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Abstract
Steel cylindrical tanks are the most susceptible to damage due to dynamic buckling during earthquakes. The production of

cylindrical shell without imperfections is very difficult or sometime even impossible. The most previous research to study

the geometrical imperfection in the shell of steel tanks using various methods did not deal with the fluid–structure

interaction (FSI) and the dynamic loads. In this paper, the FSI numerical model is used to estimate the effect of local

geometrical imperfection with dynamic buckling of fluid-filled tanks. The liquid inside the tank was modeled using specific

Ansys’s finite elements and fluid–structure interaction. The calculation includes modal and time history analysis, including

material and geometric nonlinearity. Then a typical cylindrical tank is analyzed by the application of three different

stability criteria to estimate the critical PGA. The obtained dynamic buckling results of the perfect and imperfect tank are

compared. The effect of geometrical imperfection on dynamic buckling is clearly shown. The PGAcr of the imperfect tank

models decreases by 09.11%.

Keywords Dynamic buckling � Tanks � Earthquakes � Finite element � Local geometrical imperfection � Fluid–structure
interaction � Instability criteria

Introduction

Cylindrical tanks are among the strategic structures in daily

human life. These facilities are used to store petroleum

products, water, oil and chemicals, etc.

According to various reports and observations on the

structural behavior of the reservoirs during the recent

earthquakes, steel tanks are more susceptible to damage than

others. Among the past earthquakes that can be listed

according to those reports are 1933 Long Beach, 1952 Kern

County, 1964 Alaska, 1964 Niigata, 1966 Parkfield, 1971

San Fernando, 1978 Miyagi prefecture, 1979 Imperial

County, 1983 Coalinga, 1994 Northridge, 1999 Kocaeli,

1999 Turkey (Virella et al. 2006), and 2003 Boumerdès

earthquakes. Boumerdès earthquake (2003) occurred in the

Algerian state of Boumerdès. It was a terrible earthquake and

many victims. Evidence of damage to silos Korso during this

earthquake, because it was designed as not a seismic zone.

Types of failure reported for these structures are dia-

mond or elephant’s foot buckling, uplift of their bases, pipe

damage, etc. Among these negative phenomena, dynamic

buckling of tank walls remains the most common and more

dangerous one (AWWA 1996). The loss of tank contents

can contaminate drinking-water supplies and soil, thus

resulting in serious threat to human health and environ-

ment, and substantial cleanup costs.

Elephant foot buckling (EFB)—which is an outward

bulge located just above the tank base—results from the

combined action of vertical compressive stress, exceeding

the critical stress, and hoop tension close to the yield limit

(Djermane et al. 2014). Elephant foot buckling bulge

usually extends completely around the bottom of tanks due

to the reverse in the direction of the seismic excitation

(Djermane et al. 2014). Diamond buckling is an elastic

instability phenomenon due to the presence of high axial

compressive stresses (Djermane et al. 2014).

The manufacturing process of shell production is asso-

ciated with geometrical imperfection. Because of that, this
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Algeria

123

Asian Journal of Civil Engineering (2018) 19:189–203
https://doi.org/10.1007/s42107-018-0017-4(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s42107-018-0017-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s42107-018-0017-4&amp;domain=pdf
https://doi.org/10.1007/s42107-018-0017-4


production of cylindrical shell without imperfections is

very difficult or sometimes even impossible.

The present study is also motivated by the need for the

enhancement of the Algerian seismic code RPA, which has

not contained any provisions for liquid storage tank design

yet (Djermane et al. 2014).

The buckling behavior of steel tanks
under seismic excitation

Generally, identifying the buckling behavior of steel tank

under seismic excitation is done by computational and

experimental studies. This is classified as elastic buckling

and elastic–plastic buckling. Elephant’s foot buckling is

classified as elasto-plastic buckling behavior, which is an

outward bulge located just above the tank base. Hamdan

(2000) described diamond shape buckling at the bottom of

the tank as elastic buckling. Furthermore, buckling of the

top part of the cylindrical tank and shear buckling of the

shell have been classified in the elastic buckling range.

Teng and Rotter (2014) reported shear buckling for tanks in

the elastic range.

