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Abstract
Sensitivity analysis is helpful for improving the efficiency and accuracy of the calibration of crop growth models. However, 
parameter sensitivity is still not well understood when combined with different meteorological and production conditions, 
especially adverse conditions such as water stress. This study simulated the production of winter wheat in four ecological 
areas in Henan Province, China. The Extend Fourier Amplitude Sensitivity Test algorithm (EFAST) was used for analyzing 
the sensitivity of 43 crop parameters of the WOrld FOod STudies (WOFOST) model to yield, aboveground biomass, and 
leaf area index (LAI) with or without water-limited conditions. The results demonstrated that yield and biomass were the 
objective outputs, and the main limiting factors for the model results were assimilation and dry matter conversion efficiency. 
Under water-limited conditions, the parameter sensitivity of related extinction coefficient, early wheat leaf area, and root 
growth increased with increased water stress. With the process variable LAI as the target output, the parameter sensitivity 
varied at different growth stages, whereas the parameter sensitivity was almost the same under different agro-meteorological 
conditions. Under water-limited conditions, the parameter sensitivity of wheat early extinction coefficient, maximum root 
depth, and death rate of the leaves also increased with increased water stress. Therefore, water stress is a key factor affecting 
parameter sensitivity under different agro-meteorological conditions.
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Introduction

Wheat is a major food crop that is very important for food 
security. Wheat production in Henan Province contributes 
significantly to China. Based on data from the National 
Bureau of Statistics of China (http://www.stats .gov.cn/), in 
2019, Henan Province accounted for 28% of China’s total 
wheat production. Henan is a vast territory with an overlap-
ping warm temperate zone and northern subtropical zone, 
and as such it has a diverse climate. In recent years in par-
ticular, the variability in climatic factors as a result of global 
climate change has had a great impact on wheat produc-
tion (Iizumi et al., 2017), and thus accurately and quickly 
simulating the growth, development, and yield of wheat in 

different climates is of great significance for guiding wheat 
production.

The crop growth model was first conceived in the 1960s 
(Jones et al., 2017) and describes the growth of a crop and its 
interaction with the environment using mathematical meth-
ods. Currently, crop growth models have been widely used 
in crop yield prediction (Morell et al., 2016), agricultural 
management decision-making (Zhang et al., 2018), agricul-
tural production potential evaluation (Tang et al., 2018), cli-
mate change (Vanli et al., 2019), and other fields. As numer-
ous parameters are used in the crop model to describe the 
growth process of the crop, it is very difficult and expensive 
to obtain all the parameters when the model is used (Hsiao 
et al., 2009). In a certain production scenario, crop growth 
models often contain a few parameters that have a great 
impact (Makler-Pick et al., 2011). Therefore, focusing on 
sensitive parameters can improve the accuracy and efficiency 
of model calibration. Sensitivity analysis can quantify the 
impact of model parameters on the model output and has 
been widely used in the calibration and development of crop 
growth models (Stella et al., 2014).
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Sensitivity analysis is divided into local sensitivity anal-
ysis and global sensitivity analysis (Saltelli et al., 2008). 
Local sensitivity analysis changes one parameter at a time, 
while other parameters remain fixed to estimate the influ-
ence of the parameter on the model output. It has been used 
extensively due to its efficiency and rapidity (Wallach et al., 
2006). However, local sensitivity analysis is unsuitable for 
non-linear models and cannot estimate the parameter inter-
actions (Varella et al., 2010). Global sensitivity analysis can 
analyze the comprehensive effects of parameters on model 
output based on the entire range of input parameters. It has 
thus gained great popularity in sensitivity analysis (Salt-
elli et al., 2008). Global sensitivity analysis methods can 
be divided into screening, regression-based, and variance-
based. Among them, the Extended Fourier Amplitude Sen-
sitivity Test (EFAST) algorithm based on the variance-based 
method can calculate the contribution of each parameter and 
its interaction with other parameters and has been widely 
used in sensitivity analysis (Jin et al., 2018; Wang et al., 
2013; Zhao et al., 2014).

