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Abstract
Urban heat island effects are created by large cities, and weather data collected in or near heat spots may be inappropriate for 
crop growth simulation. Research was conducted to evaluate the effects of different sets of historical weather data on DSSAT 
(Decision Support System for Agrotechnology Transfer) and APSIM (Agricultural Production Systems sIMulator) model 
simulations for winter wheat (Triticum aestivum L.) production in the North China Plain (NCP). Yield data from 10 recent 
years and three locations in the NCP were used for model calibration and validation. Three weather datasets including data 
from the exact experimental site, a nearby town and a nearby large city were used to obtain three sets of model parameters 
for each location. The different model parameters were further used to assess crop performance on regional scales. The 
well-calibrated and validated APSIM and DSSAT gave nearly identical average regional yields, but the model parameters in 
DSSAT were more sensitive to weather sources. Using the parameters derived from the source of city weather data tended 
to overestimate the yield in higher latitudes and underestimate the yield in lower latitude regions due to the higher thermal 
units and lower growth rates in the model parameters, which prolonged the growth duration. The results from this study also 
indicated that to reduce the bias in regional crop yield simulation, increasing the sites for model calibration should be rec-
ommended. During model simulation, the changes in model parameters to suit the source of the weather data increased the 
stability of the model performance but decreased the model sensitivity in responding to the changes in growing conditions.
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Introduction

Crop models are important tools for optimizing agronomic 
practices, improving resource use efficiency and mitigating 
climate change (Boote, 2019). Crop models were developed 
to study crop growth and development over one or more 
growing seasons, and they account for variation in weather 
throughout the seasons as well as variations in soil and man-
agement (Peng et al., 2020; Van Bussel et al., 2015). The 
crop models are designed to be applied with site-specific 
data such as daily weather data from nearby weather sta-
tions and generic local agronomic management (Van Bussel 
et al., 2016). With the increase in the use of crop models for 
regional agricultural system impact assessment, crop models 
are progressively being applied to large spatial scales, from 
regions within a country to globally. For a regional scale, the 
spatial changes in weather, soil and crop management should 
be considered during the modelling. In particular, meteor-
ological data can exhibit considerable heterogeneity over 
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space and time due to the different surroundings (Kuwagata 
et al., 2018).

Often, the high uncertainty in crop modelling comes 
from the crop response to the temperature, which is used 
to calculate the thermal time (Wang et al., 2017). Asseng 
et al. (2015) reported that the model accuracy was impacted 
by the differences in model structures and parameter values 
that respond to temperature. Wang et al. (2017) reported 
that the uncertainty can be reduced by improving the tem-
perature response functions in the models. However, crop 
models often contain parameters that cannot be measured 
directly but can only be inferred by a trial-and-error process 
in model calibration and validation known as model training. 
Model training is strongly influenced by the meteorological 
data used, and meteorological data obtained from different 
sources might affect the individual parameters used in the 
model.

Land-use changes such as irrigated agricultural conver-
sion and plant transpiration can intensify or mask the micro-
climate by transforming the surface energy balance at the 
point or regional scale (Nocco et al., 2019). Urban microcli-
mates are distinguished from cropland areas by differences 
in air temperature, humidity, wind speed and direction, and 
amount of precipitation (Peng et al., 2012). Compared with 
crop-growing land, urban zones have higher air temperatures 
called urban heat island (UHI). The temperature in the field 
can be affected by crop transpiration and soil evaporation, 
known as the “cooling effect (CE)”, which does not occur 
in urbanized areas. Soil moisture significantly influences the 
surface climatic environments (Seneviratne et al., 2010), 
and can even act as a proxy (Nouri & Homaee, 2021). The 
impact of soil moisture on the surface environment changes 
with the different soil water supply conditions (Allen et al., 
2021). The superposition of UHI and CE creates a signifi-
cant difference between the agricultural land temperature 
and the nearby town/ urban land temperature.