Many researchers described buckling modes with

deflections at the top of the cylindrical part, such as: Liu

and Lam (1983), Natsiavas and Babcock (1987), Naga-

shima et al. (1987), Redekop et al. (2002) and Morita et al.

(2003).

Natsiavas and Babcock (1987) developed an analysis for

dynamic buckling studies of the open-top tank under hor-

izontal ground excitation and the results are compared with

experimental work. Nagashima et al. (1987) performed the

experimental studies of the dynamic and static buckling for

small plastic cylindrical tanks under harmonic excitation.

In addition, an experimental study as developed by Morita

et al. (2003) for tall storage tanks with a roof subjected to

horizontal and vertical harmonic and simulated earthquake

excitation.

Shaw et al. (1993) analyzed dynamic buckling of an

imperfect composite circular cylindrical shell under both

excitations axial and torsional impulsive load.

Frequently, the buckling at the top of a tank is attributed

to the sloshing component of the hydrodynamic response of

the tank fluid (Malhotra 2000). However, in the buckling at

the top of a tank considered by Morita et al. (2003) and

Natsiavas and Babcock (1987), the sloshing action is not

depicted as the main cause. They attribute this kind of

buckling to the impulsive component of the hydrodynamic

pressure.

Historical presentation of dynamic buckling
criteria and applications

The dynamic stability analysis is treated by many works.

Researchers in the field of dynamic instability mainly use

three criteria in the investigation of the critical conditions

of dynamically loaded structures. These three criteria are

practical applications of instability theorems; it will be

discussed in detail later. The three criteria are: the criterion

by Budiansky and Roth (1962), which is the most used

throughout the literature to determine the critical buckling

load of dynamical impacted structures; total energy-phase

plane criterion (Hoff and Bruce 1954); and the criterion of

the total potential energy (Simitses and Kounadis).

The first analytical work on dynamic buckling problems

was carried out by Volmir (1958) for the cylindrical shells

subject to longitudinal dynamic loads. He used Galerkin’s

method for obtaining the solutions of a two degree of

freedom system.

The potential energy method for studying the dynamic

buckling with a limited degree system has been used by

many authors, such as Coppa and Nash (1964) and Roth

and Klosner (1964).

The Hamilton’s principle to study the dynamic buckling

of an imperfect cylindrical shell was used by Tamura and

Babcock (1975).

The statistical approach to study the effect of the initial

imperfection on the dynamic buckling of the cylindrical

shell was performed by Maymon and Libai (1977). Zimcik

and Tennyson (1980) also studied the dynamic stability of

cylindrical shells. The dynamic stability of stiffened

cylindrical shells under step loading was studied by Fisher

and Bert (1973) and Lakshmikantham and Tsui

(1974, 1975).

An experimental study of the dynamic buckling of a

nuclear steel container subjected to a horizontal excitation

was performed by Babcock et al. (1984). They used the

Budiansky–Roth criterion for determining the dynamic

instability. Tanami et al. (1988) used the Budiansky–Roth

and the Fourier spectrum criteria for estimating the

dynamic buckling of a reticulated single-layer dome under

up and down earthquake excitation. Shaw et al. (1993)

compared the dynamic buckling loads obtained using the

Simitses criteria the Budiansky and Roth criteria; they

obtained conservative results with Simitses criteria.

Other studies used a phase plane criterion or Hoff and

Bruce, such as Auli and Ramerstorfer (1986) and Natsiavas

(1987) and Hjelmstad and Williamson (1998).

The first numerical research estimation of the critical

PGA that causes the dynamic buckling is by Virella et al.

(2006). Using the technique of the added mass modeled by

the ABAQUS code, they examined the PGA which induces
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the buckling of a set of anchored cylindrical tanks. The

Budiansky and Roth (1962) criterion is employed in this

study.

A fully nonlinear fluid–structure interaction algorithm of

finite element method is employed by Ozdemir et al.

(2010) for the seismic analysis of anchored and unanchored

steel liquid storage tanks. Other studies used a fluid–

structure interaction such as those by Shekari et al. (2009)

and Zingoni (2015).

Djermane et al. (2014) presented a contribution to

evaluate the PGA values compared with standard code

previsions using a numerical model. This finite element

developed locally is exposed in Djermane et al. (2014). The

three instability criterions cited above are performed in this

work for identifying the critical PGA. Jerath and Lee

(2015) have presented the stability static and dynamic

analysis of cylindrical tanks. The fluid–structure interaction

(FSI) is modeled with ANSYS finite element code. The

buckling loads were a finding by the Budiansky and Roth

procedure.