Sensitivity analysis results are mainly affected by envi-
ronmental conditions (Confalonieri et al., 2010a, b) and 
management measures such as fertilization and irrigation 
(DeJonge et al., 2012; Guo et al., 2019; Liang et al., 2017). 
However, the performance of sensitivity analysis based on 
a combination of climates and production conditions is 
uncertain. In addition, previous sensitivity analysis studies 
typically used yield and aboveground biomass at maturity 
as objective outputs (Vanuytrecht et al., 2014; Zhao et al., 
2014), while few studies have focused on process variables, 
such as leaf area index (LAI), which are constantly changing 
with crop growth.

Hu and Yin (2014) divided Henan Province into four 
major wheat production and ecological regions according 
to the temperature, radiation, precipitation, and local pro-
duction characteristics as follows: the northern irrigation 
area, the central supplementary irrigation area, western dry 
farming areas, and southern rain-fed areas. Therefore, in 
an attempt to assess the performance of sensitivity analysis 
in the different ecological areas based on the WOrld FOod 
STudies (WOFOST) model, this study selected yield, above-
ground biomass at maturity, and LAI as the objective outputs 
and analyzed the sensitivity parameters of WOFOST with or 
without water limitation.

Materials and Methods

WOFOST Growth Model

The WOFOST growth model is a dynamic, explanatory 
model developed by the World Food Research Center 
(CWFS) and Wageningen University in the Netherlands 

(van Ittersum et al., 2003). It has been widely used in yield 
forecasting (Supit et al., 2012), climate change (Lecerf et al., 
2019), and remote sensing data assimilation (Huang et al., 
2019). In WOFOST, crop growth is simulated based on 
eco-physiological processes. The major processes are phe-
nological development,  CO2-assimilation, transpiration, res-
piration, partitioning of assimilates to the various organs, 
and dry matter formation. The phenology of WOFOST 
is described by the dimensionless state variable develop-
ment stage (DVS). For most annual crops, DVS is set to 0 
at seedling emergence, 1 at flowering (for cereals), and 2 at 
maturity. WOFOST is often used to simulate crop growth 
under potential conditions (an optimal water supply) and 
water-limited (water availability limits the potential produc-
tion) conditions (de Wit et al., 2019). The detailed principles 
and specific application of the WOFOST model have been 
described in the WOFOST 7.1 user manual (Boogaard et al., 
2014).

Research Areas and Experimental Description

This experiment was carried out from 2019 to 2020. Four 
typical experimental sites, namely Neihuang (NH), Xuchang 
(XC), Luoning (LN), and Luoshan (LS), were selected to 
represent the northern Henan irrigation area and the cen-
tral Henan supplementary irrigation area, western Henan 
dry farming areas, and southern Henan rain-fed areas. The 
characteristics of each site are listed in Table 1. ‘BaiNong 
207′ was chosen as the test wheat variety, which is widely 
planted in Henan Province, and the phenological parameters 
were calibrated according to the observed phenology. The 
LAI, aboveground biomass, and yield were measured during 
the overwintering stage, jointing stage, anthesis stage, filling 
stage, and maturity.

Using meteorological data obtained from the NASA 
POWER database (https ://power .larc.nasa.gov/) during 
October 1, 2019, to June 10, 2020, a distribution map of 
the main meteorological factors in Henan Province was 
established by interpolation (Fig. 1). The distribution of 
precipitation and radiation was opposite, with precipitation 
decreasing from south to north and radiation increasing from 
south to north. Both vapor pressure and accumulated tem-
perature showed a decreasing trend from southeast to north-
west. The distribution of meteorological factors resulted in 
sufficient sunlight, less precipitation, low vapor pressure, 
and low accumulated temperature in northern Henan (NH). 
The meteorological factors in the central and eastern regions 
(XC) were all at the middle level. The main features of the 
western region (LN) were low temperature and vapor pres-
sure. In the southern region (LS), the temperature, precipita-
tion, and vapor pressure were relatively high, while the total 
radiation was comparatively low.

https://power.larc.nasa.gov/
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The Process and Method of Sensitivity Analysis