In densely populated areas such as the North China Plain 
(NCP) there are towns and cities, with an average distance 
of 25 km between two towns and 100 km between two cities. 
The distance of the weather station from the big cities affects 
the daily weather data, especially the temperature, due to the 
UHI. The climatic conditions that prevail in a large metro-
politan area differ from the climate of its rural surroundings 
(Peng et al., 2012). Weather data obtained from the national 
weather network in the NCP usually come from weather 
stations located in towns or cities. Weather data from the 
exact field are often missing. Therefore, the simulation 
of crop performance using crop models often depends on 
weather data collected not from the exact field sites. Due to 
the difference between city and farmland microclimates, the 
assessment of the impacts of climate change or management 
practices on agriculture may be biased. Therefore, the dif-
ference in metropolitan climate from the climatic conditions 

obtained in the field should not be ignored for regional agri-
cultural production simulations using models.

Currently, few studies have investigated the effects of 
models trained using data from different weather stations 
on regional yield assessments. To fill this knowledge gap, 
in this study, the Decision Support System for Agrotechnol-
ogy Transfer (DSSAT) and Agricultural Production Systems 
sIMulator (APSIM), two popular crop growth simulation 
models that have been successfully applied in the NCP (Li 
et al., 2016; Sun et al., 2016; Wu et al., 2014; Zhang et al., 
2013) and worldwide (Gaydon et al., 2017; Jones et al., 
2003; Keating et al., 2003), have been used to test whether 
the different sources of weather data affect the simulated 
winter wheat (Triticum aestivum L.) production in the NCP 
to provide references for crop performance simulation in 
selecting weather data at regional scales. How the two well-
known crop models responding to the differences in weather 
data were also evaluated in this study. The results might 
provide references for better understanding the effects of 
weather data sources on the performance of models and the 
reliability of those model parameters for evaluating future 
climate change on crop production.

Materials and Methods

Area of the Study

In this study, the regional crop simulation involved an 
area located between the eastern Taihang Mountains 
and the northern Yellow River (112.5°  E–119.5°  E, 
34.8° N–40.5° N) in the North China Plain (NCP), covering 
the entire plain of Beijing, Tianjin, Hebei, and northwest-
ern Shandong Province (Fig. 1). The total area is approxi-
mately 2.7 × 105 km2, accounting for 16.3% of the land in 
total agricultural production in China. Total grain production 
reached more than 70 million Mg year−1, accounting for 21% 
of China’s production. Annual double cropping of winter 
wheat and summer maize is the dominant cropping system 
in the region (Kang & Eltahir, 2018). Three sites in this 
region were selected. The research sites were experimental 
stations of the China National Ecosystem Research Network 
(CNERN) located at Luancheng, Fengqiu and Yucheng 
(Fig. 1 and Supplementary Table 1).

Soil, Crop and Weather Data

The field experimental data on winter wheat were obtained 
from the three stations and were used to obtain model 
parameters. The data for winter wheat were obtained from 
the treatment with local irrigation and fertilizer application 
practices. Crop data, including varieties, major phenological 
stages, yields and management practices, were all recorded 
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for the study duration at the three sites. Data for Fengqiu 
and Yucheng were obtained from the National Ecosystem 
Research Network of China (CNERN, http://​cnern.​cern.​ac.​
cn), and data for Luancheng was obtained based on field 
studies. The growing conditions at the three stations can rep-
resent the surrounding farmland. Well-established long-term 
field studies and data were available for crop model calibra-
tion and validation. The three field experimental stations all 
have weather stations located inside the crop growing field, 
which can represent the weather data obtained from the field, 
to distinguish the weather data obtained in a town or a city 
for crop model simulation.

Detailed field experimental data, including soils, tillage, 
fertilization, phenology, aboveground biomass at anthesis 
and maturity, yield and management practices for eight 
growing seasons at Luancheng station from 2007 to 2015, 
for ten growing seasons at Yucheng and Fengqiu stations 
from 2005 to 2014, were used for model calibration and 
validation. The winter wheat cultivars used were all Jimai22 
for the three stations.

Observed daily weather data for solar radiation, minimum 
and maximum temperatures, precipitation, wind speed and 
air humidity during the period of 2008–2015 at Luancheng 
station and during the period of 2005–2014 at Fengqiu and 
Yucheng stations were used as weather data obtained under 
field conditions.

