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Abstract
Large-scale assessment of crop yields plays a fundamental role for agricultural planning and to achieve food security goals. 
In this study, we evaluated the robustness of data-driven models for estimating soybean yields at 120 days after sow (DAS) 
in the main producing regions in Brazil; and evaluated the reliability of the “best” data-driven model as a tool for early pre-
diction of soybean yields for an independent year. Our methodology explicitly describes a general approach for wrapping 
up publicly available databases and build data-driven models (multiple linear regression—MLR; random forests—RF; and 
support vector machines—SVM) to predict yields at large scales using gridded data of weather and soil information. We 
filtered out counties with missing or suspicious yield records, resulting on a crop yield database containing 3450 records 
(23 years × 150 “high-quality” counties). RF and SVM had similar results for calibration and validation steps, whereas MLR 
showed the poorest performance. Our analysis revealed a potential use of data-driven models for predict soybean yields at 
large scales in Brazil with around one month before harvest (i.e. 90 DAS). Using a well-trained RF model for predicting 
crop yield during a specific year at 90 DAS, the RMSE ranged from 303.9 to 1055.7 kg  ha–1 representing a relative error 
(rRMSE) between 9.2 and 41.5%. Although we showed up robust data-driven models for yield prediction at large scales in 
Brazil, there are still a room for improving its accuracy. The inclusion of explanatory variables related to crop (e.g. growing 
degree-days, flowering dates), environment (e.g. remotely-sensed vegetation indices, number of dry and heat days during 
the cycle) and outputs from process-based crop simulation models (e.g. biomass, leaf area index and plant phenology), are 
potential strategies to improve model accuracy.
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Introduction

The soybean crop [Glycine max (L.) Merr.] plays a strate-
gical role in the food and energy security issues, being one 
of the most important legume species cultivated worldwide 
(~ 120.5 million ha) (FAOSTAT, 2021). Brazil is the larg-
est producer of this particular crop, with approximately 
137.2 million tons of grains on 38.9 million hectares 
harvested during the last growing season (i.e. 2020/21) 
(Conab, 2021). The average soybean yield in Brazil is 
around 3.000 kg  ha–1, but due to the high technology asso-
ciated to optimum management practices used at some 
farms, farmers can reach yields greater than 10.000 kg  ha–1 
under commercial conditions (Battisti et al., 2018).

During the last decades, many efforts have been made 
for better understanding the geospatial and temporal vari-
ability of crop yields at large-scales (regional or national). 
A snapshot of the past and actual agronomic and climatic 
scenarios is essential regarding resources allocation, 
efficient market strategies, and socioeconomic policies 
towards closing gaps in agricultural production systems. 
Crop yield—the production (e.g. soybean grains, sugar-
cane stem and grassland biomass) per unit of land area 
(e.g. hectare)—is one of the mostly used metrics to indi-
cate the level of agricultural development from a particular 
region (Lobell et al., 2009). However, its estimation at 
large scales is one of the major challenges that policy-
makers and governmental agencies have faced for draw 
efficient agriculture strategies (van Klompenburg et al., 
2020). Uncertainties associated with uneven distribution 
of yield data collected from farmer’s surveys, the spatial 
variability of soil, relief and weather even at small scales, 
the heterogeneity of inputs and genotypes being used to 
achieve those yields, and the need to account for gradual 
changes of the latter over time (plant breeding, technol-
ogy adoption, policy changes) still pose considerable chal-
lenges (Hampf et al., 2020; van Bussel et al., 2015).

Agricultural models are powerful tools for assessing the 
effect of different environmental and management condi-
tions on crop yields. The use of them has become popular 
in the last decades, following the pronounced advances in 
technology, since the access to data resources and compu-
tational processing also have substantially increased along 
last decades (Jones et al., 2017). Moreover, those tools are 
fundamental to identify opportunities for enhancing global 
food production, mitigate the GHG emissions, and shrink 
food insecurity in a sustainable way (Cassman & Grassini, 
2020; Ewert et al., 2015).

Process-based crop simulation models have been devel-
oped and tested for better understanding of the relation-
ships involved on crop growth, environmental conditions 
and management practices (Jones et al., 2017; Nendel 

et al., 2014). They are particularly interesting in evaluat-
ing the impact of environmental conditions or management 
strategies on multiple target variables, and their trade-offs, 
simultaneously. Process-based models are often developed 
under experimental field conditions and require detailed 
information for running the simulations (e.g. weather, soil 
and management), which in many agricultural regions are 
still rarely found (Ramirez-Villegas & Challinor, 2012). 
Furthermore, appropriate calibration of these models still 
pose a major challenge (Wallach et al., 2021).