More recently, in the study presented by Chikhi and

Djermane (2017), three criteria were used to estimate the

critical peak ground acceleration that caused tank insta-

bility. The liquid inside the tank was modeled using

specific Ansys’s finite elements and fluid–structure inter-

action. The calculation includes modal and time history

analysis as well as material and geometric nonlinearity.

Imperfection sensitivity

The importance of initial geometrical imperfections is

addressed by the study of Singer and Abramovich (1995)

on the development of measurement techniques of imper-

fection. Initial geometrical imperfections were not con-

sidered in the earlier estimation studies of buckling of

shells, and this affected the buckling strength.

Many researchers such as Simitses (1986), Teng (1996)

and Arbocz and Starnes (2002) explained that the buckling

strength of shell structures was affected by the following

significant factors classified into three major groups: geo-

metrical imperfections (such as out-of-straightness, initial

ovality, geometrical eccentricities, dents, swells, circular-

ity, cylindricity); structural imperfections (such as residual

stresses and material inhomogeneities, constructional

defects, such as small holes, cut outs, rigid inclusions, and

delaminations); and loading imperfections (such as non-

uniform edge load distribution, unintended edge moments,

load eccentricities, and load misalignments as well as

imperfect boundary conditions). They also concluded that

the most dominant factors belonged to the geometrical

imperfection group. Prabu (2007) divided the modeling of

geometrical imperfections on the surface of the cylindrical

shell into two groups: distributed geometrical imperfec-

tions and localized geometrical imperfections.

The manufacturing process of shell production is asso-

ciated with geometrical imperfection, because the produc-

tion of cylindrical shell without imperfections is very

difficult or sometimes even impossible.

The manufacturing process is detailed in Fig. 1. Cold

rolled flat plates are welded one by one to from the first

layer of cylindrical shell, and several cylindrical shells are

welded together to build the entire tank structure (Yu et al.

2012) (see Fig. 1).

Circumferential welds produce a residual deformation at

the shell surface considered as initial geometric imperfec-

tions. This type is named axisymmetric imperfection and is

formed between different layers of the cylindrical shell.

Asymmetrical imperfection are formed at the vertical

welding lines between the various panels of the same layers

(Da Silva 2011) (see Fig. 2).

Welding geometric imperfection is shaped as an inward

radial depression or outward radial deformation (see

Fig. 3c). Rotter and Teng (1989) proposed two axisym-

metric depression shapes of circumferential weld as shown

in Fig. 3a, b.

Chen et al. (2011) developed an FEM analysis to explain

the effect of welding geometric imperfections on axial

buckling of welded steel tank with local geometric

imperfections, and the results showed the change in axial

buckling deformation characteristics of steel tanks and the

existence of additional damage to axial buckling critical

load. The shape of local geometric imperfections of the

welded steel tank observed during this study had polyhe-

dron diamond shape as investigated by Yoshimura (1955).

Objective of the present investigation

Most of the previous works on the subject have focused on

the dynamic buckling of aboveground steel tanks, sub-

jected to the horizontal component of real earthquake

records. Recently, some studies have dealt with the esti-

mation of the critical peak ground acceleration (critical

PGA), a deterministic method that causes tank instability

using the added mass approach (Virella et al. 2006; Djer-

mane et al. 2014), the fluid–structure interaction (FSI)

approach and some criteria to evaluate the critical PGA

(Jerath and Lee 2015). In our opinion, the most previous

research to study the geometrical imperfection in the shell

of steel tanks using various methods did not touch the

fluid–structure interaction and the dynamic loads.

In the present study, the FSI numerical model is used to

estimate the effect of geometrical imperfection with

dynamic buckling of fluid-filled tanks, which will lead to a

better understanding of the response and, consequently, the

buckling failure of storage tanks.
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For these tanks, the modeling of nonlinear fluid–struc-

ture interaction (FSI) associated with dynamic analysis is

difficult and complicated. Then, a typical cylindrical tank is

analyzed by the application of three different stability

criteria to estimate the critical PGA. The results of the

analyses are next presented and compared. Finally, con-

clusions are made.