The Process of Sensitivity Analysis

This work used SimLab (version 2.2.1) (Tarantola, 2005) 
software for the sensitivity analysis. The process is illus-
trated in Fig. 2. The main procedures were structured in the 
following steps: (i) the parameter range and its distribution 
were determined. (ii) Monte Carlo sampling was used to 
generate a random sample set. (iii) The sample set was used 
to run the WOFOST model. (iv) The results from running 
the WOFOST input were fed into SimLab to calculate the 
sensitivity of each parameter. This research mainly assessed 
WOFOST crop parameters under potential and water-limited 
production scenarios because irrigation conditions are usu-
ally the most important factors affecting wheat growth in 
actual production. Since the distribution of the parameters is 
uncertain, the uniform distribution is used for sampling. The 
parameter range has few effects on the ranking of the sen-
sitivity parameters (Jin et al., 2018; Li et al., 2019a, 2019b; 
Wang et al., 2013), and the parameter default value fluctu-
ates at 10% in the parameter range, as shown in Table 2.

Sensitivity Analysis Method

The EFAST method was formed based on the Fourier ampli-
tude test method (FAST) and Sobol’s method (Saltelli et al., 
1999). The method integrated the merits of FAST and Sobol’s 
algorithm. It is a method that is based on variance decompo-
sition and considers that the variance in the model output is 
caused by the parameters and interaction of various param-
eters. Therefore, through the variance decomposition, the 
contribution ratio of parameters, including parameter coupling 

effects to the total variance, represents the parameter sensitiv-
ity index. The basic principle is to use a certain conversion 
function to convert the spectrum curve of different parameter 
spaces expected in the model into a function curve with a com-
mon independent parameter. That is, Y = f

(

x1, x2, x3,⋯ , xn
)

 
is converted into Y = f (s) , converting the multidimensional 
space into one-dimensional space. Then the function is Fou-
rier transformed, and the spectrum curve of the Fourier series 
of each frequency is extracted, following which the influence 
of a certain parameter change on the output variable can be 
obtained. It is expressed as the ratio of the variance of the 
result change caused by some parameters to the total variance 
(formula (1)).

where V is the total variance of the model;  Vi is the vari-
ance caused by a single parameter change of the model when 
the other parameters are unchanged, called the first-order vari-
ance.  Vij is caused by the interaction between the two param-
eters, which is called the second-order variance. Similarly,  Vijk 
is the third-order variance.

Through normalization, the first-order  (Si), second-order 
 (Sij), and third-order  (Sijk) sensitivity index of the parameters 
was defined as:

The global sensitivity index of the parameter is the sum of 
the sensitivity indexes of each order of the parameter:

V =
∑

i

Vi +
∑

i≠j

Vij +
∑

i≠j≠k

Vijk +⋯ + V12⋯n.

Si =
Vi

V
, Sij =

Vij

V
, Sijk =

Vijk

V
, S12n =

V12n

V
.

STi = Si + Sij + Sijk +⋯ + S12⋯n

Table 1  The characteristics of each experimental site

Site NH XC LN LS

Longitude 114°38′E 113°48′E 111°36′E 114°31′E
Latitude 35°30′N 34°8′N 34°17′N 32°16′N
Climate type Warm temperate continental 

monsoon climate
Typical temperate 

monsoon climate
Temperate semi-humid arid 

monsoon climate
North subtropi-

cal monsoon 
climate

Sowing date 10/18/2019 10/18/2019 10/16/2019 10/20/2019
Flowering date 4/27/2020 4/22/2020 5/2/2020 4/16/2020
Maturity date 6/1/2020 5/27/2020 6/6/2020 5/23/2020
Water content at saturation 0.42 0.45 0.48 0.48
Field capacity 0.16 0.35 0.32 0.32
Wilting point 0.06 0.19 0.12 0.17
Irrigation date (70 mm each time) 11/20/2019 10/28/2019

3/15/2020 3/14/2020
4/1/2020 5/4/2020
5/5/2020
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The global sensitivity can obtain the influence of the 
interaction of the parameters. When there is no interaction 
between the parameters, the interaction between the param-
eters is zero. The sensitivity parameters are generally con-
sidered to be the parameters with a sensitivity index > 0.1 
(Lamboni et al., 2009; Richter et al., 2010; Vanuytrecht 
et al., 2014).