To examine the possible effects of weather data sources 
on the model parameters, weather data from nearby coun-
ties and large cities were used. Towns and large cities near-
est to the three field experimental stations were selected. 
The detailed geographic locations of the towns and cities 
are shown in Supplementary Table 1 and Fig. 1. The daily 

weather data from the three towns and cities were obtained 
from the China Meteorological Bureau, which was used for 
model validation and calibration to obtain model param-
eters. Soil hydraulic parameters at the three stations (Supple-
mentary Table 2) were obtained from previous studies, i.e., 
Luancheng soil parameters from Sun et al. (2016), Yucheng 
from Wang et al. (2007), and Fengqiu from Chen (2008).

Crop Models and Parameterization

In this study, two popular models, APSIM and DSSAT, were 
applied. For both models, the key crop model parameters 
that are closely related to crop growth, development and 
grain formation were identified by modelling. Based on the 
detailed field trial data on wheat response (phenology and 
yield) to agronomic management practices and environmen-
tal conditions at the three sites, key parameters were selected 
for the two models (Ma et al., 2020; Zhao et al., 2014). The 
traditional trial-and-error method was used for APSIM and 
DSSAT calibration.

Initially, the calibration of both models was based on the 
previous parameters in this region (Sun et al., 2015; Zhang 
et al., 2013) and was further adjusted based on the experi-
mental results at the three sites. The parameter calibration 
process was as the following: Step 1, input parameters from 
previous research; Step 2, the cultivar parameters were 
trimmed using a trial and error method to match the simu-
lated crop anthesis and maturity dates to the observed data 
from 2004 to 2009 at Fengqiu and Yucheng and from 2008 
to 2012 at Luancheng. Step 3: The model was run with the 
trimmed crop parameters, and the performance was evalu-
ated according to the biomass and grain yield. After calibra-
tion, the model was further validated using the experimental 
data from 2010 to 2014 at Fengqiu and Yucheng and from 
2013 to 2015 at Luancheng. For all the simulations, irri-
gation and fertilizer were applied according to the actual 
practices.

During the calibration and validation of the models, three 
sets of weather data obtained from the field, town and city 
were used separately to obtain the parameters for the two 
models, therefore, there were three sets of model parameters 
for each location. Totally, nine sets of crop model parameters 
were produced to simulate the regional yield of winter wheat 
in the NCP for each of the two crop models used in this 
study. At each site and for each set of crop parameters, the 
differences between simulated and observed flowering and 
maturity dates were less than 3 days, and the discrepancies 
between observed and simulated yields were less than 20%.

Model performance was evaluated using the slope and 
the coefficient of determination (R2) of the regression lines 
between simulated and observed values. The Root Mean 
Square Error (RMSE), Normalized Root Mean Square 
Error (NRMSE) and Nash–Sutcliffe Efficiency (NSE) are 

Fig. 1   Location of the study area, sites representing field, town and 
city environments in the North China Plain (NCP)

http://cnern.cern.ac.cn
http://cnern.cern.ac.cn
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used to quantify the deviation of the simulated results from 
the observed data as:

where Si is the simulation value, Oi is the observation value, 
O is the mean of observation values, and n is the number of 
simulation or observation values.

Model Performance Using Different Sets 
of Parameters on a Regional Scale

Nine sets of model parameters drove the model simu-
lation on the regional scale using APSIM and DSSAT. 
The regional yield of winter wheat was simulated from 
2008 to 2016. Regional weather data from 2008 to 2016 
were obtained from the China Meteorological Assimila-
tion Driving Datasets (CMADS). Data sources for the 
CMADS series include nearly 40,000 regional automatic 
stations under China’s 2421 national automatic and busi-
ness assessment centers (Meng et al., 2019). The spatial 
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resolution for CMADS V1.1 was 1/4°. At least one weather 
station was included in each county in the NCP. The 
regional soil physical properties of NCP were extracted 
from a raster dataset produced by Dai et al. (2013), includ-
ing soil bulk density (BD), saturated volumetric water con-
tent (SAT), drained upper limit (DUL), 15-bar lower limit 
(LL15), and soil N and organic matter content for different 
soil layers. Figure 2 presents the modelling processes for 
the regional scale yield evaluation in this study. During 
the simulation, automatic irrigation and fertilization were 
turned on to ensure that enough water and nutrients were 
applied to the crop. Other management practices, such as 
sowing date and sowing rate, followed the local practices.

