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Abstract
We present nonlocal operators that enforce local boundary conditions. We extend the con-
struction from (−1, 1) to a general interval (a, b). This extension is nontrivial as it requires
an in-depth understanding of the abstract convolution operator, a series representation. For
implementation purposes, one has to find an integral representation. We accomplish this task
by a careful extension of kernel functions from (−1, 1) to (a, b) and subtle integral manip-
ulations. We prove that the constructed operators and the original linearized peridynamic
operator agree in the bulk of the domain for the six boundary conditions considered. Further-
more, they fully agree on the domain when the boundary condition (BC) is pure Neumann or
periodic.We rigorously verify that BCs are satisfied by utilizing theHilbert-Schmidt property
of the abstract convolution operator.

Keywords Nonlocal operator · Local boundary condition · Functional calculus ·
Hilbert-Schmidt operator · Hilbert basis

1 Introduction

Wepresent novel governing operators inspired by the theory of Peridynamics (PD), a nonlocal
formulation of continuummechanics developed by Silling [17]. The original (linearized) PD
governing operator Morig is a formal operator because it has no reference to a rigorous
boundary condition (BC) [17, p. 201]. We addressed this issue over the years and have
studied various aspects of local BCs in nonlocal problems [1–4, 6–8, 10–12]. We treat the
kernel ofMorig more general than a convolution type and denote it by the bivariate function
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K (x, x ′).1 This treatment will to turn Morig into a rigorous operator, thereby allowing us to
incorporate local BC into the PD governing operator. Let us keep the domain as� = (−1, 1)
for now. The PD governing operator is defined as

Morigu(x) =
∫

�

K (x, x ′) dx ′ u(x) −
∫

�

K (x, x ′)u(x ′) dx ′.

Our governing operator is defined as

MBCu(x) =
∫

�

KBC(0, x
′) dx ′ u(x) −

∫
�

KBC(x, x
′)u(x ′) dx ′.

Although the first term ofMorig is modified to obtainMBC, the operators are close to each
other. We prove that the operators agree in the bulk of the domain for the six BCs considered.
Furthermore, they fully agree on the domain when the BC is pure Neumann or periodic; see
Theorem 4.1.

The main advantage that the operators MBC provide is the ability to enforce local BC
through the use of a forcing function only on the local boundary, not in the interior of the
domain [1, 10]. There are several reasonswhy onewants to utilize localBCs. Probably the first
and foremost reason is that the partial differential equation (PDE) formulations exclusively
employ local BCs. In engineering and science, the BCs of practical use are predominantly
local. The physical measurements are also local. The ability to incorporate such a widely
accepted BC type into nonlocal formulations is quite valuable. Starting from the inception
of the finite element method (FEM) in the 1960s, the discretization of PDEs employed local
BCs. Hence, the legacy codes that utilize FEM, finite volume, or discontinuous Galerkin
type discretization methods all are based on local BCs. The ability to inherit well-developed
local BC based codes and re-use them for nonlocal formulations is prudent. For instance, the
coupling of nonlocal and local problems along a local interface becomes completely natural.
The ability to transfer well-established domain decomposition methods to nonlocal problems
is a big gain for the nonlocal community.

In addition, surface applications such as contact, shear, and traction cannot be treated
using nonlocal BC because their volume integration is zero. Such surface applications are
formulated naturally with local BCs, and hence, can be treated in our nonlocal formulation.
Finally, using local BCs, we aim to overcome the surface effects seen in PD simulations.
Since our enforcement of BCs is rigorous, we hold that our construction has great potential
in avoiding surface effects altogether by employing local BCs.

Our previous work considered the construction of operators on themaster domain (−1, 1).
We prefer to use domain instead of interval throughout the paper. This study addresses the
generalization of the operators from themaster domain to the general domain (a, b). Changing
the domain on which a differential operator is defined is straightforward. However, this may
not be the case for an integral operator. At least in our construction, the BCs are encoded in the
kernel of the integral operator. A change in the domain fundamentally affects the construction
of the integral operator. Furthermore, our operators are derived from the series representation
of the abstract convolution operator. The generalization to (a, b) becomes nontrivial because
it requires an in-depth understanding of the abstract convolution operator and subtle integral
manipulations as will be discussed in Sec. 6.

1 In the literature, the linearized PD governing operator is stated as

Morigu(x) =
∫
�
Ĉ(x ′ − x) dx ′ u(x) −

∫
�
Ĉ(x ′ − x)u(x ′) dx ′.

We simply see the convolution type kernel function Ĉ(x ′ − x) as a general bivariate function K (x, x ′).
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In practical applications, one usually solves on a large domain. Cracks, however, form
typically in a small part of this domain. Peridynamic models handle cracks much more effec-
tively, but more expensively than local models. One potential application of the governing
operatorswith local BCs on a general domainwould be coupling nonlocal and local problems.
This way, the coupled model would be taking advantage of best of both worlds. In coupling,
one should have the freedom of solving a problem on an arbitrary subdomain. In addition,
local BCs become a great advantage in this situation. In the presence of nonlocal BCs, the
coupling process becomes very delicate and cumbersome. Hence, generalizing the governing
operators facilitates coupling applications, which is a subject of our ongoing work. Aside
from the coupling context, one must be able to handle a domain at arbitrary lengthscale for
any reasonable practical application. In a separate paper [5], we studied the discretization of
the operators developed for the general domain using kth order collocation method. In [5],
we also present the convergence analysis and implementation details.

The rest of the paper is structured as follows. In Sec. 2, we provide a summary of functional
calculus, which is the main concept used in constructing the governing operators. In Sec. 3,
we provide the necessary ingredients required in the construction, especially the extensions
of the kernel function. In Sec. 4, the proof of agreement ofMBC withMorig is given. In Sec. 5,
the essential ingredients in the construction such as eigenvalues, eigenfunctions, and even and
odd projections are all generalized to (a, b). In Sec. 6, we provide the integral representation
of the series based operator with antiperiodic and periodic BCs. In Sec. 7, the extensions
of the kernel function are generalized to (a, b). In Sec. 8, we give the explicit expression
of kernel functions. In Sec. 9, we rigorously verify the BC for each operator. Finally, we
conclude in Sec. 10.

2 Functional Calculus

It is instructive to see how one utilizes functional calculus to construct novel matrices from
an original one. Consider a symmetric matrix A ∈ R

n×n—in the operator theory language,
this is a bounded self-adjoint operator. Let λk and vk denote the eigenvalues and eigenvectors
of A, respectively. Since {vk}nk=1 form an orthonormal basis, the spectral decomposition of
A is given by

A =
n∑

k=1

λkvkv
t
k .

It is easy to see that any integer power m of A can be written

Am =
n∑

k=1

λmk vkv
t
k .

Note that the eigenvectors of Am are identical to those of A. Am can be obtained from
A only by changing the eigenvalues from λk to λmk . One can generalize this construction of
functions of A as

ϕ(A) =
n∑

k=1

ϕ(λk)vkv
t
k,

where the regulating function ϕ is a holomorphic (basically infinitely differentiable in a
neighborhood) function defined by

ϕ : σ(A) → R, (2.1)
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where σ(A) is the spectrum of A. The eigenvalues of ϕ(A) are ϕ(λk). Hence, it is key to use
the appropriate regulating function in the construction of operators.

Our earlier major result was that the peridynamic governing operator Morig is a function
of the classical (Laplace) operator −� on R

d [12]. We discussed the regulating function ϕ

in Eq. 2.1 extensively in [3]. For a construction that is computationally amenable, a bounded
domain � is a critical requirement. We reused the same regulating function to construct
governing operators on � that enforce local BC on the boundary of �. The discovery of the
explicit expression of the regulating function and the ensuing construction on � allowed us
to incorporate local BCs into nonlocal problems, thereby, triggering this line of research.