On the other hand, data-driven models (machine learn-
ing algorithms or statistical models) have been also mas-
sively used during the last years due their flexibility con-
cerning inputs required. This group of models is often used 
for investigate the relationship between a target variable 
(e.g. crop yield) and a set of explanatory variables (e.g. 
crop, weather, soil, management and vegetation indices) 
(Kang et al., 2020; Webber et al., 2020). Although there 
are some limitations of data-driven models due its intrinsic 
characteristics (e.g. they do not allow to understand a par-
ticular crop growth process), they present some advantages 
compared to process-based models. For example, data-
driven models are flexible regarding its inputs, i.e. they 
do not require a previously established set of inputs (daily 
weather records, detailed soil and management informa-
tion) as needed by modelling platforms like DSSAT (Jones 
et al., 2003), APSIM (Holzworth et al., 2018) or MONICA 
(Nendel et al., 2011). Another advantage lies in the pos-
sibility of estimating yields with daily, monthly or even 
yearly weather records. Additionally, there is the possi-
bility of including categorical variables like soil type and 
level of management (low, mid and high) in the set of 
explanatory variables. Thus, due to the lack of detailed 
inputs for running process-based crop models (e.g. cultivar 
choice, sowing dates, planting density, fertilization rates, 
etc.) at large geospatial scales, data-driven models have 
appeared and tested as a valuable alternative for yield esti-
mation at regional and national scales (Jiang et al., 2020; 
Lobell & Burke, 2010; Schwalbert et al., 2020).

In Brazil, several studies have investigated aspects 
associated to the sustainability (Sentelhas et al., 2015), 
impact of climate change (da Silva et  al., 2021) and 
impact of management practices (Nóia Júnior and Sen-
telhas, 2019) of soybean crop often through process-based 
modelling approaches at point-basis and field experi-
ments. On the other hand, fewer studies have assessed 
the impact of climate change and advances in agricultural 
technology in soybean cropping systems (Hampf et al., 
2020), as well as the effect of economic and operational 
costs at soybean yields (Vera-Diaz et al., 2008) using pro-
cess- and regression-based models, respectively. In addi-
tion, hybrid methods have used remote sensing products 
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merged with agrometeorological models to estimate soy-
bean yields at the regional-scale (De Melo et al., 2008; 
Silva Fuzzo et al., 2020), becoming a potential alternative 
for mapping yields at a fairly low cost.

The use of publicly available national databases 
towards large-scale assessments is not common. A 
potential source of long-term databases with information 
regarding agricultural information (including crop yield) 
is available at the Brazilian Institute of Geography and 
Statistics through the Survey of Agricultural Production 
website (IBGE/SIDRA, https:// sidra. ibge. gov. br/). There, 
a range of crop production information (e.g. crop yield, 
harvested area, total production) is spatially aggregated 
from municipality to national-scale, and can be accessed 
for large periods.

In this study, we hypothesize that data-driven models are 
suitable tools for both early prediction and end-of-season 
soybean yields estimations at large scales based on pub-
licly available agro-climatic information. In order to test 
our hypothesis, the performance of data-driven models 
feed with publicly available databases of soybean yields 
and agro-climatic data at county scale during 23 years 
(1996–2018) was investigated. We calibrated and validated 
data-driven models to estimate and further make predic-
tions of soybean yields using an independent dataset. Thus, 
the objectives of this study were: (i) to evaluate the robust-
ness of data-driven models for early prediction of soybean 
yields at 30, 60 and 90 days after sow (DAS), and further 
compare it with end-of-season (120 DAS) yield estimation 
in the main producing regions in Brazil; (ii) to investigate 
the suitability of the “best” data-driven model as a tool for 
predict the soybean yield for an independent year, based on 
publicly available databases of crop yield, weather and soil.

Material and Methods

Soybean Yield Database

A publicly available database containing county-scale 
soybean yield records (in kg  ha–1) was downloaded from 
the Brazilian Institute of Geography and Statistics (IBGE) 
during 23 growing seasons (1996–2018). The raw dataset 
had initially records from 558 counties, and it was sub-
mitted through a quality control to identify and further 
remove suspicious and unrealistic yield records. The fol-
lowing steps were applied to the raw crop yield dataset: 
(i) counties with at least one missing year were removed; 
and (ii) counties with identical yield records in consecu-
tive years were either removed, since it is unlikely that it 
happens, due to year-to-year variability of meteorological 
conditions throughout crop cycle.

Weather Database

Monthly weather data containing records of maximum and 
minimum air temperature (Tmax and Tmin, respectively, 
°C), and precipitation (Prec, mm) weredownloaded from 
the gridded weather database Worldclim (https:// www. 
world clim. org) for the period of 1995–2018. Worldclim is a 
monthly time-step product, downscaled from CRU-TS-4.03. 
The WorldClim data records are stored as GeoTiff files for 
the years 1960–2018, covering the whole globe at ~ 5-km 
spatial resolution. We downloaded the weather variables 
Tmax, Tmin and Prec, and cropped them spatially (coun-
ties selected) and temporally (November to February, during 
23 years of analysis) using Quantum-GIS software.