Numerical model

In this work, the tank used has been studied by several

authors (Djermane et al. 2014; Virella et al. 2006). The tall

tank has a height to a radius ratio (H/R) of 2. In the three-

dimensional tank, the most developed models use shell

element for the wall, the roof and the tank bottom, beam

elements for the roof rafters, and fluid element for the

liquid-containing cylindrical tank.

As mentioned earlier, the model of the fluid and the shell

structure was done using ANSYS software.

In the numerical analysis, we used two shell elements

for tank structure, the SHELL63 element for modal anal-

ysis and the SHELL181 for time history analysis. This last

element is suitable for nonlinear application. The liquids

inside this structure are modeled by the FLUID80 element.

The roof rafters are modeled by the BEAM4 element. The

material properties of the studied tank are presented in

Table 1.

Figure 4 shows the different shell thicknesses of the tank

model.

Fluid–structure interaction

The fluid–tank interface is modeled by the coupling

equation; the coincident nodes at the common areas

between the fluid element and the shell elements are

Fig. 1 Typical manufacturing

process of welded steel

cylindrical shells

Fig. 2 Axisymmetric and asymmetric imperfections

Fig. 3 Schematic diagram of three typical shapes of circumferential

weld (Yu et al. 2012). a Type A. b Type B. c Circumferential weld

reinforcement

Table 1 Material properties

Water

Density 1000 kg/m3

Bulk modulus 2.0684e9 Pascal

Viscosity 1.13e-3 N.S/m2

Steel

Density 7850 kg/m3

Poisson ratio 0.3

Elasticity modulus 20.67e10 Pascal

Yield stress 2.5e8 Pascal

Tangent modulus 1.45e9 Pascal
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attached in the normal direction (ANSYS Inc. 2000); see

Fig. 5.

Boundary conditions

The tank studied in this work is assumed to have a com-

pletely fixed base (all the nodes at the base are assumed to

be fixed).

Dynamic analysis

Modal analysis

Modal analysis is used to determine the vibration charac-

teristics of this model. The important parameters in the

design of a structure for dynamic loading conditions are the

natural frequencies and mode shapes (ANSYS Inc. 2000).

The equation of motion for the undamped system vibrating

is freely given as:

M½ � €uf g þ K½ � uf g ¼ 0; ð1Þ

where [M] is the structural mass matrix, [K] is the struc-

tural stiffness matrix, €uf g is the nodal acceleration vector,

and {u} is the nodal displacement vector. For a linear

system, free vibration will be expressed as:

u ¼ /i cosxit; ð2Þ

where /i is the eigenvector representing the mode shape of

the ith natural frequency, xi is the ith natural circular

frequency in radians per unit time, and t is the time in

seconds. Substitution of Eq. (2) in Eq. (1) gives:

� M½ � þ K½ �/i ¼ 0: ð3Þ

0.0286

0.0254

0.0222

0.0191

0.0159

0.0127

0.0095
0.0079

Fig. 4 Tank model with different shell thicknesses (Chikhi and

Djermane 2017)

Fig. 5 Fluid–structure models (Chikhi and Djermane 2017). a Empty tank; b Fluid–structure interaction system; c Details of the fluid–structure

model

1940 Elcentro  Earthquake; NS Component

Time [sec]
26252423222120191817161514131211109876543210

R
es

po
ns

e 
Ac

ce
le

ra
tio

n 
[g

]

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

-0.05
-0.1

-0.15
-0.2

-0.25

Fig. 6 Selected accelerogram of El Centro 1940

Asian Journal of Civil Engineering (2018) 19:189–203 193

123



Nonlinear time history analysis

According to various reports (AWWA 1996; (Eurocode

2006), the damage in the thin tank walls in seismic areas

shows large displacements and relatively large deforma-

tions. For these reasons, the material and geometric non-

linearities are considered in this work.

The elasto-plastic stress–strain curve is used for steel.

The software offers several options, among which we have

chosen the simplest consisting of a bilinear kinematic

hardening curve, taking into account the Bauschinger

effect. To obtain a satisfactory solution, the loads are

applied incrementally at each time step through a series of

smaller sub-steps (ANSYS Inc. 2000).