Results

Sensitivity Analysis Under Optimal Water Supply 
Conditions

The parameter sensitivity of yield and aboveground biomass 
under optimal water supply conditions is indicated in Fig. 3. 
The main sensitive parameters of yield and aboveground 

Fig. 1  Meteorological characteristics in Henan Province. IRRAR: total radiation; RAIN: precipitation; AT: accumulated temperature > 0  °C; 
VAP: mean vapor pressure

Fig. 2  Sensitivity analysis execution process
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biomass were consistent across the four regions. For yield 
(Fig. 3a), the parameter efficiency of conversion into storage 
organ (CVO), maximum assimilation rate (AMAXTB1.3), 
and light-use efficiency (EFFTB40) were the main sensitive 

parameters. Among them, the effect of the efficiency of 
conversion into storage organ (CVO) was extremely signifi-
cant in each region, and the parameter sensitivity indices all 
exceeded 0.4. The effect of light-use efficiency (EFFTB40) 

Table 2  Input parameters of WOFOST

Note: DVS denotes the phenological development stage; T denotes the temperature

Parameter Description Unit Minimum Maximum

TDWI Initial total crop dry weight kg·hm−2 189 231
LAIEM Leaf area index at emergence hm2·hm−2 0.12285 0.15015
RGRLAI Maximum relative increase in LAI hm2·hm−2·d−1 0.007353 0.008987
SLATB0 Specific leaf area (DVS = 0) hm2·kg−1 0.001908 0.002332
SLATB0.5 Specific leaf area (DVS = 0.5) hm2·kg−1 0.001908 0.002332
SLATB2.0 Specific leaf area (DVS = 2.0) hm2·kg−1 0.001908 0.002332
SPAN Life span of leaves growing at 35 °C d 28.17 34.43
TBASE Lower threshold temperature for aging of leaves °C  – 1 1
KDIFTB0 Extinction coefficient for diffuse visible light (DVS = 0) 0.54 0.66
KDIFTB2.0 Extinction coefficient for diffuse visible light (DVS = 2.0) 0.54 0.66
EFFTB0 Light-use efficiency of single leaf (T = 0) 0.405 0.495
EFFTB40 Light-use efficiency of single leaf (T = 40) 0.405 0.495
AMAXTB0 Maximum leaf  CO2 assimilation rate (DVS = 0) kg·hm−2·h−1 32.247 39.413
AMAXTB1.0 Maximum leaf  CO2 assimilation rate (DVS = 1.0) kg·hm−2·h−1 32.247 39.413
AMAXTB1.3 Maximum leaf  CO2 assimilation rate (DVS = 1.3) kg·hm−2·h−1 32.247 39.413
AMAXTB2.0 Maximum leaf  CO2 assimilation rate (DVS = 2.0) kg·hm−2·h−1 4.032 4.928
TMPFTB0 Reduction factor of AMAX (T = 0 °C) 0.009 0.011
TMPFTB10 Reduction factor of AMAX (T = 10 °C) 0.54 0.66
CVL Efficiency of conversion into leaves kg·kg−1 0.6165 0.7535
CVO Efficiency of conversion into storage organ kg·kg−1 0.6381 0.7799
CVR Efficiency of conversion into roots kg·kg−1 0.6246 0.7634
CVS Efficiency of conversion into stems kg·kg−1 0.5958 0.7282
Q10 Relative increase in respiration rate per 10 °C temperature increase 1.8 2.2
RML Relative maintenance respiration rate of leaves kg  (CH2O)·(kg·d)−1 0.027 0.033
RMO Relative maintenance respiration rate of storage organ kg  (CH2O)·(kg·d)−1 0.009 0.011
RMR Relative maintenance respiration rate of roots kg  (CH2O)·(kg·d)−1 0.0135 0.0165
RMS Relative maintenance respiration rate of stems kg  (CH2O)·(kg·d)−1 0.0135 0.0165
FRTB0 Fraction of total dry matter to roots (DVS = 0) 0.45 0.55
FRTB0.4 Fraction of total dry matter to roots (DVS = 0.4) 0.153 0.187
FRTB0.7 Fraction of total dry matter to roots (DVS = 0.7) 0.063 0.077
FRTB0.9 Fraction of total dry matter to roots (DVS = 0.9) 0.027 0.033
FLTB0 Fraction of aboveground dry matter to leaves (DVS = 0) 0.72 0.88
FLTB0.25 Fraction of aboveground dry matter to leaves (DVS = 0.25) 0.63 0.77
FLTB0.5 Fraction of aboveground dry matter to leaves (DVS = 0.5) 0.45 0.55
FLTB0.646 Fraction of aboveground dry matter to leaves (DVS = 0.646) 0.27 0.33
PERDL Maximum relative death rate of leaves due to water stress kg·(kg·d)−1 0.27 0.33
RDRRTB1.5 Relative death rate of roots (DVS = 1.5001) kg·(kg·d)−1 0.018 0.022
RDRRTB2.0 Relative death rate of roots (DVS = 2.0) kg·(kg·d)−1 0.018 0.022
RDRSTB1.5 Relative death rate of stems (DVS = 1.5001) kg·(kg·d)−1 0.018 0.022
RDRSTB2.0 Relative death rate of stems (DVS = 2.0) kg·(kg·d)−1 0.018 0.022
RDI Initial rooting depth cm 9 11
RRI Maximum daily increase in rooting depth cm·d−1 1.08 1.32
RDMCR Maximum rooting depth cm 112.5 137.5
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was slightly lower in NH with a sensitivity index 0.098, 
and the sensitivity index of maximum assimilation rate 
(AMAXTB1.3) in LS was 0.087. Additionally, the param-
eter sensitivity of extinction coefficient (KDIFTB2.0) and 
specific leaf area (SLATB0.5) was also sensitive in the four 
regions. The sensitivity indices ranged between 0.06 and 
0.10.

