) and 
point source method (Potthast 2001) which seek to deter-
mine the geometric properties (i.e., shape and location) of 
the scattered.

Iterative algorithms deal with the minimization of the 
error between the responses of a real damaged structure 
and hypothetical damaged structure. Some of these meth-
ods update the structural model during an iterative process 
(Perera and Fang 2010; Rao et al. 2004; Seyedpoor 2012). 
The other approaches are based on sensitivity analysis. 
These methods minimize the objective function to update the 
finite element model of the structure (Bakir et al. 2007; Li 
et al. 2016; Teughels and De Roeck 2005; Wu and Li 2006).

In recent years, many optimization techniques have been 
developed and used in various structural engineering prob-
lems, such as designing structures (Akin and Saka 2015; 
Esfandiari et al. 2018a, b; Esfandiary et al. 2016; Kaveh 
and Sabzi 2011). For detecting damages in these structures, 
optimization methods can be implemented using various 
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response parameters. Some researchers used static response 
parameters such as displacement (Buda and Caddemi 2007; 
Chou and Ghaboussi 2001) and strain (Wang et al. 2010). 
Some others used dynamic response parameters such as fre-
quency (Kaveh and Zolghadr 2012, 2015; Khiem and Tran 
2014; Lee 2009; Morassi and Rollo 2001; Tabrizian et al. 
2013), mode shape (Homaei et al. 2014; Ismail et al. 2006), 
a combination of frequency and mode shape (Ge and Lui 
2005; Kang et al. 2012; Teughels and De Roeck 2005; Yu 
and Xu 2011), and modal curvatures (Quaranta et al. 2016) 
and acceleration (Li and Law 2010).

The main objective of this paper is to present a novel 
and efficient method for damage detection using the Lev-
enberg–Marquardt algorithm. The method uses dynamic 
response parameters including frequency and mode shape. 
The formulation of the forward problem is presented first 
followed by model updating. The damage detection process 
using the Levenberg–Marquardt algorithm is elaborated fol-
lowed by results of numerical case studies. The results from 
this study confirmed the effectiveness of the proposed model 
in finding damages in variety of structures, which in turn 
lays the foundation for damage detection in retrofitted beams 
(Esfandiari et al. 2018a, b, c; Urgessa and Esfandiari 2018).

Forward problem

The well-known dynamic equation of motion for a linear 
elastic system can be expressed as

where M, C and K are the mass, damping and stiffness 
matrices of the structure, respectively (Chopra 2017). ü , 
u̇ and u are the acceleration, velocity and displacement 
response vectors of the structure, respectively. P(t) is a vec-
tor of applied external forces. Free vibration of un-damped 
system can be obtained by omitting the damping matrix and 
applied external forces from Eq. (1):

in which 0 is a zero vector. The solution of Eq. (2) can be 
obtained by solving an eigenvalue problem as shown in 
Eq. (3).

where � i is the natural circular frequency of the ith mode 
and � i is the vibration eigenvector of the ith mode. By 
assuming that the mass parameter remains unchanged as 
damage occurs, the eigenvalue equation can be expressed 
as follows in Eq. (4):

(1)Mü + Cu̇ + Ku = �(t)

(2)Mü + Ku = �

(3)K� i = �
2
i
�� i

where Kd is the global stiffness matrix of the damaged struc-
ture, �d

i
 is the ith circular frequency of the damaged struc-

ture and �d
i
 is the corresponding mode shape. In this paper, 

damage is defined as perturbation in the stiffness parameter 
of the structure. Hence, the global stiffness matrix Kd can 
be defined as

Substituting Eq. (5) into Eq. (4) yields:

Model updating

In recent decades, finite element model updating approaches 
have been widely used for damage detection. In an iterative 
process, the unknown model parameters (including physi-
cal and material properties) are adjusted until the difference 
between a measured data and an updated finite element 
model are minimized.