The transient dynamic analysis solves the basic equation

of motion:

M½ � €uf g þ C½ � _uf g þ K½ � uf g ¼ F tð Þf g; ð4Þ

where [C] is the damping matrix, _uf g is the nodal velocity

vector and FðtÞf g is the load vector.

The earthquake record selection

The present study used earthquake record of El Centro with

a maximum acceleration of 0.349g. A record is considered

interesting in the sense of this study, because the maximum

amplitudes are recorded during the first few seconds, which

are also essential for the frequency content (see Fig. 6)

(Djermane et al. 2014; Yaser 2013).

Presentation of stability criteria

Total energy-phase plane criterion (Hoff
and Bruce 1954)

The curve representing the movement is traced in a phase

plane (U; _U) as shown in Fig. 7. The stable movements are

characterized by limited trajectories and do not move too

much away from the solution of the static equilibrium

which plays the role of the center of attraction. When the

load reaches the critical value, the trajectory moves away

from this pole without any oscillation around it (Djermane

2008).

Equation of motion criterion (Budiansky
and Roth 1962)

The first and most used criterion of stability is by Budi-

ansky and Roth (1962). It was formulated as an engineering

application of the Lyapunov stability criteria. In this cri-

terion, the time displacement curve is plotted for several

values of PGA. The PGA value corresponding to a curve

which gives a ‘‘jump’’, relative to its neighboring curves

indicates the dynamic buckling critical value (see Fig. 8a).

Fig. 7 Phase plane diagram before and after the Pcr (Djermane 2008)

Displacemet, u

Time, t

P1

P2

Pcr

a

P

Pcr

Umax

b

Fig. 8 Critical load: a criteria of Budiansky and Roth; b criteria of Ari

Gur and Simonetta
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Criteria of Ari-Gur and Simonetta (1997)

This curve has been proposed originally by Budiansky and

Roth (1962) and generalized later by Ari-Gur and Simon-

etta (1997). In the case of seismic excitation, this strong

increase is less pronounced and is rather replaced by a

change of the slope of the pseudo dynamic curve relating

the PGA intensity and the maximum radial displacement at

a fixed monitored node (several nodes are considered

especially in the potential buckling zones) as shown in

Fig. 8b. This criterion offers an estimation which must be

confirmed with the above criteria (Djermane 2008).

One of the disadvantages of the most common stability

criteria such as that of Budiansky-Ruth, the phase plane

energy witch ‘‘watch’’ the dynamic bifurcation is very

time consuming CPU (Djermane et al. 2014).

The local geometrical imperfections
modeling

In the previous section ‘‘Imperfection sensitivity’’, it is

shown that the production of cylindrical shell without

imperfections is very difficult or sometimes even impos-

sible. Circumferential welds produce a residual deforma-

tion at the shell surface considered as initial geometric

imperfections. The type of axisymmetric imperfection

(inward horizontal dimple) formed between different layers

of cylindrical shell is considered in our study. This local

imperfection of the inward horizontal dimple is shown in

Fig. 9. The three-variable dimple parameter is chosen for

modeling this kind of imperfection; the depth and wave

length parameters of initial dimple ‘‘Dwox’’, ‘‘lgx’’ are,

respectively, shown in Fig. 10. The height position

parameter of initial dimple ‘‘k’’ in the wall of the tank is

shown in Fig. 11.

The dimple parameters

The depth of initial dimple ‘‘Dwox’’

The varying depth of the dimple: Dwox ¼ 1t; 2t; 3t and4t

(see Fig. 10 and Table 2) (Prabu 2007).

The recommended values given by EC3 for dimple

imperfection amplitude parameters are presented in

Table 2.

The wave length of initial dimple ‘‘lgx’’

The varying wave length of the dimple: lgx ¼
0:5lgx; 0:75lgx and 1lgx (see Fig. 10).

Fig. 9 The shape of the of initial

dimple
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The height position of initial dimple ‘‘k’’
in the shell of tank

The varying height position of the dimple is shown in

Fig. 11: k ¼ 0:25H; 0:5H and 0:75H.

Modal analysis results

The validation of used tank model

To ensure the validity of the used model, modal analysis

for the tank with the FSI system was performed. The results

were compared with previous research and standard code

provisions. The results are summarized in the Table 4. The

excellent agreements indicate the validity of the used

model.