For aboveground biomass (Fig. 3b), the main sensitive 
parameters were light-use efficiency (EFFTB0, EFFTB40) 
and efficiency of conversion into stems (CVS) in the four 
regions, but the parameter ranking of the four regions dif-
fered. There was CVS > EFFTB0 > EFFTB40 in NH. The 
other three areas were EFFTB0 > EFFTB40 > CVS. There 
were also some parameters, including extinction coefficient 
and assimilation rate (KDIFTB0, KDIFTB2.0, AMAXTB0, 
AMAXTB1.0), specific leaf area (SLATB0, SLATB0.5), 
efficiency of conversion into leaves and storage organ (CVL, 

CV), root and leaf dry matter distribution (FRTB0, FLTB0), 
and relative increase in respiration rate per 10 °C tempera-
ture increase and relative maintenance respiration rate of the 
leaves (Q10, RML), which had some effects on the results, 
and the sensitivity indices were between 0.02 and 0.09. 
Other parameters had little or no influence on the results.

Sensitivity Analysis Under Water‑limited Production 
Scenarios

The results of the global sensitivity analysis based on yield 
and aboveground biomass under water-limited conditions 
are depicted in Fig. 4. The sensitive parameters were quite 
different in the four regions. Compared with the sensitivity 
analysis results of yield under optimal water supply condi-
tions, the efficiency of conversion into storage organ (CVO) 
and light-use efficiency (EFFTB40) remained the sensitive 

Fig. 3  Total sensitivity index of parameters under optimal water supply conditions: a yield; b aboveground biomass. Parameters whose sensitiv-
ity index to yield and biomass was less than 0.01 are not shown in the figure

Fig. 4  The total sensitivity index of parameters under water-limited production scenarios. a yield; b aboveground biomass. Parameters whose 
sensitivity index to yield and biomass was less than 0.01 are not shown in the figure
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parameters in LS, whereas efficiency of conversion into 
storage organ (CVO), light-use efficiency (EFFTB40), and 
maximum assimilation rate (AMAXTB1.3) decreased to dif-
ferent degrees in LN, XC, and NH. Furthermore, specific 
leaf area (SLATB0) and root and leaf dry matter distribution 
(FRTB0, FLTB0) became sensitive parameters in LN, XC, 
and NH. In addition, the parameters of extinction coefficient 
(KDIFTB0) in LN, XC, and NH were also sensitive, with 
sensitivity indices ranging between 0.09 and 0.13.