Objective function based on vibration data

Identification of the intensity and position of damage using 
model updating is similar to detection of unknown param-
eters in an optimization problem. Hence, the objective func-
tion for model updating is defined as minimizing the residual 
between the dynamic response of a healthy structure and 
an updated structure. Minimizing the objective function is 
defined as a nonlinear least square minimization problem 
that is determined from the sum of squared errors as shown 
in Eqs. (7) and (8).

where g is the residual matrix function, Rd is the response 
vector of existing damaged structure, Rup is the response 
vector of updated model, X = {x1, x2, ..., xne}

T indicates the 
updated damage vector which consists of updated parameter 
for all structural elements and the subscript ne is the number 
of the structural elements. It should be noted that in order to 
obtain a unique solution, the number of residuals, m, should 
be greater than the number of updated damage vector, ne.

(4)Kd�d
i
=
(
�
d
i

)2
��d

i

(5)Kd = � − Δ�

(6)
(
K −

(
�
d
i

)2
�

)
�d
i
= ΔK�d

i

(7)f (X) =
1

2

m∑

r=1

g2
r
(X)

(8)g = Rup(X) − Rd(X)
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In this paper, the proposed residual function is based on 
both natural circular frequency and the corresponding mode 
shape. It can be expressed as follows

where �up

j
 is the jth updated natural circular frequency, �d

j
 is 

the jth circular frequency of the damaged structure, �up

ij
 is 

the updated modal displacement of the ith receiver of the jth 
mode shape, �d

ij
 is the damaged modal displacement of the 

ith receiver of the jth mode shape, nr is the number of 
receivers, nm is the number of mode shapes and the sub-
script r defined as j × i. Substituting Eq. (9) into Eq. (7) 
yields:

(9)
gr =

(
�
2
j
�ij

)up

−

(
�
2
j
�ij

)d

, j = 1,… , nm i = 1,… , nr

(10)f (X) =
1

2

nm∑

j=1

nr∑

i=1

((
�
2
j
�ij

)up

−

(
�
2
j
�ij

)d
)2

Updating parameter

The updating parameter is the unknown dimensionless dam-
age severity of the model. In this paper, the damage of the 
structural elements is modeled as a reduction in Young’s 
modulus. Thus, the dimensionless updating parameter, for 
each element, can be defined as

where Eup
e  and E

e
 denote the updated modulus of elasticity 

and its initial value of the ith element, respectively. It is 
noted that xe ∈ [0, 1] where xe = 0 and xe = 1 denote healthy 
and completely damaged states, respectively. Based on 
Eq. (11), the updated stiffness matrix of the eth element in 
damaged state, Ke

d
, can be defined by Eq. (12).

(11)xup
e

= −
E
up
e − E

e

E
e

, e = 1, 2, ..., ne

(12)�
d
e
= �e(1 − xup

e
)

Fig. 1   Flowchart for the algo-
rithm presented
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where the Ke is the initial stiffness matrix of the eth element.

Damage detection using the Levenberg–
Marquardt algorithm

Levenberg–Marquardt algorithm

The Gauss–Newton (GN) method is generally used to solve 
the nonlinear least squares function shown in Eq.  (10), 
which relies on an iterative sensitivity-based optimization 
approach. The gradient and Hessian matrices of the objec-
tive function are defined by Eqs. (14) and (15), respectively.

where J is the Jacobian matrix containing the first partial 
derivatives of the residuals gr with respect to X, H denotes 
the Hessian matrix, the superscript k indicates the iteration 
number at which the Jacobian and Hessian matrix are com-
puted and Xk+1 is the updated vector of the parameter. The 
Hessian matrix was improved by Marquardt (1963) in the 
Levenberg–Marquardt algorithm as shown in Eq. (16).

where λ is a damping parameter adjusted by the algorithm. 
The basic strategy behind choosing the damping term 
depends on the error rate in the updating process. If the 
error goes down following an update, the algorithm will 