An initial observation of the PD governing operator [17] is that it contains a convolution.
Secondly, as mentioned above, practical applications call for a bounded domain. Hence, one
starts the construction with convolution operators on a bounded domain that enforce the
prescribed BC. The BC of main interest is either Dirichlet, Neumann, or mixed, denoted by
DD,NN,DN,ND, respectively, all of which are constructed through antiperiodic and periodic
BC, denoted by a,p, respectively. Hence, one starts with constructing the convolution oper-
ators Ca and Cp with antiperiodic and periodic BC, respectively, using the eigenfunctions on
� = (−1, 1):

eak (x) := 1√
2
ei(2k+1) π

2 x and epk (x) := 1√
2
ei(2k)

π
2 x , k ∈ N,

of the classical operator−�a and−�p in which the BC information is already encoded. For
a given kernel function C ∈ L2(�), the convolution operator in series form, for u ∈ L2(�),
is defined as

CBCu(x) := √
2

∑
k∈Z

〈eBCk |C〉〈eBCk |u〉eBCk (x), BC ∈ {a,p}, (2.2)

where 〈·|·〉 denotes the L2(�) inner product. In [16], the convolution operator in series form
appears in a different context (generated by Riesz bases instead of a Hilbert basis). Similar
to our study, integral representations of the convolution operators in series form have also
been studied in [16].

The question again comes to choosing the appropriate regulating function. Since we know
which function of the classical operator the nonlocal governing operator is for the unbounded
domain, we recycle that regulating function to be used for the bounded domain case. When
the classical operator is considered on a bounded domain, a BC needs to be prescribed.
This makes its spectrum σ(−�BC) discrete. Hence, the sum in Eq. 2.2 is countable and
the eigenfunctions of −�BC form a Hilbert (complete and orthonormal) basis for L2(�).
Practical applications call for an integral representation of Eq. 2.2, which was accomplished
in our previous work on the master domain [2]. In this study, we aim to obtain integral
representations of the generalized (2.2) on (a, b).

3 BackgroundMaterial and Extensions

The univariate kernel function C(x) is assumed to be nonnegative and even. Namely,

C(−x) = C(x).
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Fig. 1 The kernel functionC(x)on themaster domain� = (−1, 1) and its extensions on (−2, 2). The periodic,
antiperiodic, and mixed extensions of C(x) are denoted by Ĉa(x), Ĉp(x), Ĉap, and Ĉpa, respectively

The size of nonlocality is controlled by the characteristic function χδ(x) whose role is the
representation of the nonlocal neighborhood, called the horizon. More precisely, for x ∈ �,

χδ(x) :=
{
1, x ∈ (−δ, δ),

0, otherwise.

Hence, the size of nonlocality is determined by δ and we assume δ < 1. Since the horizon
is constructed by χδ(x), a kernel function used in practice is in the form

C(x) = χδ(x)ν(x),

where ν(x) ∈ L2(�) is even. We also assume that

u(x) ∈ L2(�).

The other ingredient to define the operators that enforce local BCs is the extension of
C(x) from (−1, 1) to (−2, 2):

Ĉa(x) :=

⎧⎪⎨
⎪⎩

−C(x + 2), x ∈ (−2, −1),

C(x), x ∈ (−1, 1),

−C(x − 2), x ∈ (1, 2),

Ĉp(x) :=

⎧⎪⎨
⎪⎩
C(x + 2), x ∈ (−2, −1),

C(x), x ∈ (−1, 1),

C(x − 2), x ∈ (1, 2),

Ĉap(x) :=

⎧⎪⎨
⎪⎩

−C(x + 2), x ∈ (−2, −1),

C(x), x ∈ (−1, 1),

C(x − 2), x ∈ (1, 2),

Ĉpa(x) :=

⎧⎪⎨
⎪⎩

C(x + 2), x ∈ (−2, −1),

C(x), x ∈ (−1, 1),

−C(x − 2), x ∈ (1, 2).
(3.1)
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Next, we will show that the extensions all agree in the Bulk := (−1 + δ, 1 − δ).

Lemma 3.1 Let the kernel function C(x) be in the form

C(x) = χδ(x)ν(x),

where ν(x) ∈ L2(�) is even. Let Ĉa(x), Ĉp(x), Ĉap(x), and Ĉpa(x) denote the periodic,
antiperiodic, and mixed extensions of C(x) to �̂ := (−2, 2), respectively, given in Eq. 3.1.
Then,

Ĉa(x) = Ĉp(x) = Ĉap(x) = Ĉpa(x), x ∈ (−2 + δ, 2 − δ). (3.2)

Furthermore, all kernel functions agree in the bulk. Namely, for x ∈ Bulk,

Ĉa(x
′ − x) = Ĉp(x

′ − x) = Ĉap(x
′ − x) = Ĉpa(x

′ − x), x ′ ∈ (−1, 1). (3.3)

Proof With a closer look at the definition of the functions given in Eq. 3.1, it is easy to see
the following:

Ĉa(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ν(x − 2), x ∈ (−2, −2 + δ),

ν(x), x ∈ (−δ, δ),

−ν(x + 2), x ∈ (2 − δ, 2),

0, otherwise,

Ĉp(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν(x − 2), x ∈ (−2, −2 + δ),

ν(x), x ∈ (−δ, δ),

ν(x + 2), x ∈ (2 − δ, 2),

0, otherwise,

Ĉap(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ν(x − 2), x ∈ (−2, −2 + δ),

ν(x), x ∈ (−δ, δ),

ν(x + 2), x ∈ (2 − δ, 2),

0, otherwise.

Ĉpa(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν(x − 2), x ∈ (−2, −2 + δ),

ν(x), x ∈ (−δ, δ),

−ν(x + 2), x ∈ (2 − δ, 2),

0, otherwise,

Hence, they differ only on (−2,−2 + δ) ∪ (2 − δ, 2), implying that the kernel functions
coincide on (−2 + δ, 2 − δ), i.e., (3.2) holds. It is easier to observe this from the plots;
see Fig. 1. For x ∈ Bulk and x ′ in the range of integration, i.e., x ′ ∈ (−1, 1), one has
x − x ′ ∈ (−2 + δ, 2 − δ). Using this fact and (3.2), we conclude (3.3). 	


4 Agreement with the Original Operator

Note that the first integral in the definition ofMBC is a constant. Hence, we define it as

c :=
∫

�

KBC(0, x
′) dx ′.

To incorporate the local BC, we prepare MBC for BC by splitting u(x) into its even and
odd parts. For that, we define the orthogonal projections that give the even and odd parts,
respectively, by Pe, Po : L2(�) → L2(�)

Peu(x) := u(x) + u(−x)

2
, Pou(x) := u(x) − u(−x)

2
.

We rewrite MBC by choosing a generic convolution type kernel function Ĉ(x ′ − x).

(MBC − c)u(x) = −
∫

�

Ĉ(x ′ − x)u(x ′) dx ′
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= −
∫

�

Ĉ(x ′ − x)(Pe + Po)u(x ′) dx ′

= −
∫

�

(
Ĉ(x ′ − x)Pe + Ĉ(x ′ − x)Po

)
u(x ′) dx ′

= −
∫

�

(
ĈBC1(x

′ − x)Pe + ĈBC2(x
′ − x)Po

)
u(x ′) dx ′,

where BC1,BC2 ∈ {a,p,ap,pa}. Choosing BC1 and BC2 appropriately will lead to the
desired BC. By utilizing the agreement of kernel functions in Eq. 3.3, the governing operators
all agree in the bulk and the following BCs can be enforced:

Ka(x, x
′) = Ĉa(x

′ − x)Pe + Ĉa(x
′ − x)Po,

Kp(x, x
′) = Ĉp(x

′ − x)Pe + Ĉp(x
′ − x)Po,

KDD(x, x
′) = Ĉa(x

′ − x)Pe + Ĉp(x
′ − x)Po,

KNN(x, x
′) = Ĉp(x

′ − x)Pe + Ĉa(x
′ − x)Po,

KDN(x, x
′) = Ĉap(x

′ − x)Pe + Ĉpa(x
′ − x)Po,

KND(x, x
′) = Ĉpa(x

′ − x)Pe + Ĉap(x
′ − x)Po.