The weather stations located inside the field represent 
the real growing environments of the crops. Therefore, 
the yield simulated with the parameters derived from field 
weather data was taken as the benchmark in this study. To 
assess the model parameters derived from other sources 
of weather data on model performance at a regional scale, 
yield differences simulated using different model param-
eters were compared. Dfield-town (yield simulated using field 
weather data derived parameters minus that from town), 
Dfield-city (yield simulated using field weather data derived 
parameters minus that from city), and Dtown-city (yield 
simulated using town weather data derived parameters 
minus that from city) were calculated for the comparison. 
Phenological differences in maturity simulated using dif-
ferent model parameters were also compared in the same 
way as the yield. DASfield-town, DASfield-city and DAStown-city 
represent the difference in maturity days using different 
model parameters defined the same as the yield difference.

Fig. 2   The processes of model 
parameter derivation and 
regional yield simulation con-
sidering the source of weather 
data
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Data Analysis

The open-source programming language Python data analy-
sis packages were used in this study, including “Pandas” 
(https://​pandas.​pydata.​org/) for data processing and simple 
statistical analysis, “Scipy” (https://​www.​scipy.​org/) for lin-
ear regression and parameter estimation, “Seaborn” (https://​
seabo​rn.​pydata.​org/) and “Geopandas” (https://​geopa​ndas.​
org/) for charting.

Results

Mean Daily Weather Data at Different Locations 
During Winter Wheat Growing Seasons

There was a trend of a significant (p < 0.05) increase in 
daily minimum temperature (Tmin) over time at all loca-
tions but with a much greater increase for the cities than 
that for the fields (Fig. 3). There was also a significant 
(p < 0.05) increase in daily maximum temperature (Tmax) 
over time, but with the similar increase trends for fields, 
towns and cities. Seasonal radiation showed a declining 
trend, and the change in seasonal rainfall was smaller. 
Generally, cities had higher temperatures and reduced 
radiation than small towns and fields. Under the climate 

Fig. 3   Comparing the average seasonal weather data obtained at three locations (field, nearby town and city) for Luancheng site (a–d) from 1987 
to 2015, Fengqiu site (e–h) from 2005 to 2014, and Yucheng site (i–l) from 2005 to 2014 during winter wheat growing seasons

https://pandas.pydata.org/
https://www.scipy.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://geopandas.org/
https://geopandas.org/
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change background, the increase in temperature, espe-
cially Tmin, was much greater in large cities than that in 
other locations. The difference in weather factors under 
different environments was becoming greater. The aver-
age seasonal weather factors were obtained from different 
locations for the last 10 seasons (Supplementary Table 3). 
The results indicated that weather factors were affected by 
the locations of the weather station from the large cities, 
with Tmin being the most affected factor. Tmin values under 
the field conditions were on average 18% and 12% lower 
than the Tmin values in cities and towns, respectively, for 
the three sites. There were also variations in radiation and 
precipitation among the different locations.

Model Parameters Derived from Different Weather 
Sources

Tables 1 and 2 list the major parameters derived using 
different sources of weather data. All the parameters fall 
in the scope of the rational values of the two models. 
For APSIM (Table 1), the parameters related to thermal 
time differed the most using the three sources of weather 
data. The parameter value of thermal time was the highest 
using the city weather data at all locations, next was from 
the town weather data source, and the lowest was from the 
weather data under the field environment. In contrast, the 
parameter value of the potential grain filling rate was the 
highest using the weather data at two locations, followed 
by the town weather data, and the lowest was from the 

Table 1   The derived crop parameters for the APSIM using different sources of weather data to simulate the yield of winter wheat

photop_sens: Sensitivities to photoperiod
vern_sens: Sensitivities to verbalization
tt_end_of_juvenile: The thermal time of potential period from end of juvenile stage to terminal spikelet
tt_floral_initiation: The thermal time of potential period from terminal spikelet to start flowering
startgf_to_mat: The thermal time of potential period from start flowering to end of grain filling
potential_grain_filling_rate: The potential rate of grain filling
potential_grain_growth_rate: Grain growth from flowering to grain filling

Source of weather data Luancheng Fengqiu Yucheng

Field Town City Field Town City Field Town City

photop_sens 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.94
vern_sens 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 3.58
tt_end_of_juvenile 400 515 525 531.7 531.7 601 418 481 408
tt_floral_initiation 555 610 615 600 650 710 596 627 698
startgf_to_mat 550 600 600 600 670 700 580 580 630
potential_grain_filling_rate 0.0025 0.0019 0.0018 0.00233 0.00233 0.00233 0.0040 0.0028 0.0018
potential_grain_growth_rate 0.001 0.001 0.001 0.0008 0.0008 0.0008 0.0005 0.0005 0.001