The sensitive parameters concerning aboveground bio-
mass were also different from those under optimal water sup-
ply conditions (Fig. 4b). Aboveground biomass had similar 
sensitive parameters in LS, LN, and XC, and the sensitiv-
ity indices of light-use efficiency (EFFTB0, EFFTB40) and 
efficiency of conversion into stems CVS were all greater 
than 0.1. The difference in these three regions was that the 
sensitivity indices of extinction coefficient (KDIFTB0) were 
0.18, 0.13, and 0.02 in XC, LN, and LS, respectively. The 
sensitive parameters of NH were quite different from the 

other regions. Extinction coefficient (KDIFTB0), specific 
leaf area (SLATB0), and efficiency of conversion into stems 
(CVS) were the sensitive parameters. Among them, extinc-
tion coefficient (KDIFTB0) had the largest effect, with a 
sensitivity index of 0.33. Compared with optimal water sup-
ply conditions, the sensitivity indices of light-use efficiency 
(EFFTB0, EFFTB40) dropped below 0.1.

Sensitivity Analysis of LAI During the Entire Growth 
Period

The WOFOST model is a dynamic model that is simulated 
according to a one-day step size. It is continuous in the time 
series. Therefore, it is necessary to analyze the parameter 
sensitivity of the process variables. The effects of the param-
eter on LAI were assessed (Fig. 5). The results demonstrated 
that the sensitive parameters of LAI differed in the different 
growth stages. Under optimal water supply conditions, from 
emergence to 150 days after emergence (DAE), the wheat 

Fig. 5  The total sensitivity 
index of the parameters of the 
LAI during the entire growth 
period: a Optimal water supply 
conditions; b Water-limited 
production scenarios. The 
parameters whose sensitivity 
index was less than 0.05 are not 
shown in the figure



238 International Journal of Plant Production (2021) 15:231–242

1 3

plants had been experiencing emergence to overwintering. 
In this stage, the main sensitive parameters were specific 
leaf area (SLATB0) and root and leaf dry matter distribution 
(FRTB0, FLTB0) in the four regions. Only in LN did the 
lower threshold temperature for aging of leaves (TBASE) 
have a higher sensitivity than the others. From overwinter-
ing to about 200 DAE, the specific leaf area (SLATB0.5) 
was the most sensitive parameter, and the highest sensitivity 
indices were all above 0.28 in the four regions. The effects of 
extinction coefficient (KDIFTB0 and KDIFTB2.0) showed 
high sensitivity when the leaf area began to decrease (about 
180 DAE). Additionally, the sensitivity of extinction coef-
ficient (KDIFTB0 and KDIFTB2.0) was lower in LS than 
in the others. In the 10 days before wheat maturity, the life 
span of leaves (SPAN) was the most important parameter 
affecting LAI, and the highest sensitivity indices were all 
above 0.89 in the four regions. Under water-limited condi-
tions, the sensitive parameters did not change much in LS. 
However, in LN, XC, and NH, the influence of extinction 
coefficient (KDIFTB0) increased, while the influence of 
extinction coefficient (KDIFTB2.0) weakened. Furthermore, 
the impact time of the life span of leaves (SPAN) was also 
shorter. Compared with optimal water supply conditions, 
the sensitivities of maximum relative death rate of leaves 
due to water stress (PERDL) and maximum rooting depth 
(RDMCR) were increased in LN, XC, and NH, although 
their effects were still very low.

Model Calibration for Aboveground Biomass 
and Yield

Based on the sensitivity analysis results, the yield and bio-
mass of the four sites were calibrated using the SUBPLEX 
algorithm (Fig. 6). It must be noted that in LN there was 
no irrigation; hence, the parameters concerning early light 
interception [e.g., extinction coefficient (KDIFTB0), specific 
leaf area (SLATB0), and leaf and root allocation coefficient 
(FLTB0, FRTB0)] were given priority. At other sites, yield 
and aboveground biomass were used to construct cost func-
tions to optimize parameter dry matter conversion efficiency 
(CVO, CVS), light-use efficiency (EFFTB0, EFFTB40), 
maximum assimilation rate (AMAXTB1.0, AMAXTB1.3), 
and extinction coefficient (KDIFTB2.0); and the specific leaf 
area (SLATB0, SLATB0.5), leaf and root allocation coef-
ficient (FLTB0, FRTB0), extinction coefficient (KDIFTB0, 
KDIFTB2.0), and the life span of leaves (SPAN) were used 
to calibrate LAI. The results showed that the aboveground 
biomass and yield were well simulated. The calibrated 
biomass  R2 ranged between 0.97 and 0.99, the RMSE was 
between 0.72 and 1.06 ton/ha, and the absolute error of the 
yield was 0.01 ton/ha, 0.09 ton/ha, 0.48 ton/ha, and 0.16 ton/
ha in NH, XC, LN, and LS, respectively.