Soil Database

Soil information were taken from the SoilGrids database 
(https:// www. isric. org/)—a widely used soil information 
database for agro-ecological modelling studies. Soil char-
acteristics available in SoilGrids were generated based 
on machine learning approaches developed through circa 
150,000 soil profiles around the world, which around 5,000 
are located in Brazil (Cooper et al., 2005). SoilGrids raster 
files cover the whole worlds on a 250-m spatial resolution 
at 6 standard depths (0–5, 5–15, 15–30, 30–60, 60–100 and 
100–200 cm). However, we downloaded the top soil (i.e. 
0–30 cm) products related to soil texture (i.e. sand and clay 
content), in order to add soil characteristics to the inputs of 
the multivariate models. The soil information was accounted 
through the first 30 cm of depth (averaged weight) and fur-
ther geospatially aggregated for each of the county unit.

Crop Cycle and Preprocessing of Explanatory Data

For simplicity of our analysis, a typical soybean cycle of 
120 days (sow to harvest) was considered. Previous assess-
ments have highlighted that soybean sown between Octo-
ber and November is likely to reduce yield losses due water 
deficit in Brazil (Battisti & Sentelhas, 2015; Nóia Júnior and 
Sentelhas, 2019). Therefore, we synthetically simulated the 
soybean growing period starting on 1st of November (305 
DOY) for all 23 growing seasons considered (1996–2018).

Crop, weather and soil information were used as input 
data for building the models. The time series of crop yield 
were de-trended in order to minimize the effects of differ-
ent agronomic characteristics (herein considered as techno-
logical level) that are not available at county-scale for whole 
Brazil, such sow dates, maturity groups, water management 
(rainfed and irrigated cropping systems) and other factors 
that might be tricky to easily find at large scales. Although 
there are several approaches in the literature to de-trend 
data series, we used the method described by (Heinemann 

https://sidra.ibge.gov.br/
https://www.worldclim.org
https://www.worldclim.org
https://www.isric.org/
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& Sentelhas, 2011), where the yields are de-trended in rela-
tion to the last year in the time series. The last year of the 
time series theoretically represent the year where farmers 
use the most advanced technology in their fields, whereas 
the other years are de-trended based on that year, following 
the Eqs. 1, 2 and 3.

where “a” is the linear coefficient; b is the slope of the 
regression; x is the id number representing each of the years 
(1, 2, 3, …);  Yregression is the yield calculated through the lin-
ear equation (kg  ha–1) (Eq. 1);  Cresidual is the relative devia-
tion between the linear (Eq. 1) and observed  (Yobs) yields; 
 Ydetrended is the yield (kg  ha–1) theoretically without effect 
of agronomic technology (i.e. driven only by environmen-
tal factors); and Yn

obs
 is the yield with theoretically highest 

technology from the observed time series.
The explanatory variables presented different levels of 

magnitude, and therefore we standardized them through 
max–min procedure (ranging between 0 and 1) for further 
feeding the data-driven models (Shahhosseini et al., 2021). 
The variables were chosen according to their widely known 
importance for driving crop yield and photosynthesis rates 
(e.g. air temperature) and soil–water availability (e.g. precip-
itation and soil texture) (Hatfield et al., 2001; Lobell et al., 
2009; Monteith, 1977).

We choose to use easily available explanatory variables 
for feeding the models (e.g. air temperature, precipitation 
and soil texture) to make the methods useful for decision-
makers, farmers and other stockholders whom maybe do 
not have access or familiarity in manipulating large-scale 
databases, being well aware that richer, public available 
information at global geospatial scale of weather, soil and 
crop-related data exists.

Data‑Driven Models

The data-driven models tested herein follow different 
approaches, but they were generically adjusted to the natu-
ral logarithm of the observed yields as a function of the 
explanatory variables (Lobell & Burke, 2010), as presented 
in the Eq. 4:

where Yobs is the observed yield (kg  ha–1); weather and 
soil information are the inputs of the data-driven models 

(1)Yregression = a + bx

(2)Cresidual =
Yobs−Ypredicted

Ypredicted

(3)Ydetrended =
(

1 + Cresidual

)

× Yn
obs

(4)log(Yobs) = f(weather and soil information)

spatially aggregated at county-scale. The estimated yields 
through the data-driven models were back-transformed 
through exponential function for future investigation of the 
model performance through the statistical metrics.

We investigated the performance of two widely used 
data-driven models: random forests (RF) and support vector 
machines (SVM). In addition, the performance of multiple 
linear regression (MLR) was also investigated and assumed 
as our baseline.

MLR is a widely used statistical technique, typically 
accounting to the linear combination effects of the input 
variables to explain the variations at the response variable. 
Due to its simplicity and handling use, it has been massively 
use for agronomic applications since last decades (Olson & 
Olson, 1986).