Table 2   The derived crop 
parameters for the DSSAT using 
different sources of weather 
data to simulate the yield of 
winter wheat

P1V (Days, optimum vernalizing temperature, required for vernalization)
P1D (Photoperiod response (% reduction in rate/10 h drop in pp))
P5 (Kernel number per unit canopy weight at anthesis (#/g))
G1 (Standard kernel size under optimum conditions (mg))
G3 (Standard, non-stressed mature tiller weight (including grain) (g dwt))
PHINT (Interval between successive leaf tip appearances (°C.d))

Source of 
weather data

Luancheng Fengqiu Yucheng

Field Town City Field Town City Field Town City

P1V 41 60 49 48 52 63 47 35 54
P1D 14 71 10 34 2 70 36 92 25
P5 565 463 609 529 694 346 608 721 434
G1 23 24 21 15 24 23 20 22 20
G2 47 33 49 59 44 36 50 33 50
G3 1.5 1.9 1 1 1 1.2 1 1.4 1
PHINT 88.9 95 96.8 90.1 95.5 101.5 92.8 95.2 99.3
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weather data under the city environment. However, for 
the Fengqiu site, the potential grain filling rate was the 
same for the three sources of weather data. Generally, the 
temperature difference among the locations affected the 
derived crop parameters for APSIM, and using weather 
data from high-temperature environments tended to pro-
duce higher thermal units and lower growth rates for the 
model parameters.

For DSSAT (Table 2), a difference existed for all the 
major model parameters derived from the three sources of 
weather data, but no certain pattern in parameter changes 
for P1V (days required for vernalisation), P1D (photoper-
iod response), P5 (kernel number per unit canopy weight 
at anthesis), G1 (standard kernel size) and G3 (standard 
tiller weight) was observed, except for PHINT (inter-
val between successive leaf tip appearance). Similar to 
APSIM, the thermal unit requirement was increased for 
crop growth using weather data from city environments.

Grain Yield of Observation vs Simulation

Figure 4 shows that both the APSIM and DSSAT models 
can simulate winter wheat yields obtained from the three 
locations using different sets of weather data (field, town, 
and city environments). Both models could capture the sea-
sonal variation in yield. The observed average yield was 
7396 kg ha−1 at Luancheng, 7763 kg ha−1 at Fengqiu, and 
7471 kg ha−1 at Yucheng. The simulated average yields were 
7371 kg ha−1, 7665 kg ha−1 and 7448 kg ha−1 for the three 
sites. The RMSEs between the observed and simulated yields 
for APSIM were 488 kg ha−1, 615 kg ha−1 and 472 kg ha−1 
using city, field and town weather datasets, respectively. The 
RMSEs between the observed and simulated yields were 
424 kg ha−1, 438 kg ha−1, 426 kg ha−1, respectively, for 
DSSAT. The mean NRMSE values for APSIM and DSSAT 
were 6.97 and 5.68, and the NSE values were 0.48 and 0.64, 
respectively (Supplementary Table 4). The results indicated 
that by adjusting the crop parameters, weather data from dif-
ferent sources could be used for simulating crop production.

Fig. 4   Observed yield versus 
simulated grain yield for winter 
wheat for ten seasons with three 
trained parameters derived 
from using different sources of 
weather data (obtained from 
field, town and city environ-
ments) at three locations 
(Luancheng, Fengqiu, Yucheng) 
in the North China Plain
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Spatial Variation in Yield Differences Using Different 
Sets of Model Parameters

The regional distribution of simulated winter wheat yields 
averaged for the seasons of 2008–2016 is shown in Figs. 5 
and 6. The simulation was conducted separately using the 
nine sets of parameters derived with different sets of weather 
data for APSIM (Fig. 5) and DSSAT (Supplementary Fig. 1). 
The results indicated that the simulated average regional 
yield was quite similar using the parameters from different 
sources of weather data for a certain location. For example, 
with the APSIM model, the average regional yields were 
9118, 9135 and 9104 kg ha−1 using the three sets of param-
eters derived from the Luancheng site. The values were 
9544, 9475 and 9569 kg ha−1 at the Fengqiu site and 9391, 