(4.1)

The normalized eigenfunctions on the master domain are as follows:

eak (x) := 1√
2
ei(2k+1) π

2 x , k ∈ Z,

epk (x) := 1√
2
ei(2k)

π
2 x , k ∈ Z,

eDDk (x) := sin
(
(2k)

π

4
(x + 1)

)
, k ∈ N

∗,

eNNk (x) :=

⎧⎪⎨
⎪⎩

1√
2
, k = 0,

cos
(
(2k)

π

4
(x + 1)

)
, k ∈ N

∗,

eDNk (x) := sin
(
(2k + 1)

π

4
(x + 1)

)
, k ∈ N

∗,

eNDk (x) := cos
(
(2k + 1)

π

4
(x + 1)

)
, k ∈ N

∗,

(4.2)

where N∗ := N \ {0} These can be easily verified by evaluating them or their derivatives at
the respective boundary points, and subsequently checking their second order derivatives. A
comprehensive list can be found in [15, Chap. 13].

We give the corresponding eigenvalues as they are explicitly known [1, 9, 10]:

BC = a, λak =
∫ 1

−1

[
1 − cos((2k + 1)

π

2
x)

]
C(x) dx, k ∈ Z,

BC = p, λ
p
k =

∫ 1

−1

[
1 − cos((2k)

π

2
x)

]
C(x) dx, k ∈ Z,

BC ∈ {DD,NN}, λBCk =
∫ 1

−1

[
1 − cos((2k)

π

4
x)

]
C(x) dx, k ∈ N

∗ and λNN0 = 0,

BC ∈ {DN,ND}, λBCk =
∫ 1

−1

[
1 − cos((2k + 1)

π

4
x)

]
C(x) dx, k ∈ N

∗.
(4.3)
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We establish the agreement ofMorig with MBC as follows:

Theorem 4.1 When K (x, x ′) = KBC(x, x ′), we have the following agreement:

Morigu(x) = MBCu(x) when

{
x ∈ � if BC ∈ {NN,p},
x ∈ Bulk if BC ∈ {a,DD,DN,ND},

where Bulk := (−1 + δ, 1 − δ) andMBC enforces the local boundary condition BC.

Proof Due to Eq. 3.3, we already know that the operators with the six listed BCs, i.e., BC ∈
{a,p,DD,NN,DN,ND}, agree withMorig in the bulk.Wewill extend the agreement to the full
domain�when BC ∈ {p,NN}. To prove this result, we utilize the fact that the eigenfunctions
and eigenvalues of MBC are explicitly known as given in Eqs. 4.2 and 4.3. When BC ∈
{NN,p}, λBC0 = 0 with the eigenfunctions ep0 = eNN0 = 1√

2
. Hence, the constant function

1(x) ≡ 1 is an eigenfunction of the MBC operator corresponding to the zero eigenvalue. In
other words,

MBC1 = 0, BC ∈ {NN,p}. (4.4)

More precisely, by substituting u(x) ≡ 1 in Eq. 4.4, one obtains

MBC1(x) =
∫

�

KBC(0, x
′)1(x) dx ′ −

∫
�

KBC(x, x
′)1(x ′) dx ′ = 0.

This implies that ∫
�

KBC(x, x
′) dx ′ =

∫
�

KBC(0, x
′) dx ′.

Hence, the agreement ofMBC andMorig holds for all x ∈ �.WhenBC ∈ {a,DD,DN,ND},
the function 1(x) is not an eigenfunction, hence, we do not have agreement in all of �, but
only in the bulk. For the proof that the operator MBC enforces the corresponding local BC,
see Sec. 9. For the proof in integral representation, see [8, Thm. 3.4]. 	


Remark 4.2 The explicit expression of the kernel functions given in Eq. 4.1 are as follows:

Ka(x, x
′) = Ĉa(x

′ − x),

Kp(x, x
′) = Ĉp(x

′ − x),

KDD(x, x
′) = 1

2

{[
Ĉa(x

′ − x) + Ĉa(x
′ + x)

] + [
Ĉp(x

′ − x) − Ĉp(x
′ + x)

]}
,

KNN(x, x
′) = 1

2

{[
Ĉp(x

′ − x) + Ĉp(x
′ + x)

] + [
Ĉa(x

′ − x) − Ĉa(x
′ + x)

]}
, (4.5)

KDN(x, x
′) = 1

2

{[
Ĉap(x

′ − x) + Ĉap(x
′ + x)

] + [
Ĉpa(x

′ − x) − Ĉpa(x
′ + x)

]}
,

KND(x, x
′) = 1

2

{[
Ĉpa(x

′ − x) + Ĉpa(x
′ + x)

] + [
Ĉap(x

′ − x) − Ĉap(x
′ + x)

]}
.

Remark 4.3 The agreement of operators on the master domain guaranteed in Theorem 4.1
easily extends to the general domain.

Remark 4.4 Identifying the eigenvalues for operators enforcing mixed BCs is involved and
the details are discussed in an upcoming paper [9].
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5 Construction on the General Domain

In section, we present the construction on the general domain. To distinguish the construction
on different domains, we relabel the the master domain (−1, 1) with an underbar as � :=
(−1, 1). Define the classical operator −�p on � with periodic BC as

−�pu = − 2

π2 u
′′,

lim
x→−1

u(x) = lim
x→1

u(x),

lim
x→−1

u′(x) = lim
x→1

u′(x),

where ′ denotes the weak derivative. The function u is a restriction to�, of a periodic element
of W 2(R,C), second order weakly differentiable functions. The operator −�p has a purely
discrete spectrum consisting of the eigenvalues

σ(−�p) = {k2 : k ∈ N}.
Note that k2 is an eigenvalue of geometric multiplicity 2 with the corresponding eigen-

functions epk and ep−k . Recall from Eq. 4.2 that the normalized eigenfunctions of −�p are

epk (x) = 1√
2
ei(2k)

π
2 x , k ∈ Z,

form a Hilbert (complete and orthonormal) basis for L2(�).
We want to extend this construction from the master domain � to the general domain

� = (a, b). Define the length of the general domain as

L := b − a.

We first generalize the definition of the classical operator −�p with periodic BC

−�pu = − L2

4π2 u
′′,

lim
x→a

u(x) = lim
x→b

u(x),

lim
x→a

u′(x) = lim
x→b

u′(x).

The new basis epk is defined in the following way through the use of a linear map τ :

epk (x) :=
√

2

L
epk (τ (x)). (5.1)

Define the midpoint of the general domain by

m := b + a

2
.

The midpoint m is and essential ingredient in our construction. By the definition (5.1),
the domain and range of τ is determined. For x in the domain of epk , which is �, its image
τ(x) should be in the domain of epk , which is �. Hence,

τ : � → �.
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The unique affine bijective map τ is

τ(x) = 2

b − a
(x − a + b

2
) = 2

L
(x − m).

Note that the scaling 2
L and the shift to m do not spoil orthonormal property of epk , as

shown in Eq. 5.4, due to its exponential nature. Consequently, the new basis takes the form

epk (x) = 1√
L
ei(2k)

π
2

2
L (x−m), k ∈ Z, (5.2)

eak (x) = 1√
L
ei(2k+1) π

2
2
L (x−m), k ∈ Z. (5.3)

Let us explain in detail how the map τ helps to inherit the orthonormality of epk .

∫ b

a
epk (x)∗ep� (x) dx = 2

L

∫ b

a
epk (τ (x))∗ep� (τ (x)) dx

= 2

L

∫ 1

−1
epk (x)

∗ep� (x)
L

2
dx

= δk �. (5.4)

Note that the change of variable x = τ(x) leads to dx = τ ′(x) dx = 2
L dx, hence,

dx
∣∣∣x=b

x=a
= L

2
dx

∣∣∣x=τ(b)=1

x=τ(a)=−1
.