(13)∇f (X) =

m∑

r=1

gr(X)∇gr(X) = �
T(X)g(X)

(14)

H = ∇2f (X) = JT(X)J(X) +

m�

r=1

gr(X)∇
2gr(X) ≈ ‖J(X)‖2

(15)Xk+1 = Xk −
(
�

k
)−1

�
T(Xk)g(Xk)

(16)Hk = JT(Xk)J(Xk) + � diag(JT(Xk)J(Xk))

take a small λ (usually by a constant coefficient) to reduce 
the influence of gradient descent. On the other hand, if the 
error goes up, λ is increased by the same factor. Using the 
Levenberg–Marquardt algorithm, Eq. (15) can be rewritten 
as shown in Eq. (17):

The updating process using the Levenberg–Marquardt 
algorithm starts out by updating the function and Jacobian 
values (if necessary) using Eq. (16) and then evaluating the 
error at the new parameter vector. If the error increases as 
a result of the update, then retract the step and increase λ in 
Eq. (16) by a significant constant factor followed by trying 
the updating process again. If the error has decreased as a 
result of the update, then accept the step and decrease λ by 
the same factor.

In the updating process, the Hessian matrix may be 
severely ill-conditioned. In order to overcome this issue, the 
Singular Value Decomposition (SVD) method is employed 

(17)
Xk+1 = Xk −

[
JT(Xk)J(Xk) + � diag(JT(Xk)J(Xk))

]−1
�
T(Xk)g(Xk)

Fig. 2   Planar truss having 31 elements

Table 1    Four different damage cases induced in 31-bar planar truss

Scenario Damage element Damaged 
severity (%)

1 11 25
25 15

2 1 30
2 20

3 16 30
4 1 30

2 20
11 25
16 30
25 15
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Fig. 3   Damage detection results 
of the 31-bar planar truss for a 
case 1, b case 2, c case 3 and d 
case 4
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to decompose the Hessian matrix (H) as H = USVT. In this 
regard, U and V are unitary matrices, VT denotes the trans-
pose of V, and S implies a diagonal matrix whose com-
ponents are Sii = �i . According to the SVD method, the 
pseudo-inverse of the Hessian matrix (H) can be calculated 
as H+ = VS + U* , S+

ii
= 1

/
�i.

The model updating for damage detection is inhibited 
by challenges associated with structural complexity, large 
search spaces and the presence of too many variables, 
amongst other types of constraints. Levenberg–Marquardt 
algorithm is considered for this study because it is faster to 
converge than either the gradient descent or the GN. Moreo-
ver, it is able to handle models with multiple free parameters 
and most of the time, it can find an optimal solution despite 
the initial guess.

Sensitivity matrix

As mentioned earlier, the sensitivity or the Jacobian matrix 
is defined as the first-order derivative of residual func-
tion with respect to vector of updating parameters. The 

sensitivity matrix can be obtained by forward difference 
method as shown in Eq. (18).

where gr is the rth component of the residual vector and Xe 
is the eth component of the updating vector. The flowchart 
of the method presented is shown in Fig. 1.

Numerical case studies

In this section, the numerical results obtained from the 
Levenberg–Marquardt (LM) algorithm in conjunction 
with the finite element method (FEM) is illustrated. In all 
numerical examples, the damaged structural elements are 
simulated by using a reduction in the Young’s modulus 
of the material. All case studies are numerical and where 
measurement sensor is used in the text, it refers to the 
place that dynamic responses that used in the algorithm 
are generated numerically in that place. In these example, 
the influence of data noise on the quality of the image 
reconstruction is investigated by considering noisy simu-
lated data of the form uε = ucomp(1 + ηχ) in which χ is a 
uniformly distributed random number between − 1 and 1.