9305 and 9335 kg ha−1 at the Yucheng site, respectively. 
The results also indicated that the parameters from the three 
locations produced slightly different average regional yields, 
with the yield from the Fenqiu site being 4.5% higher than 
the yield from Luancheng and 2% higher than the yield from 
Yucheng. The same results were obtained with the DSSAT 
model. The location of the Fengqiu site is at lower latitudes, 
and the thermal conditions at this site were higher than the 
thermal conditions at the other two sites. The results might 
indicate that the model parameters derived from locations 
with higher thermal conditions tended to produce a higher 
yield than the model parameters derived from locations with 
lower thermal conditions.

Although the regional average yield using the three sets 
of parameters derived from different sources of weather data 

Fig. 5   The average regional winter wheat yield during 2008–2016 
simulated using different sets of model parameters derived from dif-
ferent locations and different sources of weather data in the North 
China Plain using APSIM model (Field: model parameters derived 

from weather station located in field; Town: model parameters 
derived from weather stations located at a nearby town; City: model 
parameters derived from weather stations located at a nearby city)
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was quite similar, regional yield variations were observed. 
The yields simulated using field or town weather-derived 
parameters were similar, indicating that the difference of the 
weather conditions between a town and the field was rather 
smaller. The larger Dfield-city and Dtown-city values indicated 
that the model parameters derived from city weather stations 
affected the model simulation. The trends in yield differ-
ences for APSIM and DSSAT were similar.

The regional Dfield town, Dfield city and Dtown city are shown 
in Fig.  6 (for APSIM) and Supplementary Fig.  2 (for 
DSSAT). Except for Dfield-town, the other two differences 
simulated with the DSSAT and APSIM models were all 
significantly correlated with latitude (Fig. 7) (p < 0.01). 
The yield simulated with the parameters derived from the 
field or town weather source tended to produce a higher 
yield in regions with lower latitudes and lower yield in 

regions with higher latitudes as compared with the yield 
simulated with the parameters derived from the city 
weather source. Model parameters derived from the three 
sources of weather stations indicated that more thermal 
units were required using the city weather data, followed 
by the town and the field. Accompanying the higher ther-
mal unit values, a lower growth rate in the model param-
eters was observed using city weather data (Tables 1, 2). 
The difference among the model parameters in thermal 
units and growth rates produced different phenologies 
(Supplementary Figs. 3–6). Figure 8 indicates that using 
the parameters derived from the city environments pro-
duced longer maturity days, and the difference in simu-
lated maturity days increased with the increase in lati-
tude with the other two environments. The larger increase 

Fig. 6   The average yield differences at regional scale between winter 
wheat yield simulated with different model parameters derived from 
the weather data under field, town and city environments at three 

locations using APSIM. (Dfield-town, Dfield-city, Dtown-city stand for the 
simulated yield difference using model parameters derived from field 
and town, from field and city, from town and city, respectively)
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Fig. 7   The correlation analysis of the three yield difference with the 
latitude for Dfield-town, Dfield-city, Dtown-city using APSIM and DSSAT. 
(Dfield-town, Dfield-city, Dtown-city stand for the simulated yield difference 

using model parameters derived from field and town, from field and 
city, from town and city, respectively)

Fig. 8   The correlation analysis of the three phenology differ-
ence in maturity day with the latitude for DASfield-town, DASfield-city, 
DAStown-city using APSIM and DSSAT. (DASfield-town, DASfield-city, 

DAStown-city stand for the simulated phenology difference using model 
parameters derived from field and town, from field and city, from 
town and city, respectively)
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in growing duration using the city parameters resulted 
in higher simulated grain production in higher latitude 
regions.

Comparing the Performance of DSSAT and APSIM

Figure 9 shows the average simulated regional yield using 
APSIM and DSSAT. The regional average simulated yield 
was 9119 kg ha−1 using the APSIM model based on the 
crop parameters derived from Luancheng, 9530 kg  ha−1 
from Fengqiu, and 9344 kg ha−1 from Yucheng. The three 
values were 9121, 9535 and 9314 kg ha−1 using the DSSAT 
model, respectively. The results indicated that the two mod-
els performed nearly identically in regional yield simula-
tions. Some differences existed between the two models in 
the response to the model parameters derived from different 
sources of weather data, with DSSAT being more sensitive 
to the model parameters, as shown in Fig. 7.