Participation factor

The selection of significant modes is based on the criterion

of effective mass participation; Fig. 12 represents the

actual participation factor and the number of modes.

We can see that the impulsive modal mass is greater

than the convective modal mass.

Fig. 10 Measurement of depths of initial dimples on a meridian (ENV

1993)

Fig. 11 The variation of the height position of the dimple: k ¼ 0:25HðaÞ; 0:5HðbÞ and 0:75H ðcÞ

Table 2 Recommended values given by EC3 for dimple imperfection amplitude parameters Un1 and Un2 (ENV 1993)

Fabrication tolerance quality class Description Recommended value of Un1 Recommended value of Un2

Class A Excellent 0.010 0.010

Class B High 0.016 0.016

Class C Normal 0.025 0.025
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The significant convective and impulsive modes

are summarized in Table 3:

Table 4 compares the obtained results versus those given

by the EC8, API 650 standard and the attached masses

model (Virella et al.). This table indicates that the esti-

mated values for structural periods of vibration are rea-

sonable. The obtained fundamental impulsive mode is a

column mode type as shown in Fig. 13b.

Results of dynamic buckling for geometrical
imperfections modeling

Effect of local imperfection on dynamic buckling

Figure 14 shows the pseudo equilibrium path for El Centro

excitation for inward local imperfection with dimple

parameters k ¼ 0:5H andDwox ¼ 4t. The discontinuity on

the curve indicates that the critical value PGA (PGAcr)

occurs at 0. 349g. Figure 15 shows several history curves

corresponding to different excitation levels. The Budian-

sky–Ruth criterion is shown in Fig. 16. At the level 0.349g,

a disproportionate increase in displacements is

distinguished.

The nature of the obtained dynamic buckling response

can be evaluated by studying the deformation and the iso-

stresses around the excitation critical level at 2.64 s (see

Fig. 17).

Comparison of the obtained dynamic buckling
results with perfect and imperfect tank

Figure 18 shows the several pseudo equilibrium paths of El

Centro excitation for the perfect and imperfect tank mod-

els. In this Figure, the effect of geometrical imperfection on

dynamic buckling is clearly shown. The curve of the per-

fect tank model indicates that the critical value PGA

(PGAcr) occurs at 0.384g. Unlike the curve of the imper-

fect tank models, the PGAcr occurs at level 0.349g and

decreases by 09.11% compared to the tank model without

imperfection.

Figure 19 shows the comparison of several history

curves corresponding to different excitation levels with

imperfect and perfect tank models.
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Table 3 The significant

convective and impulsive

modes

No mode Frequency Period Cumulative mass fraction

Convective 1st 2 0.168578 5.932 0.26671

2sd 6 0.264308 3.7835 0.273556

3th 13 0.302594 3.3048 0.274772

4th 22 0.321403 3.1114 0.275144

Impulsive 1st 281 3.16079 0.31638 0.969402

2sd 340 6.95603 0.14376 0.970209

3rd 341 6.97019 0.14347 0.999052

4th 444 45.0829 0.0222 0.999978

Table 4 Modal period

comparison (Redekop et al.

2002) (Volmir 1958) (Coppa

and Nash 1964)

ANSYS Virella et al. Eurocode 8 API 650 Ratio n mode TYPE

Timp (sec) 0.316 0.300 0,299 / 0.944 281 Colonne

Tcon (sec) 5. 932 / 5.778 5.696 0.96 2 /
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Using an estimation given by the pseudo dynamic paths,

the Budiansky–Ruth and phase plane criteria are then used to

confirm the obtained value of the tank model without imper-

fection at their PGAcr = 0.384g and compared with several

imperfect tank models in the same PGA (Figs. 20, 21, 22).

Table 5.12 shows the critical values under the El Centro

earthquake at PGA of 0.384g for the four imperfect tanks

and perfect tank.

In inward local imperfection, the varying height position

of the dimple is considered for k ¼ 0:25H; 0:5H
and 0:75H, depth varied as Dwox ¼ 1t; 2t; 3t; and 4t, and

wave length varied as 0.5 lgx, 0.75 lgx and 1 lgx.

The local geometrical imperfections are dominant

compared to the perfect case in reducing the dynamic

buckling of the cylindrical shell. The pseudo dynamic paths

curves, for inward local imperfection with k ¼ 0:25H and

k ¼ 0:75H are similar.