5.1 Eigenfunctions and Eigenvalues on the General Domain

The normalized eigenfunctions on the general domain are as follows:

eak (x) := 1√
L
ei(2k+1) π

2 τ(x), k ∈ Z,

epk (x) := 1√
L
ei(2k)

π
2 τ(x), k ∈ Z,

eDDk (x) :=
√

2

L
sin

(
(2k)

π

4
(τ (x) + 1)

)
, k ∈ N

∗,

eNNk (x) :=

⎧⎪⎪⎨
⎪⎪⎩

1√
L

, k = 0,√
2

L
cos

(
(2k)

π

4
(τ (x) + 1)

)
, k ∈ N

∗,

eDNk (x) :=
√

2

L
sin

(
(2k + 1)

π

4
(τ (x) + 1)

)
, k ∈ N

∗,

eNDk (x) :=
√

2

L
cos

(
(2k + 1)

π

4
(τ (x) + 1)

)
, k ∈ N

∗.

(5.5)

The verification of Eq. 5.5 is similar to that of Eq. 4.2 as explained in Sec. 4. Here we
provide the details of how one verifies the eigenfunction property on the general domain for
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the case eDNk . On the left boundary point x = a, one has

lim
x→a

eDNk (x) = lim
x→a

√
2

L
sin

(
(2k + 1)

π

4
(τ (x) + 1)

)

=
√

2

L
sin

(
(2k + 1)

π

4
(τ (a) + 1)

)

=
√

2

L
sin

(
(2k + 1)

π

4
(0)

)
, since τ(a) = −1

= 0.

On the right boundary point x = b, one has

lim
x→b

deDNk
dx

(x) = lim
x→b

√
2

L
(2k + 1)

π

4

dτ

dx
(x) cos

(
(2k + 1)

π

4
(τ (x) + 1)

)

=
√

2

L
(2k + 1)

π

4

dτ

dx
(b) cos

(
(2k + 1)

π

4
(τ (b) + 1)

)

=
√

2

L
(2k + 1)

π

4

dτ

dx
(b) cos

(
(2k + 1)

π

4
(1 + 1)

)

=
√

2

L
(2k + 1)

π

4

dτ

dx
(b) cos

(
(2k + 1)

π

4
(2)

)
, since τ(b) = 1

= 0, since cos
(
(2k + 1)

π

2

) = 0.

As it was done in [2], in order to obtain integer eigenvalues, one has to use an appropriately

scaled Laplace operator. Using
dτ

dx
(x) = 2

L
, one obtains

−
(2L

π

)2 d2eDNk
dx2

(x) = −
(2L

π

)2 d

dx

[√
2

L
(2k + 1)

π

4

2

L
cos

(
(2k + 1)

π

4
(τ (x) + 1)

)]

=
(2L

π

)2√ 2

L

[
(2k + 1)

π

4

2

L

]2
sin

(
(2k + 1)

π

4
(τ (x) + 1)

)

=
(2L

π

)2√ 2

L

[
(2k + 1)

π

2L

]2
sin

(
(2k + 1)

π

4
(τ (x) + 1)

)

=
(2L

π

)2( π

2L

)2
(2k + 1)2eDNk

= (2k + 1)2eDNk .

We give the corresponding eigenvalues. On the general domain, the eigenvalues are as
follows. We also give explicit expressions for the flat-top kernel.

BC = a, λak =
∫ b

a

[
1 − cos((2k + 1)

π

2
τ(x))

]
C(x) dx

= 2δ
[
1 − sinc

( (2k + 1)π

L
δ
)]

, k ∈ Z,
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Fig. 2 An even function with respect to the midpoint m. Note that the symmetric partner of x is 2m − x
regardless of x < m or x > m

BC = p, λ
p
k =

∫ b

a

[
1 − cos((2k)

π

2
τ(x))

]
C(x) dx

= 2δ
[
1 − sinc

( (2k)π

L
δ
)]

, k ∈ Z,

BC ∈ {DD,NN}, λBCk =
∫ b

a

[
1 − cos

(
(2k)

π

4
τ(x)

)]
C(x) dx

= 2δ
[
1 − sinc

( (2k)π

2L
δ
)]

, k ∈ N
∗ and λNN0 = 0,

BC ∈ {DN,ND}, λBCk =
∫ b

a

[
1 − cos((2k + 1)

π

4
τ(x))

]
C(x) dx

= 2δ
[
1 − sinc

( (2k + 1)π

2L
δ
)]

, k ∈ N
∗,

where

sinc(x) := sin x

x
, x > 0.

The crucial property guaranteed by the eigenfunctions is that they all form a Hilbert basis.

Theorem 5.1 Any set of eigenfunctions among
(
eak

)
k∈Z,

(
epk

)
k∈Z,

(
eDDk

)
k∈N∗ ,

(
eNNk

)
k∈N,(

eDNk
)
k∈N∗ , and

(
eDNk

)
k∈N∗ given in Eq. 5.5 forms a Hilbert (complete and orthonormal)

basis for L2(�).

Proof See [14, p.49 and Thm. 4.12.ii]. See [13, Example 7.5.5 on p. 204] for the role of a
Hilbert-Schmidt operator when forming a Hilbert basis. For related properties of the eigen-
functions, see [2]. 	


Since the eigenfunctions form Hilbert bases for L2(�), the other crucial property that
they all satisfy is Parseval’s identity.

Theorem 5.2 For u ∈ L2(�), ∑
k∈IBC

| 〈eBCk |u〉 |2 = ‖u‖2L2(�)
, (5.6)

where IBC is the index set corresponding to BC.

5.2 Even and Odd Functions and the Corresponding Projections on the General
Domain

We extend the concept of even and odd functions to the general domain. Define the points
that are equidistant to m as symmetric partners. If x < m, the symmetric partner of x
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is m + (m − x) = 2m − x . Likewise, if x > m, the symmetric partner of m is again
m − (x − m) = 2m − x . Hence, the symmetric partner of x with respect to the midpoint is
2m − x regardless of x < m or x > m as depicted in Fig. 2. Consequently, the notion of an
even or odd function is defined using 2m − x as follows:

Definition 5.3 A function u(x) is said to be even with respect to m when

u(x) = u(2m − x). (5.7)

It is said to be odd with respect to m when

u(x) = −u(2m − x). (5.8)

Note that instead of the midpoint m, 2m appears in the definitions (5.7) and (5.8). That’s
why manipulations such as change variables in our construction involve 2m instead of m.
Even and odd parts of a function will used in the construction of the governing operators.
One defines the self-adjoint orthogonal even and odd projection operators Pe and Po in the
following way:

Definition 5.4 The even and odd projections Pe and Po with respect to m

Pe : L2(�) → L2(�) and Po : L2(�) → L2(�)

are defined by

Peu(x) := 1

2
(u(x) + u(2m − x)),

Pou(x) := 1

2
(u(x) − u(2m − x)).

6 Integral Representation of the Abstract Convolution

The functions on the master domain are labeled with the underbar. Using this convention,
the abstract convolution defined in Eq. 2.2 on the master domain C takes the form

CBCu(x) = √
2

∑
k∈Z

〈eBCk |C〉〈eBCk |u〉 eBCk (x), BC ∈ {a,p},

where the inner product on L2(�) is defined by

〈 f |g〉 :=
∫ 1

−1
( f (x))∗g(x) dx .

The abstract convolution is generalized to the general domain by

CBCu(x) = √
L

∑
k∈Z

〈eBCk |C〉〈eBCk |u〉 eBCk (x), BC ∈ {a,p},

where the inner product on L2(�) is defined by

〈 f |g〉 :=
∫ b

a
( f (x))∗g(x) dx . (6.1)
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Note that the inner product is antilinear in the first argument. Namely,

〈s f |g〉 = s∗〈 f |g〉, s ∈ C. (6.2)

The integral representation of the abstract convolutionwith periodicBC is given as follows:

Theorem 6.1 Let C ∈ L2(�) be an even function with respect to the midpoint m. Namely,

C(x) = C(2m − x). (6.3)

Let Cp be the abstract convolution with periodic BC defined by

Cpu(x) := √
L

∑
k∈Z

〈epk |C〉〈epk |u〉 epk (x).