Thirty one‑bar planar truss

In the first case study, a thirty one-bar planar truss shown in 
Fig. 2 was considered for assessing the efficiency of the pro-
posed method. The truss was previously studied by Seyed-
poor (2012). The material properties are assumed to be: 
Young’s modulus E = 70 GPa and mass density ρ = 2770 kg/
m3; and cross-sectional area of the members is 40 cm2. Simi-
lar to Seyedpoor (2012), it is assumed that the first five mode 
shapes of the structure are available. Four different damage 

(18)�re =
�gr

�Xe

Fig. 4   Convergence diagram of the model updating procedure of the 
31-bar planar truss for cases 1–4

Fig. 5   A truss with 25 elements
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Fig. 6   Damage detection results of the 25-bar truss bridge for a case 1, b case 2 and c case 3
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cases given in Table 1 are considered. The first three damage 
cases are similar to Seyedpoor (2012). The measurement 
sensors are located at nodes numbered 4, 6, 7, 10 and 11. 
The fourth damage case consists of all damages in previ-
ous scenarios at the same time. This scenario was selected 
to show the efficiency and superiority of the algorithm for 
detecting several simultaneous damages.

Figure 3a–d shows the damage severity with respect to 
element number for damage cases 1–4, respectively. The 
results of the LM algorithm are compared with the proposed 
method reported by Seyedpoor (2012). In fact, the dam-
age detection process in Seyedpoor (2012) is a two-stage 
method and the responses were recorded in all degrees of 
freedom. In the first stage, the potentially flawed elements 
were detected based on modal strain energy and the second 
stage includes searching in reduced space using particle 
swarm optimization (PSO). The LM algorithm used in this 
current study has advantages when compared to Seyedpoor 

(2012). The proposed LM method was able to detect dam-
aged elements during the one-step process. On the other 
hand, damaged elements were identified using five sensors 
(corresponding to the degrees of freedom) accurately. The 
convergence history of the LM algorithm for various cases 
is shown in Fig. 4. This figure demonstrates that the conver-
gence speed and accuracy of proposed method is very high.

25‑Bar truss bridge

The second case study is statically determinate 25-bar truss 
bridge shown in Fig. 5 (Esfandiari et al. 2009). The truss 

Fig. 7   Convergence diagram of the model updating procedure for 
25-bar truss bridge for cases 1–3

Fig. 8   Geometry of un-braced 
plane frame

Table 2    Three different damage cases induced in an unbraced planar 
frame

Scenario Damage element Damaged 
severity (%)

1 14 30
15 30

2 4 70
6 10

13 50
3 2 70

5 30
6 40

10 10
15 20
19 60
21 50
24 80
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Fig. 9   Damage detection results of the 24-element planar frame for a case 1, b case 2 and c case 3
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was previously studied by Kaveh and Maniat (2015). Cross-
sectional area of the members for all elements is 10 cm2. 
The Young’s modulus E and mass density ρ are 200 GPa 
and 7780 kg/m3, respectively.

Figure 6a–c shows the damage severity with respect to 
element number for damage cases 1–3, respectively. The 
convergence history of the LM algorithm for various cases 
is shown in Fig. 7. As can be seen from the figures, the 
proposed LM method was able to detect damaged elements 
during the one-step process and the convergence speed and 
accuracy of proposed method was very high.

Two‑story two‑bay unbraced frame

The two-bay, two-story steel frame shown in Fig. 8 was 
selected from Tabrizian et al. (2013) as the third case study. 
The material properties of the frame are as follows: Young’s 
modulus, Poisson’s ratio and mass density are 207 GPa, 
0.30 and 7780 kg/m3, respectively. The cross-sectional area 

and the moment of inertia of all columns and beams are 
0.025 m2, 6.386 × 10–4 m4, 0.0123 m2 and 2.218 × 10–4 m4, 
respectively. Similar to Tabrizian et al. (2013), three differ-
ent damage cases given in Table 2 are considered. The meas-
urement sensors are located at nodes numbered 5, 11, 13 
and 17. Only the first five mode shapes of the structure are 
considered. Figure 9 represents the damage states reported 
by Tabrizian et al. (2013). In Tabrizian et al. (2013), 20 first 
modes are considered in damage detection for the first and 
second cases, and 45 first modes for the third case, while the 
method presented in this study enables us to detect the dam-
aged elements using 5 measurement sensors. The number of 
sensors used to measure the mode shapes may be limited in 
the experiments and engineering applications due to cost and 
other mitigating factors. Therefore, to overcome this draw-
back, the proposed method in this research can be practical 
and inexpensive.