The yield difference among the three sets of parameters 
was greater with DSSAT than with APSIM. Possible reasons 
might be related to the model parameters used in the two 
models, with all seven model parameters changing with the 

sources of weather data for DSSAT (Table 2), but only part 
of the parameters changed for APSIM (Table 1). Figure 7 
also shows that the yield differences using the three sets of 
model parameters derived from the three sources of weather 
data at the Fengqiu site were much smaller than the yield 
differences at the Luancheng and Yucheng sites for APSIM. 
The reason might be related to the difference in the three 
sets of model parameters being only related to the thermal 
units, and the growth rate parameters did not change at the 
Fengqiu site. Therefore, fewer changes in model parameters 
to suit the source of the weather data increased the stability 
of the model performance but decreased the model sensi-
tivity in responding to the changes in growing conditions. 
Comparing the performance of the two models, if there was 
more accurate climate data in a region, DSSAT should be 
used, and if the availability of climate data was less, APSIM 
might be better.

Discussion

Differences in Source of Weather Data and Their 
Impacts on Yield Simulations

In this study, models trained in a warmer urban microcli-
mate versus a cooler town or field microclimate environment 
could simulate the seasonal crop yield, and the observed 
yields were reproduced well. No apparent difference was 
found in the simulated yields of these models trained using 
different sources of weather data. Theoretically, the yields 
should be different for different climates (Rötter et al., 2012). 
Due to the different training datasets were used to derive 
model parameters to fit the respective environments, and 
the observed yield could be simulated using different sets 
of model parameters (Supplementary Table 3, Table 1). The 
thermal units for the model parameters derived using the 
urban environmental weather data were higher than the ther-
mal units for the model parameters derived using either the 
field or town environmental weather data, which might result 
in underestimating the negative effects of temperature rise 
on crop production. The growth rate parameter was reduced 
using weather data from warmer environments, which 
would increase the duration of the growing season, and the 
extended growing duration generally resulted in higher pro-
duction. Changes in the parameters for crop models might 
produce opposite results. Therefore, the weather datasets 
that drive model calibration and validation should be care-
fully selected for the corresponding application ranges to 
extend them regionally; otherwise, they may introduce 
biases in the simulations.

In the regions of this study, city temperature was sig-
nificantly higher than the temperature under town and field 
microclimate environments, as was the case at all three 

Fig. 9   Comparing the yield simulated using DSSAT and APSIM 
using the model parameters derived from the three locations
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locations (Supplementary Table 3). As urbanisation is still 
proceeding at a rapid pace, the heat island effect will be 
strengthened and will further widen the microclimate differ-
ence between cities and fields (Stone, 2007). Therefore, for 
crop model calibration and validation, the source of weather 
data should be considered in densely populated regions.

Models Trained at a Single Point for Regional 
Simulation

Due to the lack of observation data, models validated based 
on field-scale simulations upscaled to regional levels have 
been a fundamental issue in model research. The results 
from this study indicated the variation in the winter wheat 
yield simulated using the model parameters derived at the 
three locations, with the highest yield obtained from the 
model parameters derived in warmer conditions. Using mod-
els trained at specific locations, upscaling to a large region 
or even to the whole globe is a challenging issue (Liu et al., 
2013). Van Bussel et al. (2016) reported the use of spatial 
samples for regional simulations or dividing climate zones 
and then performing zonal simulations. Both of these meth-
ods can improve the accuracy of simulations on the regional 
scale to a limited extent.

To better simulate crop performance on a regional scale, 
the resolution of weather data is another factor to be con-
sidered. The observation of regional meteorological data is 
a costly project, and there is often a lack of meteorologi-
cal data in many areas, especially with only a few stations 
located inside the field environment where crops are grow-
ing. Kuwagata et al. (2018) and Peng et al. (2012) reported 
the climatic conditions that prevail in a large metropolitan 
area and that differ from the climate of its rural surround-
ings. The results from this study indicated that there were 
differences in the spatial distribution of the simulated 
yield from the trained models based on different sources 
of weather data. In particular, the results from this study 
indicated that the model trained from the city environment 
tended to overestimate the crop yield under cooler condi-
tions. Using such trained models, therefore, the negative 
effects of climate change might be underestimated in high 
latitude areas. The results also indicated that the yield dif-
ference simulated using different sets of parameters was cor-
related with the latitude degree. Therefore, covering as much 
latitude as possible in a region in training models to offset 
simulation bias due to environmental variations would be 
desirable.