Then, the integral representation of Cp is

Cpu(x) =
∫ b

a
Ĉp(x

′ − x + m)u(x ′) dx ′. (6.4)

For notational convenience, denote

pk := (2k)
π

2

2

L
,

γ := 1√
L

.

Then, the basis function epk in Eq. 5.2 in the new notation simply becomes

epk (x) = γ eipk (x−m).

Now, we give the proof of Eq. 6.4.

Proof Using the antilinearity (6.2) of the inner product (6.1) in the first argument, rewrite
the abstract convolution (2.2) in the following form:

Cpu(x) = 1

γ

∑
k∈Z

〈epk |C〉〈epk |u〉 epk (x)

= 1

γ

〈 ∑
k∈Z

(epk (x))∗〈C |epk 〉 epk
∣∣∣u

〉
. (6.5)

Concentrate on the term (epk (x))∗ 〈C |epk 〉. We have

(epk (x))∗ 〈C |epk 〉 = γ 2 e−i pk (x−m)

∫ b

a
C∗(x ′)eipk (x ′−m) dx ′

= γ 2
∫ b

a
C(x ′)eipk (x ′−x) dx ′ because C is real-valued

= γ 2
∫ b+x−m

a+x−m
Ĉp(x

′)eipk (x ′−x) dx ′ (6.6)
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= γ 2
∫ b

a
Ĉp(x

′ + x − m)eipk (x
′+x−m−x) dx ′

= γ 2
∫ b

a
Ĉp(x − y′ + m) eipk (−y′+m) dy′ (6.7)

= γ 2
∫ b

a
e−i pk (y′−m) Ĉp(−y′ + m + x) dy′

= γ

∫ b

a
γ e−i pk (x ′−m) Ĉp(x − x ′ + m) dx ′

= γ

∫ b

a
γ e−i pk (x ′−m) Ĉp(x

′ − x + m) dx ′ (6.8)

= γ 〈epk |Ĉp(· − x + m)〉. (6.9)

The step (6.6) is obtained by using the fact that both epk and the extension Ĉp are L-periodic
and the value of the integral does not change on the (x −m)-shifted interval (a+ x −m, b+
x − m). The step (6.7) is obtained by the change of variable

− y′ + m = x ′ − m. (6.10)

The change of variable (6.10) implies

y′ = −x ′ + 2m,

which guarantees the correct limits of integration:

dx ′
∣∣∣x

′=b

x ′=a
= − dy′

∣∣∣y
′=−b+2m=a

y′=−a+2m=b
.

The step (6.8) holds because C is even with respect to m, so is Ĉp. Using property (6.3),

Ĉp(x − x ′ + m) = Ĉp(2m − (x − x ′ + m)) = Ĉp(x
′ − x + m). (6.11)

Substituting (6.9) in (6.5), one arrives at the integral representation:

Cpu(x) = 1

γ

〈 ∑
k∈Z

γ 〈epk |Ĉp(· − x + m)〉 epk
∣∣∣u

〉

= γ

γ

〈 ∑
k∈Z

〈epk |Ĉp(· − x + m)〉 epk
∣∣∣u

〉

= 〈Ĉp(· − x + m)|u〉
=

∫ b

a
Ĉp(x

′ − x + m)u(x ′) dx ′.

Consequently, the integral representation takes the form

Cpu(x) =
∫ b

a
Ĉp(x

′ − x + m)u(x ′) dx ′.

	

One can construct the integral representation of the abstract convolution with antiperiodic

BC by following the steps of the periodic case, which we do next.
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Theorem 6.2 Let C ∈ L2(�) be an even function with respect to the midpoint m. Let Ca be
the abstract convolution with antiperiodic BC defined by

Cau(x) := √
L

∑
k∈Z

〈eak |C〉〈eak |u〉 eak (x).

Then, the integral representation of Ca is

Cau(x) =
∫ b

a
Ĉa(x

′ − x + m)u(x ′) dx ′. (6.12)

Again, for notational convenience, denote

ak := (2k + 1)
π

2

2

L
.

Then, the basis function eak in Eq. 5.3 in the new notation becomes

eak (x) = γ eiak (x−m).

Now, we give the proof of Eq. 6.12.

Proof Using the antilinearity (6.2) of the inner product (6.1) in the first argument, rewrite
the abstract convolution (2.2) in the following form:

Cau(x) = 1

γ

∑
k∈Z

〈eak |C〉〈eak |u〉 eak (x)

= 1

γ

〈 ∑
k∈Z

(eak (x))∗〈C |eak 〉 eak
∣∣∣u

〉
. (6.13)

Concentrate on the term (eak (x))∗ 〈C |eak 〉. We have

(eak (x))∗ 〈C |eak 〉 = γ 2 e−iak (x−m)

∫ b

a
C∗(x ′)eiak (x ′−m) dx ′

= γ 2
∫ b

a
C(x ′)eiak (x ′−x) dx ′ because C is real-valued

= γ 2
∫ b+x−m

a+x−m
Ĉa(x

′)eiak (x ′−x) dx ′ (6.14)

= γ 2
∫ b

a
Ĉa(x

′ + x − m)eiak (x
′+x−m−x) dx ′

= γ 2
∫ b

a
Ĉa(x − y′ + m) eiak (−y′+m) dy′

= γ 2
∫ b

a
e−iak (y′−m) Ĉa(−y′ + m + x) dy′

= γ

∫ b

a
γ e−iak (x ′−m) Ĉa(x − x ′ + m) dx ′

= γ

∫ b

a
γ e−iak (x ′−m) Ĉa(x

′ − x + m) dx ′ (6.15)

= γ 〈eak |Ĉa(· − x + m)〉. (6.16)
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The step (6.14) is obtained by using the fact that both eak and the extension Ĉa are L-
antiperiodic, hence, their product is L-periodic. As a result, the value of the integral does
not change on the (x − m)-shifted interval (a + x − m, b + x − m). The step (6.15) holds
because C is even with respect to m, so is Ĉa. Using property (6.3),

Ĉa(x − x ′ + m) = Ĉa(2m − (x − x ′ + m)) = Ĉa(x
′ − x + m). (6.17)

Substituting (6.16) in (6.13), one arrives at the integral representation:

Cau(x) = 1

γ

〈 ∑
k∈Z

γ 〈eak |Ĉa(· − x + m)〉 eak
∣∣∣u

〉

= γ

γ

〈 ∑
k∈Z

〈eak |Ĉa(· − x + m)〉 eak
∣∣∣u

〉

= 〈Ĉa(· − x + m)|u〉
=

∫ b

a
Ĉa(x

′ − x + m)u(x ′) dx ′.

Consequently, the integral representation takes the form

Cau(x) =
∫ b

a
Ĉa(x

′ − x + m)u(x ′) dx ′.

	

Remark 6.3 Define the bivariate kernel functions

Ka(x, x
′) := Ĉa(x

′ − x + m),

Kp(x, x
′) := Ĉp(x

′ − x + m).

Recall that evenness (6.3) implies (6.11) and (6.17). More precisely,

Ka(x, x
′) = Ĉa(x

′ − x + m) = Ĉa(x − x ′ + m) = Ka(x
′, x),

Kp(x, x
′) = Ĉp(x

′ − x + m) = Ĉp(x − x ′ + m) = Kp(x
′, x).

(6.18)

The Eq. 6.18 guarantees that the convolution operators Ca and Cp are both self-adjoint.