Cantilever beam

A 100-element cantilever beam with uniform cross section, 
which was previously studied by Homaei et al. (2014), was 
considered as the fourth case study as shown in Fig. 10. 
The responses of the beam measured by 25 sensors located 
at select nodes and 10 vibration modes of the beam were 
available. Damage scenarios for this beam are presented in 
Table 3. The first damage case is similar to Homaei et al. 
(2014). In Homaei et al. (2014), damaged elements are iden-
tified by the measured first two mode shapes. Figure 11a, b 
demonstrates that the proposed method in this study pro-
vides accurate identification of damaged elements with a 
limited number of measurement sensors. It is worth men-
tioning that the proposed method can achieve the actual sizes 
and locations of damages comparing to the method reported 
in Homaei et al. (2014).

Bridge girder with non‑prismatic section

The last case study is a three-span continuous steel bridge 
girder shown in Fig. 12. The bridge has a length of 58.7 m. 
The finite element model of the bridge includes 100 

Fig. 10   A cantilever beam with 100 elements

Table 3    Two different damage cases induced in cantilever beam

Scenario Damage element Damaged 
severity (%)

1 3 15
11 20
25 10
33 5
54 25
89 30

2 15 20
16 40
29 10
41 50
50 30
58 15
70 25
80 10
90 30
96 35



1089Asian Journal of Civil Engineering (2020) 21:1079–1093	

1 3

elements. Two damage case scenarios were induced as 
shown in Table 4. In the second scenario, six damaged ele-
ments were considered, the measurement sensors are located 
at select nodes. Damage identification results are shown in 
Fig. 13a, b, respectively. As shown in this figure, the loca-
tions and extents of the damaged elements are detected cor-
rectly for the two scenarios.

Conclusions

A practical method for detecting the locations and extents 
of multiple damage in the four different types of struc-
tural systems has been presented. This method is based on 

sensitivity analysis of the structure and provides updating 
the structural finite element model using the iterative process 
of Levenberg–Marquardt algorithm. The updating param-
eter, which is the unknown dimensionless damage sever-
ity of the model, is considered as a reduction in Young’s 
modulus. The method uses dynamic response parameters 
including frequency and mode shape. The objective function 
for model updating is defined as minimizing the residual 
between the dynamic response of a healthy structure and 
an updated structure. For this purpose, the model uses the 
nonlinear least square minimization problem that is deter-
mined from the sum of squared errors. In order to assess the 
performance of the proposed method for structural damage 
detection, the numerical results of the presented method are 
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Fig. 11   Damage detection results of the 100-member planar beam for a case 1 and b case 2
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compared with those available in the literature, including 
the accuracy and convergence speed of the algorithm. To 
make a comprehensive assessment, different types of struc-
ture including two planar truss, a two-bay unbraced frame, a 
cantilever beam and a non-prismatic bridge girder were ana-
lyzed. According to the high cost of measurement sensors in 
engineering applications, the number and optimal placement 
of sensors can play an important role in cost reduction. As 
such, results of the numerical examples have demonstrated 
that the proposed method can provide accurate identification 
of damaged elements with a limited number of measurement 
sensors and incomplete data.

Fig. 12   Geometry of the three-span steel bridge girder

Table 4    Two different damage scenarios induced the three-span steel 
bridge girder

Scenario Damage element Damaged 
severity (%)

1 30 10
60 20
90 30

2 6 30
25 20
45 10
69 15
70 40
95 10
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