RF is a broadly used machine learning method based on 
the ensemble of multiple trees for resolve classification and 
regression problems (Breiman, 2001). This method is based 
on producing multiple random trees, which theoretically will 
“vote” in the most popular class within a given set of char-
acteristics. For regression purposes, in particular, the output 
generated through the RF algorithm is the average output 
from all trees built. RF was implemented in R software (R 
Core Team, 2020), using the package “randomForest” (Liaw 
& Wiener, 2002). The RF models were trained using 100 
trees (ntree = 100), since the error is almost constant beyond 
this number of trees (Figure S1), and the number of variables 
randomly sampled at each split equal to 3 (mtry = 3). The 
parameters “ntree” and “mtry” are included in the random-
Forest function used.

SVM are robust and largely used machine learning algo-
rithms for both classification and regression problems. SVM 
is currently applied in order to find an optimal hyperplane 
that maximize the distance between samples (or classes), 
separating groups with similar characteristics (support 
vectors) (Cortes & Vapnik, 1995). SVM approach was 
also implemented in R software, through “e1071” pack-
age (Meyer et al., 2021), where a radial basis kernel was 
adopted. SVM models were built considering the default 
parameters, since the tuning functions did not show con-
siderable improvement for the results from previous studies 
(Lischeid et al., 2022).

Modelling Strategies

Two steps were used to verify the potential suitability of 
data-driven models to predict soybean yields in Brazil. 
First, we built the models with explanatory variables being 
temporally aggregated at 30, 60, 90 and 120 days after sow 
(DAS), to verify how earlier the soybean yields could be 
predicted, according to the statistical performance of the 
models. Since the “best” model was determined, we per-
formed a “leave-one-year-out” cross-validation (LOYOCV) 
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strategy to predict soybean yield for each of the selected 
counties. Figure 1 shows the steps considered during our 
modelling process.

Early Prediction and End‑of‑Season Estimation of Soybean 
Yields

The robustness of the models was tested for early prediction 
of the soybean yields at 30, 60 and 90 days after sow (DAS). 
Furthermore, the end-of-cycle soybean yield (i.e. 120 DAS) 
was estimated and considered our “baseline” for checking 
how earlier the models would be accurately suitable for esti-
mate soybean yields. The performance of the models was 
measured through the coefficient of determination  (R2), to 
account how much of the variance of captured by the model 
fitted; the root mean squared error (RMSE, in kg  ha–1), to 
determine the absolute error of the model, and by the mean-
weighted RMSE (rRMSE, in %), in order to represent the 
relative error.

The data-driven models were build using a standard strat-
egy for split the whole dataset (3450 samples) in training 
(2415 samples—70%) and testing (1035 samples—30%) 
subsets. The aforementioned selection was randomly per-
formed 100 times, aiming to minimize potential effects of 
sampling selection. Since each iteration was completed, 
the model performance was determined for each of the 

models investigated (MLR, RF and SVM) through statisti-
cal metrics.

Leave‑One‑Year‑Out Cross‑Validation Approach (LOYOCV)

Once the “best” model (i.e. the model that showed the best 
statistical coefficients and the number of days after sow) 
was chosen, the LOYOCV approach was performed. Thus, 
we investigated whether a given model would be suitable 
for estimate soybean yields according to the environmen-
tal characteristics for a specific and independent year. The 
residues (i.e. difference between the predicted and observed 
yields) will be geospatially presented at county-scale for 
each of the years evaluated in this study, as well as the rela-
tionship between predicted and observed yields.

Statistical Metrics for Model Evaluation

The performance of the data-driven models was evaluated 
through standard statistical coefficients broadly used in agro-
ecological modelling studies. In our study, further than the 
coefficient of determination  (R2), the root mean square error 
(RMSE, kg  ha–1) and the mean-weighted root mean squared 
error (rRMSE, %) were calculated to determine the robust-
ness of the models regardless the choice of the samples, 
through the Eqs. 5 and 6.

Fig. 1  Flowchart showing the main steps used to build and evaluate the performance of data-driven models for estimate soybean yields at large-
scale in Brazil
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where Yobs is the average of observed yields.

Results

Selection of High‑Quality Soybean Yield Datasets

Following the criteria described at the “Soybean Yield 
Database” section, a total of 150 counties remained 
(~ 27%) and composed our so-called “high-quality” soy-
bean yield database. Thus, the data-driven models were 
fed with a total of 3450 records (150 counties × 23 years), 
where the soybean yield represented the response variable 
from our models. The average of soybean yields within the 

(5)RMSE (kg ha−1) =

�

∑n

i=1

(Y
est

− Y
obsi

)

2

N

(6)rRMSE (%) = 100 ×
RMSE

Y
obs

last five years ranged from less than 2000 to more than 
3000 kg  ha–1, averaging 3063.1 kg  ha–1 (Fig. 1c). The geo-
graphic distribution of the soybean yields during the last 
5-years of the time series evaluated in our study, as well as 
the yearly variability of soybean yield, and its frequency 
distribution are shown in Fig. 2.