7 The Kernel Function and Its Extension

Integral representation of the abstract convolutions requires the periodic and antiperiodic
extensions in Eqs. 6.4 and 6.12 of the kernel function. We explain the extension for the
periodic BC and the antiperiodic case easily follows. The argument of the kernel function
Ĉ p in Eq. 6.4 is x ′ − x + m. Since x, x ′ ∈ (a, b), x ′ − x ∈ (a − b, b − a). Hence,

x ′ − x + m ∈ (a − b + a + b

2
, b − a + a + b

2
) = (

3a − b

2
,
3b − a

2
).

Consequently, the kernel function sweeps �̂ := (̂a, b̂) where

â = 3a − b

2
and b̂ = 3b − a

2
.

Since b − a > 0, observe that �̂ contains � because

(̂a, b̂) = (
3a − b

2
,
3b − a

2
) = 1

2
((2a − (b − a)), (2b + (b − a)) ⊃ 1

2
(2a, 2b) = (a, b).
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Fig. 3 The kernel function C(x) on the general domain � = (a, b) and its extensions on �̂ = (̂a, b̂). The
periodic, antiperiodic, andmixed extensions ofC(x) are denoted by Ĉa(x), Ĉp(x), Ĉap, and Ĉpa, respectively

Observe that the length of �̂ is

3b − a

2
− 3a − b

2
= 2(b − a) = 2L

and the distance between the midpoint and the endpoints of �̂ is

3b − a

2
− m = m − 3a − b

2
= b − a = L.

Since Ĉa and Ĉp are the L-antiperiodic and L-periodic extensions of C , respectively, Ĉa

and Ĉp are the same as C on �. For x ∈ �̂ \�, Ĉa and Ĉp are obtained by appropriate shifts
of length L . More precisely, the extensions are expressed explicitly as

Ĉa(x) :=

⎧⎪⎨
⎪⎩

−C(x + L), x ∈ (̂a, a),

C(x), x ∈ (a, b),

−C(x − L), x ∈ (b, b̂),

Ĉp(x) :=

⎧⎪⎨
⎪⎩
C(x + L), x ∈ (̂a, a),

C(x), x ∈ (a, b),

C(x − L), x ∈ (b, b̂),

Ĉap(x) :=

⎧⎪⎨
⎪⎩

−C(x + L), x ∈ (̂a, a),

C(x), x ∈ (a, b),

C(x − L), x ∈ (b, b̂),

Ĉpa(x) :=

⎧⎪⎨
⎪⎩

C(x + L), x ∈ (̂a, a),

C(x), x ∈ (a, b),

−C(x − L), x ∈ (b, b̂).

We depict the extended function Ĉa, Ĉp, Ĉap, and Ĉpa in Fig. 3.
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8 Explicit Expression of the Kernel Functions

All of the necessary ingredients to construct the operators that enforce Dirichlet, Neumann,
and mixed BCs are in place. More precisely, the integral representations, even and odd
projections, and kernel extensions all have been extended the general domain. By mimicking
the operators given in Eq. 4.1, we want to write the kernel functions explicitly as given in
Eq. 4.5.

We present the Dirichlet case. The other BCs follow easily. Extending the operator defi-
nition to the general domain, the operator that enforces Dirichlet BC becomes

(MDD − c)u(x) = −
∫ b

a

(
Ĉa(x ′ − x + m)Pe + Ĉp(x ′ − x + m)Po

)
u(x ′) dx ′ (8.1)

= − 1

2

∫ b

a

(
Ĉa(x ′− x +m)(u(x ′)+ u(2m− x ′))+ Ĉp(x ′− x+ m)((u(x ′)− u(2m− x ′))

)
dx ′.

The form ofMDD in Eq. 8.1 is an implication of d’Alembert’s formula as explained in [1].
The goal is to obtain u(x ′) as a common multiplier in the integrand. Concentrate on the

Ĉa(x ′ − x +m)u(2m − x ′) term. Using the evenness of Ĉa with respect to m, we rewrite the
term Ĉa(x ′ − x + m) as

Ĉa(x
′ − x + m) = Ĉa(2m − (x ′ − x + m)) = Ĉa(−x ′ + x + m).

Using the change of variable y′ = 2m − x ′, the integral becomes

∫ b

a
Ĉa(−x ′ + x + m)u(2m − x ′) dx ′ =

∫ 2m−b

2m−a
Ĉa((−2m + y′) + x + m)u(y′) d(−y′)

=
∫ a

b
Ĉa(y

′ + x − m)u(y′) d(−y′) (8.2)

=
∫ b

a
Ĉa(x

′ + x − m)u(x ′) dx ′. (8.3)

The step (8.2) is due to the fact that 2m−a = (a+b)−a = b and 2m−b = (a+b)−b = a.
Using evenness of Ĉa with respect to m and the same steps above, one gets

∫ b

a
Ĉp(x

′ − x + m)u(2m − x ′) dx ′ =
∫ b

a
Ĉp(x

′ + x − m)u(x ′) dx ′. (8.4)

Combining (8.3) and (8.4), one arrives at the desired expression of the integrand with
u(x ′) as a common multiplier:

(MDD−c)u(x)=−1

2

∫ b

a

(
Ĉa(x ′− x+m)+ Ĉa(x ′+ x−m)+ Ĉp(x ′− x+m)− Ĉp(x ′+ x−m)

)
u(x ′) dx ′.

Similar to Eq. 4.1, one can now give the explicit expression of kernel functions on the
general domain as follows:

Ka(x, x ′) = Ĉa(x ′ − x + m),

Kp(x, x ′) = Ĉp(x ′ − x + m),
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Fig. 4 The univariate kernel
function C(x) on the general
domain � = (a, b), where a = 2,
b = 6, and δ = 0.5

KDD(x, x ′) = 1

2

{[
Ĉa(x ′− x+ m)+ Ĉa(x ′ + x − m)

]+ [
Ĉp(x ′− x+ m)− Ĉp(x ′ + x − m)

]}
,

KNN(x, x ′) = 1

2

{[
Ĉp(x ′− x+ m)+ Ĉp(x ′+ x− m)

]+ [
Ĉa(x ′− x+ m)− Ĉa(x ′+ x− m)

]}
,

KDN(x, x ′) = 1

2

{[
Ĉap(x ′− x+ m)+ Ĉap(x ′+ x− m)

]+ [
Ĉpa(x ′− x+ m)− Ĉpa(x ′+ x− m)

]}
,

KND(x, x ′) = 1

2

{[
Ĉpa(x ′− x+ m)+ Ĉpa(x ′+ x− m)

]+ [
Ĉap(x ′− x+ m)− Ĉap(x ′+ x− m)

]}
.

The univariate kernel function C(x) is depicted in Fig. 4 and the corresponding bivariate
kernel functions KBC(x, x ′) are depicted in Fig. 5.

9 Enforcement of Boundary Conditions

In this section, we prove that the operators MBC enforce the corresponding BC. Since the
solution u belongs to L2(�), it is not necessarily continuous. Hence, one verifies the BCs by
using limits instead of function values. All of the six BC, either contain the limit of a function

lim
x→a

u(x) and lim
x→b

u(x) (9.1)

or the limit of a derivative of a function

lim
x→a

u′(x) and lim
x→b

u′(x). (9.2)

The forcing function f plays a critical role in enforcing the BC. Consider the governing
equation

MBCu(x) = f (x). (9.3)

For simplicity of notation, we do not use a BC identifier for u and f since their BCs are
determined by the operator preceding them. The following limits all exist, hence provide the
foundation of the proof that the prescribed BCs are satisfied:

lim
x→a

Mau(x) = − lim
x→b

Mau(x) and lim
x→a

[ d

dx
Mau

]
(x) = − lim

x→b

[ d

dx
Mau

]
(x),

lim
x→a

Mau(x) = − lim
x→b

Mau(x) and lim
x→a

[ d

dx
Mau

]
(x) = − lim

x→b

[ d

dx
Mau

]
(x),

lim
x→a

Mpu(x) = lim
x→b

Mpu(x) and lim
x→a

[ d

dx
Mpu

]
(x) = lim

x→b

[ d

dx
Mpu

]
(x),
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Fig. 5 The bivariate kernel functions KBC(x, x ′) on the general domain � = (a, b), where a = 2, b = 6, and
δ = 0.5
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lim
x→a

MDDu(x) = c lim
x→a

u(x) and lim
x→b

MDDu(x) = c lim
x→b

u(x),

lim
x→a

[ d

dx
MNNu

]
(x) = c lim

x→a
u′(x) and lim

x→b

[ d

dx
MNNu

]
(x) = c lim

x→b
u′(x),

lim
x→a

MDNu(x) = c lim
x→a

u(x) and lim
x→b

[ d

dx
MDNu

]
(x) = c lim

x→b
u′(x),

lim
x→a

[ d

dx
MNDu

]
(x) = c lim

x→a
u′(x) and lim

x→b
MNDu(x) = c lim

x→b
u′(x).