Discussion

This research improves the applicability of the WOFOST 
model at the regional scale through sensitivity analysis 
under different meteorological and water supply condi-
tions. In the case of sufficient water supply, the sensitive 
parameters of the model included parameters related to 
assimilation and dry matter conversion efficiency, which is 
consistent with the findings of Wang and Ma on WOFOST 
(Ma et al., 2013; Wang et al., 2013). The sensitive param-
eters were the same among different regions, though their 
rankings differed. Liu et al. (2019) reported similar find-
ings in rice. Under water-limited conditions, the sensitivity 
results varied greatly among the different regions.

Under optimal water supply, the sensitivity of maxi-
mum leaf assimilation rate (AMAXTB) and extinction 
coefficient (KDIFTB2.0) in NH with strong radiation was 
higher than that in LS with low radiation. This is mainly 
because the WOFOST model divides the canopy into 
different leaf layers to calculate the assimilation rate of 
each layer (Boogaard et al., 2014). Therefore, when the 
radiation is strong, the upper leaves can easily reach the 
maximum assimilation rate, thereby reducing the use effi-
ciency of light energy. At the post-growth stage of wheat, a 
reasonable extinction coefficient can increase the transmit-
tance of the upper leaves, improve the radiation received 
by the lower leaves, and improve the use efficiency of light 
energy. The extinction coefficient can be affected by leaf 
angle (Wang et al., 2007) and row spacing (Flénet et al., 
1996), but the effect of leaf angle and row spacing on the 
extinction coefficient is not considered in the WOFOST 
model (Boogaard et al., 2014). Therefore, it is essential to 
calibrate the extinction coefficient in model application.

Compared with optimal water supply, the results of the 
sensitivity analysis under water-limited conditions were 
inconsistent across the different regions, and the degree 
of variation in parameter sensitivity was especially greater 
under water-stressed conditions. The parameters relat-
ing to early light interception, such as specific leaf area 
(SLATB0), root and leaf dry matter partition coefficient 
(FRTB0, FLTB0), and extinction coefficient (KDIFTB0), 
had a great influence on the model output under water 
stress. This result is in line with the findings of Gilardelli 
et al. (2018). and Richter et al. (2010). Transpiration is 
the loss of water from a plant to the atmosphere. A crop 
reacts to water stress with closure of the stomata. As a 
consequence, the gas exchange between the crop and the 
atmosphere diminishes, and hence assimilation is reduced 
(Boogaard et al., 2014). Our results demonstrated that 
water stress reduces the sensitivity of assimilation-related 
parameters. Light interception depends on the leaf area 
and extinction coefficient, which leads to the extinction 
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coefficient (KDIFTB0) and parameters concerning leaf 
expansion becoming important factors affecting water 
consumption. Therefore, when the model is applied and 
calibrated in water-deficient areas, parameters involved in 

early light interception (extinction coefficient, KDIFTB0) 
and specific leaf area (SLATB0, etc.) should be prioritized.

The sensitive parameters of LAI changed in the differ-
ent growth stages, and thus the temporal characteristics 

Fig. 6  Relationships between simulated and the measured values based on the calibrated model results: a aboveground biomass at NH site, b 
aboveground biomass at XC site, c aboveground biomass at LN site, d aboveground biomass at LS site, e yield at the four sites
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of parameter sensitivity are very important for model 
calibration. Process variables such as LAI are often used 
as intermediate variables for the assimilation of crop 
growth models and remote sensing data (Huang et al., 
2019; Jin et al., 2016; Ma et al., 2013). Sensitivity anal-
ysis can increase the understanding of model process 
variables (Li et al., 2019a, 2019b; Specka et al., 2019). 
Under water stress, the extinction coefficient in the 
early stage (KDIFTB0), death rate of leaves due to water 
stress (PERDL), and maximum rooting depth (RDMCR) 
become more sensitive to LAI. The extinction coefficient 
(KDIFTB) is not only related to transpiration and assimi-
lation but also related to the self-shading death of leaves 
(de Wit et al., 2019). Therefore, when calibrating LAI, 
the characteristics of sensitivity parameters at different 
growth stages should be considered in the selection of 
calibration parameters.