These results are likely to provide insights about how 
diverse and challenging can be the large-scale model-
ling of soybean yields, given different cropping systems, 
genotypes (maturity groups, harvest timing, diseases and 
drought resistances), environmental conditions (air tem-
perature and precipitation patterns) and agronomic prac-
tices (sow and harvest dates, plant density, row spacing, 
fertilization types and rates) across the country. The aver-
age technological progress of soybean is 45.7 kg  ha–1  yr–1 
(Fig. 1b), but a large diversity in levels of technology can 
be seen in Brazil, ranging from 10 to 105 kg  ha–1  year–1. 
This highlights the different cropping systems that soy-
bean is carry out along the last decades along the country 
(Figure S2).

Fig. 2  Spatial variability of the average soybean yield (2014–2018) 
at the 150 “high-quality” counties (a); year-to-year variability of 
soybean yields and its technological progress (dashed line) through-
out the period analysed in Brazil (1996–2018). The linear equation 

address the relationship between of crop yields and years, while the 
slope of the trend line (x) represents the general technological pro-
gress of soybean (45.7 kg  ha–1  year–1) (b); and the frequency analysis 
of the soybean average yields (2014–2018) (c)
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Performance of the Data‑Driven Models: Calibration 
and Validation Steps

The narrow distribution of the statistical metrics dur-
ing the calibration step strongly suggest that our models 
have high robustness, regardless the choice of the sam-
ples (performed 100-folds), despite early (30, 60 or 90 
DAS) and end-of-cycle (120 DAS) scenarios. Neverthe-
less, during the validation step the distribution curves are 
more scattered. In Fig. 3, the coloured histograms shows 
the distribution of the RMSE metric (kg  ha–1), given the 
choice of the samples for building the prediction and esti-
mation models. Similar curves are shown in Figures S3 
and S4 representing, respectively, the variability of  R2 and 
rRMSE.

The models showed a progressive increment on their 
performances, since the number of days systematically 
increased until the whole crop cycle (120 DAS). The MLR 
models presented the poorest performance probably due its 
linear approach. MLR yielded always RMSE greater than 
500 kg  ha–1 for calibration and validation steps, represent-
ing relative deviation slightly below 18% (Figure S3). On 
the other hand, the MLR visually presented the largest 
share of the RMSE curves overlapping each other, high-
lighting therefore the robustness of our models, regardless 
the choice of the samples for building them.

In contrast, RF and SVM machine learning models pre-
sented better results than MLR, possibly due their non-linear 
approaches and higher capacity to better detect patterns and 
relationships between explanatory and response variables. 
Only the earliest prediction scenario (30 DAS) generated 
RMSE greater than 500 kg  ha–1 during the calibration step 
for both RF and SVM models. The other scenarios (60, 90 
and 120 DAS), however, came with RMSEs usually rang-
ing from 400 to 500 kg  ha–1 (12–15%, Figure S3) and only 
few combinations yielded RMSE smaller than 400 kg  ha–1 
(< 12%, Figure S3) (SVM model). In the validation step, 
similarly to the MLR models, the distribution curves of RF 
and SVM had slightly larger variability (more scattered) for 
all the statistical metrics evaluated (Fig. 3, S3 and S4). Fur-
thermore, few differences can be identified at the distribution 
of RF and SVM considering the validation RMSE curves, 
suggesting similar performances of these methods.

Performance of the Data‑Driven Models: Choosing 
the “Best” Model

The curves representing in our scenarios (30, 60, 90 and 120 
DAS) are very similar in their shapes and position relatively 
to the x-axis at the validation step. Nevertheless, the 60, 
90 and 120 DAS curves representing RF models overlap 
apparently more than those from SVM models. Therefore, 

Fig. 3  Variability of the RMSE 
(kg  ha−1) for 100-fold choice of 
the calibration and validation 
subsets for building the data-
driven models for predict and 
estimate soybean yields
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we selected RF for making yield predictions using the LOY-
OCV approach. Regardless the potential use of the models 
built with 60 DAS for predict soybean yields, there is only a 
tiny portion of those curves overlapping each other, suggest-
ing a higher risk of highly skewed predicting soybean yields 
using models built up that early, matching with the most 
critical crop phases (flowering and grain filling) (Steduto 
et al., 2012).

Performance of the Data‑Driven Models: LOYOCV 
Approach

At country-scale, the RF model was partially able to capture 
the effects of agro-climatic conditions on soybean yields, 
since the averages of predicted (at 90 DAS) and observed 
yields were nearly similar (Table 1).