(9.4)

For given f , using Eqs. 9.3 and 9.4, the following BCs are rigorously satisfied as will be
shown in Sec. 9.2:

a : lim
x→a

u(x) = − lim
x→b

u(x), lim
x→a

u′(x) = − lim
x→b

u′(x),

p : lim
x→a

u(x) = lim
x→b

u(x), lim
x→a

u′(x) = lim
x→b

u′(x),

DD : lim
x→a

u(x) = 1

c
lim
x→a

f (x), lim
x→b

u(x) = 1

c
lim
x→b

f (x),

NN : lim
x→a

u′(x) = 1

c
lim
x→a

f ′(x), lim
x→b

u′(x) = 1

c
lim
x→b

f ′(x),

DN : lim
x→a

u(x) = 1

c
lim
x→a

f (x), lim
x→b

u′(x) = 1

c
lim
x→b

f ′(x),

ND : lim
x→a

u′(x) = 1

c
lim
x→a

f ′(x), lim
x→b

u(x) = 1

c
lim
x→b

f (x).

9.1 The Hilbert-Schmidt Property of CBC

The operator that is relevant to the BC is CBC = c−MBC. Note that the operator CBC is self-
adjoint because bothMBC and c are self-adjoint operators. We will utilize a crucial property:
the operator CBC is Hilbert-Schmidt. The main tool to prove that the BCs are satisfied is this
property. An operator that possesses the Hilbert-Schmidt property has a continuous extension
to the boundary of the domain �. Hence, in our construction, each governing operator “feels
the boundary.” The type of BC determines the structure of the kernel function KBC. This a
priori determination of the structure of the kernel function is unique feature of our method.
After encoding the type of BC through the kernel function, the boundary data is provided via
the forcing function only on the local boundary.

Furthermore, the series defining the operator is uniformly convergent, thereby allowing the
interchange of a limit with the summation. To prove that the BCs are satisfied in a convenient
and unified way, we resort to the series representation of the convolution operator given by

CBCu =
∑
k∈IBC

μBC
k 〈eBCk |u〉eBCk ,

where IBC is the index set corresponding to BC. The eigenvalues μBC
k are defined by

μBC
k := c − λBCk .

Instead, if one uses the integral representation of MBC to verify the BCs, then piecewise
differentiability of the kernel functionC becomes a requirement for BCs of type (9.2), which
is an unnecessary restriction on C imposed by the stringent structure of integration. This is
another reason why one should resort to the series representation and require C to be only in
L2(�).
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The following theorem characterizes the Hilbert-Schmidt property.

Theorem 9.1 CBC is Hilbert-Schmidt if and only if
(|μBC

k |2)k∈IBC is summable.

Proof See [3, Thm. 6 part (i)]. 	

Next, we set out to prove that each CBC possesses the Hilbert-Schmidt property using

the characterization provided in Theorem 9.1. The main idea is to prove the summability of(|μBC
k |2)k∈IBC by connecting it to ‖C‖L2(�), which we know is finite due to C ∈ L2(�).

Lemma 9.2 ForBC ∈ {a,p}, the operatorCBCu = ∑
k∈Z μBC

k 〈eBCk |u〉eBCk isHilbert-Schmidt.

Proof We need to prove that
(|μBC

k |2)k∈Z is summable. Since μBC
k = 〈eBCk |C〉, one readily

obtains the summability using Parseval’s identity (5.6):
∑
k∈Z

|μBC
k |2 =

∑
k∈Z

|〈eBCk |C〉|2 = ‖C‖2L2(�)
.

	

Lemma 9.3 The operators CDDu = ∑

k∈N∗ μDD
k 〈eDDk |u〉eDDk and CNNu = ∑

k∈N μNN
k 〈eNNk |u〉

eNNk are Hilbert-Schmidt.

Proof We proved the following property of μDD
k in [2, 10]:

μDD
k =

{
〈epk/2|C〉 if k ∈ N

∗ is even,

〈ea(k−1)/2|C〉 if k ∈ N
∗ is odd.

Rewrite it as
μDD
k = μDD

k,e + μDD
k,o,

where

μDD
k,e :=

{
〈epk/2|C〉 if k ∈ N

∗ is even,

0 if k ∈ N
∗ is odd.

and μDD
k,o :=

{
0 if k ∈ N

∗ is even,

〈ea(k−1)/2|C〉 if k ∈ N
∗ is odd.

Both
(|μDD

k,e|2
)
k∈N∗ and

(|μDD
k,o|2

)
k∈N∗ are summable due to Parseval’s identity (5.6),

because ∑
k∈N∗

|μDD
k,e|2 =

∑
k∈N∗

| 〈epk |C〉 |2 ≤
∑
k∈Z

| 〈epk |C〉 |2 = ‖C‖2L2(�)
(9.5)

and ∑
k∈N∗

|μDD
k,o|2 =

∑
k∈N

| 〈eak |C〉 |2 ≤
∑
k∈Z

| 〈eak |C〉 |2 = ‖C‖2L2(�)
. (9.6)

We can now establish the summability of
(|μDD

k |2)k∈N∗ using those of
(|μDD

k,e|2
)
k∈N∗ and(|μDD

k,o|2
)
k∈N∗ as shown in Eqs. 9.5 and 9.6, respectively, as follows:

∑
k∈N∗

|μDD
k |2 =

∑
k∈N∗

|μDD
k,e|2 +

∑
k∈N∗

|μDD
k,o|2

≤ 2‖C‖2L2(�)
.
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Note that μNN
k = μDD

k for k ∈ N
∗ and μNN

0 = 0. Then,

∑
k∈N

|μNN
k |2 = 02 +

∑
k∈N∗

|μDD
k |2 ≤ 2‖C‖2L2(�)

.

	


Lemma 9.4 The operators CDNu = ∑
k∈N∗ μDN

k 〈eDNk |u〉eDNk and CNDu = ∑
k∈N∗ μND

k 〈eNDk |u〉
eNDk are Hilbert-Schmidt.

Proof Note that since μDN
k = μND

k , it is sufficient to prove the summability of
(|μDN

k |2)k∈N∗ .
Note that

eNDk (x) = cos
(
(2k + 1)

π

4
(τ (x) + 1)

)

= cos
(
(2k + 1)

π

4
τ(x)

)
cos

(
(2k + 1)

π

4

) − sin
(
(2k + 1)

π

4
τ(x)

)
sin

(
(2k + 1)

π

4

)
.

Hence, using the evenness of C and the fact that 1/ cos
(
(2k + 1) π

4

) = ±√
2, one gets

|μDN
k |2 = | 〈cos (

(2k + 1)
π

4
τ(x)

)|C(x)〉 |2

= | 1

cos
(
(2k + 1) π

4

) 〈eNDk |C〉 |2

= 2| 〈eNDk |C〉 |2.

Consequently, using Parseval’s identity (5.6), one arrives at the summability:

∑
k∈N∗

|μDN
k |2 = 2

∑
k∈N∗

| 〈eNDk |C〉 |2 = 2‖C‖2L2(�)
.