Inward local imperfection with k= 0:5H, Dwox = 4t and 1 lgx

In this case, the height position of the dimple is at the

middle height of the tank, and the curve of the pseudo

dynamic paths indicates that the inward local imperfection

with k = 0.5 H is more dominant compared to two other

types of local imperfection (see Fig. 18).

The value of wall displacement increases by 41% more

than the value obtained with the perfect tank model (see

Table 5). The values of von Mises stress and sloshing

height are not dominant compared to wall displacement in

the instability of the tank.Fig. 13 Fundamental modes’ shapes of a tank model: a The first

convective mode. b The first impulsive mode. a shows the first

convective mode shape of the tank model
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(k ¼ 0:5H andDwox ¼ 4t)

Table 5 Comparison of the wall

displacement, von Mises

stresses and sloshing height at

PGAcr of the four imperfect

tanks and perfect tank under the

El Centro earthquake

Critical values Local imperfection

Perfect tank k = 0.25H Dwox ¼ 4t k = 0.5H Dwox ¼ 4t k = 0.75H Dwox ¼ 4t

UX_0.384g 0.02483 0.0377 34.14% 0.04258 41.69% 0.03834 35.24%

SEQV_0.384g 139040544 132910000 -4.61% 140242080 0.86% 140242080 0.86%

UZ_0.384g 0.37873 0.3914 3.24% 0.38913 2.67% 0.41256 8.20%
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Inward local imperfection with k= 0:25, Dwox = 4t and 1 lgx

In this case, the change is clearly shown with the decrease

of non Mises stress value by 4.61% (see Table 5) compared

to the perfect model tank.

Inward local imperfection with k= 0:75, Dwox = 4t and 1 lgx

In this case, the sloshing height increases by 8.20% (see

Table 5) compared to the obtained value of the perfect

model tank, because the height position of the inward

dimple is closer to the free surface.

Conclusion

Cylindrical steel storage tanks are commonly used in all

major industrial facilities (e.g., refineries and nuclear

power plants). They are critical structures because the loss

of tank contents resulting by their buckling failures usually
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extremely contaminates drinking water supplies and soil.

This results in serious threat to human health and envi-

ronment as will as substantial cleanup costs. In this work,

our investigation was focused on the search for the value of

critical PGA that can lead to instability of the tank. We

have used three different instability criteria. The results

obtained by modal analysis confirm the validity of our

model.

Fig. 17 mon Mises stress for the imperfect tank (k ¼ 0:5H andDwox ¼ 4t) at time = 2.64 s under the El Centro earthquake at PGA = 0.349g

under PGAcr

Fig. 18 El Centro pseudo

dynamic path for the perfect and

imperfect tank models
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The primary goal of this study is to undertake an

investigation through a numerical approach to simulate

tank behavior as close as possible to the actual behavior,

considering the coupling fluid–structure interactions. Other

objectives, as mentioned in the introduction, are:

• to create the numerical FSI model using for an estimate

the critical PGA;

• to create the models of local geometrical imperfections

also investigated for estimating the dynamic buckling

of fluid-filled tanks.

The obtained dynamic buckling results with perfect and

imperfect tanks (local imperfections) are as follows:

• The effect of geometrical imperfection on dynamic

buckling is clearly shown. The PGAcr of the imperfect

tank models decreases by 09.11% compared to the tank

model without imperfection.

• In the cases of inward local imperfection with

k ¼ 0:5H, the values of von Mises stress and sloshing

height are not dominant compared to wall displacement

in the instability of the tank.

• The pseudo dynamic paths curves for inward local

imperfection with k ¼ 0:25H and k ¼ 0:75H are

similar.

• The inward local imperfection at the middle height of

the tank is more dominant compared to the other two

types of local imperfection.
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In the case of inward local imperfection with k = 0.25,

Dwox ¼ 4t and 1 lgx, von Mises stress value decreases by

4.61% compared to the perfect model tank.

In the case of inward local imperfection with k ¼ 0:75,

Dwox ¼ 4t and 1 lgx, the sloshing height increases by

8.20% compared to the obtained value of the perfect model

tank, because the height position of the inward dimple is

closer to the free surface.
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