This study analyzed the differences in parameter sen-
sitivity under water stress and provided a useful refer-
ence for WOFOST calibration. When calibrating the 
model, the phenology must first be calibrated. Second, 
the water supply situation should be analyzed based on 
the meteorological and production conditions. Third, 
calibration parameters should be selected based on water 
supply: when water is sufficient, dry matter conversion 
efficiency (CVO, CVS), light-use efficiency (EFFTB0, 
EFFTB40), maximum assimilation rate (AMAXTB1.0, 
AMAXTB1.3), and extinction coefficient (KDIFTB2.0) 
have a great influence on yield and aboveground biomass. 
The specific leaf area (SLATB0, SLATB0.5), leaf and 
root allocation coefficient (FLTB0, FRTB0), extinction 
coefficient (KDIFTB0, KDIFTB2.0), and the life span 
of leaves (SPAN) are sensitive to LAI. When water is 
deficient, priority should be given to parameters concern-
ing early light interception, such as extinction coefficient 
(KDIFTB0), specific leaf area (SLATB0), and leaf and 
root allocation coefficient (FLTB0, FRTB0), follow-
ing which it should be determined whether to consider 
parameters related to assimilation and matter conversion 
efficiency, as these parameters may result in assimilation-
related parameters with small effects on the model results. 
This also illustrates that reasonably early light intercep-
tion might reduce water stress. For example, in LN with 
low precipitation and no irrigation, due to the low water 
consumption in the early stage (due to the low biomass 
and LAI in the early stage), a high yield was ultimately 
achieved. Measures that adjust the sowing density (Li 
et al., 2019a, 2019b) and sowing date (Frieler et al., 2017) 
have also been used to adjust the early growth of wheat 
to reduce water stress and improve water use efficiency. 
Finally, the cost function of the observed value should be 
calculated and simulated to calibrate LAI, aboveground 
biomass, and yield.

Conclusion

This study integrated different environmental conditions 
and water supply conditions to analyze the sensitivity 
characteristics of the yield, aboveground biomass, and LAI 
of the 43 parameters of the WOFOST model. The results 
illustrated that for yield and aboveground biomass, the 
influential parameters under optimal water supply were 
consistent across the different environments, but changed 
dramatically under water-limited conditions. The param-
eters related to early light interception [e.g., specific leaf 
area (SLATB0), fraction of dry matter to leaves (FLTB0), 
fraction of dry matter to roots (FRTB0), and extinction 
coefficient (KDIFTB0)] had a strong influence on param-
eter sensitivity under water stress. For LAI, the sensitiv-
ity of parameters varied over the wheat growing season, 
and these changes were closely correlated with wheat 
growth stage. The sensitivity of parameters [extinction 
coefficient (KDIFTB0), death rate of leaves due to water 
stress (PERDL), and maximum rooting depth (RDMCR)] 
increased with increased water stress. Finally, the yield 
was calibrated based on the sensitivity results, and a cali-
bration strategy of the WOFOST model under different 
moisture conditions was proposed.

The improvements offered by this study were as fol-
lows: (i) analyze the parameter sensitivity of the WOFOST 
model under different agro-meteorological and water sup-
ply conditions (ii) determine the sensitive parameters of 
the model to water stress in WOFOST, and (iii) propose 
model calibration strategies under different water supplies.

The purpose of this study was to reduce the complex-
ity of model use and provide guidance for model calibra-
tion. The results illustrated that water stress is a key fac-
tor affecting the sensitivity of WOFOST model parameters 
under different meteorological conditions. Therefore, when 
calibrating WOFOST, the water supply situation should be 
considered first, particularly water-deficient conditions, to 
better calibrate the WOFOST crop model. In the future, 
research should combine geographic information systems, 
remote sensing, big data, and other information technologies 
to strengthen the analysis of meteorological and production 
conditions, improve the adaptability of the model, and pro-
mote the application of the model on a regional scale.
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