	


9.2 Rigorous Verification of Boundary Conditions

After establishing the Hilbert-Schmidt property of the operator CBC, we can now prove that
the BCs are satisfied for each operator considered. For the BC related to the limit of a function
given Eq. 9.1, write the expression of u involving CBCu:

u(x) = 1

c
f (x) + 1

c
CBCu(x). (9.7)

Then, take the limit as x approaches to the related endpoint and use the associated BC of
eBCk .

For the BC related to the limit of a derivative given in Eq. 9.2, differentiate both sides
of Eq. 9.7. The series in the definition of CBC is uniformly convergent due to its Hilbert-
Schmidt property. Hence, termwise differentiation of the series is possible, meaning that the
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differentiation and summation can be interchanged in the following way:

u′(x) = 1

c
f ′(x) + 1

c

d

dx
CBCu(x)

= 1

c
f ′(x) + 1

c

d

dx

∑
k∈IBC

μBC
k 〈eBCk |u〉eBCk (x)

= 1

c
f ′(x) + 1

c

∑
k∈IBC

μBC
k 〈eBCk |u〉 de

BC
k

dx
(x). (9.8)

Then, take the limit as x approaches to the related endpoint and use the associated BC of
deBCk
dx

.

• The operators Ma and Mp: The antiperiodic and periodic BCs assume the following
compatibility condition on f :

lim
x→a

f (x) = − lim
x→b

f (x) and lim
x→a

f ′(x) = − lim
x→b

f ′(x), (9.9)

and
lim
x→a

f (x) = lim
x→b

f (x) and lim
x→a

f ′(x) = lim
x→b

f ′(x), (9.10)

respectively. Use Eqs. 9.7 and 9.9, the BC related to the function value is satisfied:

lim
x→a

u(x) = 1

c
lim
x→a

f (x) + 1

c
lim
x→a

∑
k∈Z

μa
k 〈eak |u〉eak (x)

= 1

c
lim
x→a

f (x) + 1

c

∑
k∈Z

μa
k 〈eak |u〉 lim

x→a
eak (x)

= −1

c
lim
x→b

f (x) − 1

c

∑
k∈Z

μa
k 〈eak |u〉 lim

x→b
eak (x)

= −1

c
lim
x→b

f (x) − 1

c
lim
x→b

∑
k∈Z

μa
k 〈eak |u〉eak (x)

= − lim
x→b

u(x).

Use Eqs. 9.8 and 9.9, the BC related to the derivative value is satisfied:

lim
x→a

u′(x) = 1

c
lim
x→a

f ′(x) + 1

c

∑
k∈Z

μa
k 〈eak |u〉 lim

x→a

deak
dx

(x)

= −1

c
lim
x→b

f ′(x) − 1

c

∑
k∈Z

μa
k 〈eak |u〉 lim

x→b

deak
dx

(x)

= −1

c
lim
x→b

f ′(x) − 1

c
lim
x→b

d

dx

∑
k∈Z

μa
k 〈eak |u〉eak (x)

= − lim
x→b

u′(x).
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Use Eqs. 9.7 and 9.10, the BC related to the function value is satisfied:

lim
x→a

u(x) = 1

c
lim
x→a

f (x) + 1

c
lim
x→a

∑
k∈Z

μ
p
k 〈epk |u〉epk (x)

= 1

c
lim
x→a

f (x) + 1

c

∑
k∈Z

μ
p
k 〈epk |u〉 lim

x→a
epk (x)

= 1

c
lim
x→b

f (x) + 1

c

∑
k∈Z

μ
p
k 〈epk |u〉 lim

x→b
epk (x)

= 1

c
lim
x→b

f (x) + 1

c
lim
x→b

∑
k∈Z

μ
p
k 〈epk |u〉epk (x)

= lim
x→b

u(x).

Use Eqs. 9.8 and 9.10, the BC related to the derivative value is satisfied:

lim
x→a

u′(x) = 1

c
lim
x→a

f ′(x) + 1

c

∑
k∈Z

μ
p
k 〈epk |u〉 lim

x→a

depk
dx

(x)

= 1

c
lim
x→b

f ′(x) + 1

c

∑
k∈Z

μ
p
k 〈epk |u〉 lim

x→b

depk
dx

(x)

= 1

c
lim
x→b

f ′(x) + 1

c
lim
x→b

d

dx

∑
k∈Z

μ
p
k 〈epk |u〉epk (x)

= lim
x→b

u′(x).

•The operatorMDD:Use Eq. 9.7. Denote the generic endpoint by x0 where either x0 = a
or x0 = b. The BCs are satisfied because one can move limx→x0 inside the series due to the
Hilbert-Schmidt property of CDD. Then use the fact that

lim
x→a

eDDk (x) = lim
x→b

eDDk (x) = 0,

and arrive at the desired BCs:

lim
x→x0

u(x) = 1

c
lim
x→x0

f (x) + 1

c
lim
x→x0

∑
k∈N∗

μDD
k 〈eDDk |u〉eDDk (x)

= 1

c
lim
x→x0

f (x) + 1

c

∑
k∈N∗

μDD
k 〈eDDk |u〉 lim

x→x0
eDDk (x)

= 1

c
lim
x→x0

f (x).

• The operatorMNN: Use Eq. 9.8. The BCs are satisfied because one can move limx→x0
inside the series again due to the Hilbert-Schmidt property of CNN. Then use the fact that

lim
x→a

deNNk
dx

(x) = lim
x→b

deNNk
dx

(x) = 0,
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and arrive at the desired BCs:

lim
x→x0

u′(x) = 1

c
lim
x→x0

f ′(x) + 1

c
lim
x→x0

d

dx

∑
k∈N

μNN
k 〈eNNk |u〉eNNk (x)

= 1

c
lim
x→x0

f ′(x) + 1

c

∑
k∈N

μNN
k 〈eNNk |u〉 lim

x→x0

deNNk
dx

(x)

= 1

c
lim
x→x0

f ′(x).

• The operatorMDN: For the BC of type (9.1), use Eq. 9.7. The BC related to limx→a is
satisfied because one canmove the limit inside the series, due to the Hilbert-Schmidt property
of CDN. Then use the fact that

lim
x→a

eDNk (x) = 0,

and arrive at the desired BC:

lim
x→a

u(x) = 1

c
lim
x→a

f (x) + 1

c
lim
x→a

∑
k∈N∗

μDN
k 〈eDNk |u〉eDNk (x)

= 1

c
lim
x→a

f (x) + 1

c

∑
k∈N∗

μDN
k 〈eDNk |u〉 lim

x→a
eDNk (x)

= 1

c
lim
x→a

f (x).

For the BC of type (9.2), use Eq. 9.8. The BC related to limx→b is satisfied because one
can move the limit inside the series, due to the Hilbert-Schmidt property of CDN. Then use
the fact that

lim
x→b

deDNk
dx

(x) = 0,

and arrive at the desired BC:

lim
x→b

u′(x) = 1

c
lim
x→b

f ′(x) + 1

c

∑
k∈N∗

μDN
k 〈eDNk |u〉 lim

x→b

deDNk
dx

(x)

= 1

c
lim
x→b

f ′(x).

• The operator MND: The proof is similar to the case ofMDN where the roles of a and b
are swapped.

10 Conclusion

Unlike the case for a differential operator, the extension to a general domain for an integral
operator proved to be nontrivial. Since the BCs are encoded in the kernel of the integral
operator in our construction, a change in the domain fundamentally changes the process by
which our operators are constructed. They are derived from the series representation of the
abstract convolution operator. The generalization to (a, b) becomes challenging because it
requires an in-depth understanding of the abstract convolution operator and ensuing delicate
integral manipulations. Our construction guarantees the rigorous verification of local BCs,
which is its distinguishing feature. A potential application of the present work is the coupling
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of nonlocal and local problems where the freedom of solving a problem on an arbitrary
domain is essential and employment of local BCs is advantageous.
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