The RF model tended to underestimate soybean yields, 
where 15 years had negative residues (Table 1). The highest 

deviation is observed in 2005, where the residues achieved 
650.6 kg  ha–1 (25.6%). On the other hand, negative residues 
lower than – 400 kg  ha–1 (~ 11%) were not observed, indi-
cating a potential use of data-driven models for crop yield 
analysis at large scales using few input data for feed the 
models.

Additionally, the performance of RF model to estimate 
soybean yields for a particular and independent year is pre-
sented at county-scale for the 23 years evaluated in our study, 
where is shown the geospatial and temporal distribution of 
the residues (Fig. 4). In general, there is a large share of 
white (i.e. residues between ± 250 kg  ha–1) or light-coloured 
(± 500 kg  ha–1) areas throughout the years. In contrast, par-
ticular years such 2005 and 2006 come with predominantly 
darker-coloured (either green or brown) regions, indicating 
a poor performance of the model for those particular years 
(residues higher than 1500 kg  ha–1). This underperformance 
of the model in those years can be associated with factors 
that were not considered as explanatory variables, such the 
occurrence of extreme climate conditions during the crop 
cycle, resulting in poor performance of the model to capture 
yield variation at those particular years (Figure S5). Also, 
the relatively short time series used for train the model and 
further make predictions might have only few years with 
those particular conditions. For example, the accumulated 
precipitation in southern Brazil during 2005, 2006 and 2012 
was much lower (less than 30%) then the average precipita-
tion during the simulated soybean cycle (1996–2018, Figure 
S6). Additionally, the maximum air temperature presented 
positive deviation in large part of southern Brazil, particu-
larly in 2005, 2006 and 2014 (Figure S7), likely affecting 
yields (Hatfield & Prueger, 2015). Although soybean is 
unlikely to be affect due low temperature in Brazil, we also 
investigated its geospatial and temporal variability during 
the period assessed in this study (Figure S8).

Discussion

Technological Progress of Soybean Yields

In this study, we aimed to investigate the performance of 
data-driven models for early prediction and end-of-season 
soybean yield estimation at large scales in Brazil. Given the 
continental extent of the country, naturally there are sev-
eral soybean production systems, in which farmers adopt 
different technologies at their fields and regions, yielding 
different technological advances across regions. Technologi-
cal progress is typically associated to the gradual change in 
technology and management practices adopted by farmers 
in a given region over time (Figueiredo, 2016).

The yield dataset was de-trended to minimize the effects 
of technological progress along different regions, assum-
ing a linear gain (in kg  ha–1  year–1, Figure S2) for all set 

Table 1  Overview of the yearly variability of soybean yields in Brazil

Predicted yields were calculated through RF model for 90 DAS, using 
the LOYOCV approach, while the residues were calculated through 
the difference between the predicted and observed yields
1 Predicted and observed yields were submitted to the t-test, do not 
presenting statistic difference between them (p value = 0.3973)

Years Soybean yield 
(kg  ha−1)

Residues

Predicted Observed (kg  ha−1) (%)

1996 3327.8 3476.9 − 149.1 − 4.3
1997 3343.1 3420.7 − 77.5 − 2.3
1998 3371.8 3379.8 − 7.9 − 0.2
1999 3299.4 3394.8 − 95.4 − 2.8
2000 3225.2 3341.5 − 116.2 − 3.5
2001 3277.5 3624.1 − 346.6 − 9.6
2002 3087.1 3455.4 − 368.3 − 10.7
2003 3297.1 3693.9 − 396.9 − 10.7
2004 3339.8 2946.4 393.4 13.4
2005 3192.3 2541.7 650.6 25.6
2006 3048.2 2977.9 70.3 2.4
2007 3414.5 3423.6 − 9.1 − 0.3
2008 3329.4 3320.5 8.8 0.3
2009 3008.5 3114.6 − 106.0 − 3.4
2010 3367.7 3443.1 − 75.4 -2.2
2011 3304.0 3537.8 − 233.9 − 6.6
2012 3094.0 2939.9 154.1 5.2
2013 3243.4 3380.3 − 136.9 − 4.0
2014 3115.4 3080.2 35.3 1.1
2015 3360.3 3309.3 50.9 1.5
2016 3332.1 3248.3 83.8 2.6
2017 3295.9 3634.9 − 339.0 − 9.3
2018 3340.4 3548.0 − 207.5 − 5.8
Average1 3261.5 3314.5 − 53.0 − 1.0
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of high-quality counties evaluated. Nevertheless, regions 
with a high level of technology probably present non-linear 
genetic gains along the years, while other regions where 
soybean is expanding, farmers are forced to adopt more 
suitable practices (e.g. sowing date), use new cultivars or 
even replace old cultivars for others more adapted to the 
environmental conditions (Umburanas et al., 2022). Thus, 
we identified large variability of technological packages 
in Brazil, and therefore the technological progress aver-
aged 45.7 kg  ha–1  year–1 (Fig. 1b). However, since Brazil 
is a country with continental dimension, there is a broader 
range of technological progress in the soybean producing 
areas, varying from 10 to 105 kg  ha–1  year–1 (Figure S2). 
That variability is likely to be related to the advances in 
plant breeding and introduction of modern genotypes at 
the commercial fields (Rogers et al., 2015; Umburanas 