Model Parameter Uncertainties

Due to the complexity of the biophysical mechanisms of 
crop development, growth, and grain formation in inter-
actions with genotype, management and environment, the 

current models may not be able to identify all these pro-
cesses. Consequently, it is essential to calibrate and validate 
crop models by adjusting model parameters to better fit the 
observation data (He et al., 2010). The uncertainties of crop 
models are related to those model parameters, and the uncer-
tainties in parameters of crop models can result in a large 
bias in simulating grain yield (Tao et al., 2009, 2018). The 
modelling error was expected to reach zero as the true model 
parameters were obtained. Wallach (2011) reported that crop 
models do not have this property, crop models are misspeci-
fied, and under this misspecification, model calibration tends 
to minimize prediction errors for the variables and sampled 
populations used for calibration. For simulations on regional 
scales, the model parameters obtained were often limited to 
several sites without fully covering all the environment in a 
region, which might weaken the reliability of the simulated 
results. More detailed input data is generally recognized to 
improve the simulation of spatial distributions (Manevski 
et al., 2019). Therefore, using observed data at multiple sites 
for model calibration and validation is quite important to 
reduce the uncertainties in model parameters.

It should be noticed that the results of this study were 
obtained without water and nitrogen stresses. Under water 
stress conditions, the cooling effect of irrigation is weakened 
due to the reduced crop transpiration and soil evaporation, 
and water stress generally would shorten the growth period 
of crops and reduce crop yield. The simulated results of this 
study indicated that the simulated crop yields were higher in 
cities with higher temperatures. The main possibility might 
be that the increase in temperature would reduce the freezing 
damage of winter wheat during the overwintering period, 
lead to an earlier recovering and flowering period, prolong 
the grain-filling stage and ultimately increase the grain yield. 
Therefore, opposite results could occur under other water 
and nitrogen conditions.

Assessing Crop Performance Under Climate Change

In assessing the effects of climate change on crop perfor-
mance, crop models are often used, and the model param-
eters are often derived from the current growing conditions. 
The results from this study indicated that the location of 
the weather station providing the weather data for model 
calibration and validation affected the derived model param-
eters. Temperature is the main influencing factor in plant 
growth, which controls the development of crops in the form 
of thermal time and strongly influences crop yield (Xiao 
et al., 2017). Lobell et al. (2007) reported that declining 
yields due to rising temperatures will threaten food security 
with the growing population under global climate change. 
In North China, higher temperature increases winter wheat 
yield in the absence of moisture stress, while yield decreases 
in the presence of a moisture deficit (Yan et al., 2020). The 
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model parameters tended to have higher thermal units and 
lower growth rates using weather sources with warmer tem-
peratures for model calibration. Therefore, the difference 
in the model parameters would influence the estimation of 
climate change on crop performance. This issue should be 
considered in climate change studies.

Conclusions

This study showed that the urban heat islands (UHIs) of cit-
ies caused the differences in weather factors among nearby 
weather stations. Crop model validation using different 
sources of weather data produced different model param-
eters. These differences in model parameters influenced the 
simulated yield on regional scales. The model parameters 
derived with weather data in a warmer environment tended 
to have higher thermal units and lower growth rates, and 
using those model parameters tended to produce longer 
crop growth durations and resulted in the overestimation 
of crop production in cooler regions. Thermal units and 
crop growth rate are important model parameters in assess-
ing crop performance under climate change; therefore, the 
weather source for model calibration and validation should 
be considered in densely populated regions. The results from 
this study also indicated that crop models with more param-
eters responding to weather data input would produce larger 
yield variations in regional yield simulations. The stability 
and sensitivity of the model performance were related to the 
model parameters and could be considered in selecting crop 
models. To further improve simulation accuracy at regional 
scale, weather data in the field environment whenever pos-
sible for the model calibration and simulation should be 
recommended.
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