et al., 2022). Also, management practices such optimized 
water use in soybean fields (da Silva et al., 2019), adjust-
ment of sow dates to reduce the risk of crop failure due to 
water deficit on flowering and grain filling periods (Nóia 
Júnior & Sentelhas, 2019), and adoption of new cultivars 
adapted to the new agricultural frontiers such Amazon for-
est, might increase crop resilience under climate change 
scenarios (Hampf et al., 2020). Therefore, due to the broad 
range of factors that might affect yield gains through level 
of technology adopted by farmers, the yield dataset was 
de-trended (Figure S2). We used this, because our main 
goal in this study was to use the data-driven models for 
make short-term yield predictions. In this case, the impact 
of technology is unlikely to significatively affect yields 
as showed under long-term yield predictions, as demon-
strated by Hampf et al. (2020) in Brazil.

Fig. 4  Geospatial and temporal distribution of the soybean yield residues at the “high-quality” counties. Residues were calculated through the 
difference between estimated and observed soybean yields
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Large‑Scale Yield Simulation: The Data‑Driven 
Models

Although several studies have applied data-driven models 
for scaling up crop yields at large areas (e.g. country) there 
is still several issues associated with the methodology used, 
especially regarding the models’ structure and parameter-
isation impacting the outputs and the optimal strategy to 
split the dataset for training and validation. In this study, 
we used maybe one of most common approaches regard-
ing split the datasets in calibration and validation subsets: 
70 and 30%’s. Paudel et al., (2022) also used the 70–30% 
subset ratios for split the dataset and further build machine 
learning models for investigate yield patterns and trends at 
six crops in nine countries in Europe successfully. Although 
these authors included explanatory variables related to crop 
phenology (i.e. vegetative and reproductive phases), the 
ranges in rRMSE (10–30%) were similar to the ones we 
found (9.2–41.5%). Using up to 28 explanatory variables for 
predict corn yields at 10 states in the USA Corn-Belt region, 
Jiang et al. (2020) tested several data-driven approaches, 
where their relative errors when RF model was evaluated 
ranged from 7–33%. Other approaches for data splitting were 
investigated in Germany, where the data-driven models (RF 
and SVM) were feed with weather data and process-based 
model outputs. Considering 90% of the dataset for calibrate 
the model and 10% for test, they were able for capture up 
to 70% of the crop yield variability at national-scale (Lisc-
heid et al., 2022). This highlights further room for includ-
ing explanatory variables such remote sensing products for 
instance from Landsat or Sentinel constellations, and poten-
tially improve model accuracy. Another factor that supports 
our results in terms of model robustness is the sampling 
choice. The 100-fold sampling process that we selected was 
likely to reduce the skewness probability and increasing the 
random effects of sample choice. However, this is not so 
clear in most of the papers using machine learning for crop 
yield assessments.

Large‑Scale Yield Simulation: Model Performance

Recently, regional analyses have been made using machine 
learning methods for crop yield prediction in Brazil (dos 
Santos et al., 2021; Fernandes et al., 2017; Schwalbert et al., 
2020) The models that we tested, regardless their simplicity, 
performed similarly well as compared to previous studies 
using well-calibrated process-based models under experi-
mental field conditions obtained. For example, using pro-
cess-based simulation models, Battisti et al. (2017) tested the 
performance of different models and obtained RMSE rang-
ing from 262 to 2010 kg  ha–1, whereas we had the same met-
ric ranging between 400 and 500 kg  ha–1, when RF and SVM 
were used (Fig. 3). In central Brazil, (Carauta et al., 2017) 

assessed the performance of MONICA model under differ-
ent field conditions, and coupled with a micro-agent simula-
tion model (MPMAS), finding a RMSE around 480 kg  ha–1 
for soybean yield. In contrast, when using data-driven mod-
els, Schwalbert et al. (2020) coupled remote sensing indices 
(i.e. NDVI and EVI) with weather data for feeding machine 
learning models and predict soybean yield at typical soybean 
region in south Brazil, found RMSE figures varying around 
390 to 570 kg  ha–1 using RF models. These authors also 
identified large yield deviation in some years (e.g. 2005), 
highlighting the need of longer data series (i.e. where a large 
number of “atypical” samples are potentially found), and 
then the data-driven models can easily learn from this atypi-
cal condition. In “Cerrado” region, dos Santos et al. (2021) 
investigated the suitability of several data-driven models 
to estimate soybean yields in that region, finding out that 
RF showed the best performance. In that study, further than 
weather variables, they included crop phenology and outputs 
from soil–water balance, yielding RMSE often lower than 
200 kg  ha–1.

Uncertainties and Potential Improvements

Our results benchmark that data-driven models are powerful 
tools to predict and monitor crop yields and environmen-
tal impact assessment at large-scales with public available 
information. However, several aspects are likely to produce 
different perspectives in terms of model output uncertainties, 
and herein we addressed some of them. For example, lack of 
information regarding how does the crop yield dataset was 
collected and harmonized by IBGE system and detailed geo-
spatial datasets regarding agricultural management practices 
(fertilizer rates, sow and harvest timing, impact of insects 
and diseases) that play a fundamental factor for determin-
ing crop production. On the other hand, datasets have been 
made available to characterize water resources and irrigation 
practices at global scale, although uncertainties associated 
to input data, changes in geographic distribution and lack of 
temporal and spatial pattern in some regions (for example, 
developing areas) should be considered (Siebert et al., 2015).

Regarding the choice of the weather data, many studies have 
shown that the source of meteorological data, as well as how it 
is aggregated has a significant impact on the modelled outputs 
(e.g. yield) (Hoffmann et al., 2016; Van Wart et al., 2013; Zhao 
et al., 2015). Here, we used the weather datasets available by 
WorldClim, which is a product from Climate Research Unit 
(CRU) at monthly time-step, and our models resulted in sat-
isfactory results, given the coarseness that the analysis were 
carried out. However, further analysis are likely to be performed 
considering daily time-step weather products available at 
AgERA5 database (https:// cds. clima te. coper nicus. eu/ cdsapp# 
!/ datas et/ sis- agrom eteor ologi cal- indic ators? tab= overv iew), 
where “netcdf” files are available from 1979 to near-present 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-indicators?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-indicators?tab=overview
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covering the whole globe at 0.1° lat-long regular grid. Thus, 
inclusion of explanatory variables considering number of dry 
days, number of heat days, for example, are likely to be included 
in our analysis aiming to improve model accuracy.

Finally, it is very attractive the idea of coupling of remote 
sensing products and process-based crop simulation mod-
els—so-called hybrid models—for large-scale yield monitor-
ing. Nowadays, cloud platforms such Google Earth Engine 
are fundamental for accurate large-scale assessments that 
rely on land monitoring, allowing rapid access and process-
ing of remotely-sensed satellite-derived products. Recent 
approaches have successfully used hybrid approaches for 
investigate the main factors that drive the yield variability 
of corn in the USA merging vegetation indices and outputs 
from validated crop simulation models (Deines et al., 2021; 
Kang et al., 2020; Lobell et al., 2015). As previously men-
tioned, studies approaching the use of hybrid models for yield 
prediction in Brazil are rare. Part of it is due to the lack of 
observed input datasets for calibrate and validate process-
based simulation models beyond the experimental fields 
located at the research or universities centres. Those tools 
have proved to be suitable for generate “pseudo” yield obser-
vations at fine scale, further than other potential explanatory 
variables for build data-driven models. Hence, that kind of 
hybrid approaches are likely to be considered in future analy-
sis of short-term crop yield monitoring at large-scales, since 
factors that control plant growth, development, water and 
health status can also be monitored through those products at 
fine spatial and temporal resolutions. Furthermore, the hybrid 
approaches seem highly interesting, since it might provide 
benefits from the capacity of process-based models to sys-
tematically generate crop yields for long-term future sce-
narios, what we cannot have only with data-driven models.

Conclusions

The main findings of this study highlighted the poten-
tial use of data-driven models for crop yield prediction at 
large scales given the publicly available databases in Bra-
zil, which few studies have had explored those datasets for 
similar purpose. Although RF and SVM models showed a 
certain robustness for predicting soybean yield  (R2 from 
0.17 to 0.68, nRMSE ranging from 9.2 to 41.5%) already 
at an early stage (90 DAS), it was a general analysis, where 
publicly available datasets were considered to explain the 
spatial and temporal variation of soybean yield in Brazil. 
Therefore, there is still room for enhancing the accuracy 
of these models through the integration of more complex 
sources of data (i.e. remote sensing products). In addition, 
hybrid approaches—for instance, combining outputs from 
process-based crop models (e.g. growing degree-days, flow-
ering dates) and environment characteristics associated to 

extreme climate events, number of dry and heat days during 
the cycle, might be a valuable option for increase the accu-
racy and usefulness of data-driven models. Additionally, the 
inclusion of remote sensing products like vegetation indices 
(e.g. NDVI, EVI), which are available at cloudy platforms 
might be an alternative for increase the explanation power of 
such models we used in this study. Hence, combinations of 
data-driven and process-based models with real-time sensor 
data may become an interesting approach for enhanced crop 
yield monitoring and improved development of decision-
making strategies at large scales in a near future.
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