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Abstract
A characterization for the Fourier multipliers and eigenvalues of linear peridynamic opera-
tors is provided. The analysis is presented for state-based peridynamic operators for iso-
tropic homogeneous media in any spatial dimension. We provide explicit formulas for the 
eigenvalues in terms of the space dimension, the nonlocal parameters, and the material 
properties. The approach we follow is based on the Fourier multiplier analysis developed 
by Alali and Albin (Applicable Analysis 2526–2546, 1). The Fourier multipliers of linear 
peridynamic operators are second-order tensor fields, which are given through integral rep-
resentations. It is shown that the eigenvalues of the peridynamic operators can be derived 
directly from the eigenvalues of the Fourier multiplier tensors. We reveal a simple structure 
for the Fourier multipliers in terms of hypergeometric functions, which allows for provid-
ing integral representations as well as hypergeometric representations of the eigenvalues. 
These representations are utilized to show the convergence of the eigenvalues of linear 
peridynamics to the eigenvalues of the Navier operator of linear elasticity in the limit of 
vanishing nonlocality. Moreover, the hypergeometric representation of the eigenvalues is 
utilized to compute the spectrum of linear peridynamic operators.

Keywords Fourier multipliers · Tensor multipliers · Eigenvalues · Peridynamics

1 Introduction

In this work, we study the Fourier multipliers of linear state-based peridynamic operators. 
The main goals are to find explicit representations for the multipliers, when the operator is 
defined on ℝn , and to find explicit representations for the eigenvalues of the peridynamic 
operator, when it is defined on periodic domains. The formulas that we derive for the Fou-
rier multipliers and the eigenvalues are of two types: nonlocal (integral) representations 
and representations in terms of hypergeometric functions. As have been demonstrated in 
[1] and [2], such explicit representations can be exploited to rigorously characterize the 
behavior of nonlocal operators and develop regularity theory for nonlocal equations, as 
well as to devise efficient and accurate spectral methods for the numerical solutions of 
nonlocal equations. The current work focuses on the derivations of these representations, 
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while the regularity of peridynamic equations and spectral methods for peridynamics based 
on the approach presented here will be pursued in forthcoming works.

There has been a recent increased interest in spectral methods for peridynamics and 
nonlocal equations as these methods provide efficient and accurate solvers. One of the 
features of these spectral solvers is that the nonlocality parameters do not scale with the 
grid size, thus providing computational accuracy and efficiency [2]. Spectral methods 
have been developed for nonlocal and peridynamic equations in periodic domain, bounded 
domains, and for problems on surfaces, as well as problems involving fracture [3–6]. Spec-
tral and Fourier multipliers approaches provide analysis techniques for studying the regu-
larity of solutions of nonlocal equations, see for example [7, 8] and [1]. In [8], a Fourier 
multipliers approach has been adopted for studying linear peridynamics bond-based model 
in one and two dimensions. The work in [9] also follows a Fourier multipliers approach to 
study a fractional Lamé-Navier operator and its connection to state-based peridynamics, 
and to establish analysis results for this operator and certain associated fractional equa-
tions, see also [10].

The approach presented in this work to uncover explicit formulas for the multipliers 
and the eigenvalues is based on two indirect connections; the first is a connection between 
the multipliers of the peridynamic operator, which are second-order tensor fields, and the 
scalar multipliers of the nonlocal Laplace operator. The second connection is between the 
multipliers of the peridynamic operator, defined on ℝn , and the eigenvalues of the peridy-
namic operator, when it is defined on periodic domains. Throughout this article, we refer 
to the Fourier multipliers of the nonlocal Laplacian as the scalar multipliers, whereas the 
tensor multipliers refer to the Fourier multipliers of the peridynamic operator.

A brief description of the main steps in our approach and the organization of the article 
are as follows. The definition of the linear peridynamic operator in ℝn and the specific inte-
gral kernels are provided in Sect. 2. In order to find explicit representations in terms of the 
nonlocality parameters and the space dimension, we focus on integral kernels of the form 
(1), which can be singular or integrable. However, we emphasize that the results in this 
work can be generalized to other types of integral kernels. Section 3.1 presents the nonlo-
cal Laplacian and its multipliers given by the integral and hypergeometric representations 
(9) and (10), respectively. The multipliers of the Navier operator of linear elasticity and 
the integral formula for the tensor multipliers of the peridynamic operator are derived in 
Sect. 3.2. Each entry of the n × n tensor multiplier is written as an integral in ℝn . A key 
step in our approach is to reveal a simple structure for this tensor. This is accomplished 
in Sect.  3.3, where we show in Sect.  3.3.2 that the tensor multipliers can be recovered 
using the derivatives of the scalar multipliers. By combining this relationship with the 
hypergeometric formula of the scalar multipliers together with the aid of some facts about 
hypergeometric functions as presented in Sect.  3.3.1, we arrive at a simple structure for 
the tensor multipliers in terms of hypergeometric functions as demonstrated in Sect. 3.3.3. 
An immediate consequence of this result is the convergence of the tensor multipliers of 
the peridynamic operator to the tensor multipliers of the Navier operator for two kinds of 
local limits. In Sect. 3.3.4, the tensor multiplier at any vector in ℝn is shown to be a real 
symmetric matrix with n orthonormal eigenvectors and two distinct associated eigenval-
ues. Using the hypergeometric representation for the tensor multipliers, we derive explicit 
formulas for these eigenvalues in terms of hypergeometric functions. Using these eigen-
value formulas, we derive integral representations for the eigenvalues in Sect. 3.3.5. In the 
Appendix, we provide an alternative derivation to the hypergeometric representations of the 
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tensor multipliers. The presentation is more technical than the one provided in Sect. 3.3 but 
shows the results for integrable as well as singular integral kernels. In Sect. 4, we consider 
the peridynamic operator defined for periodic vector-fields. We show how the eigenvector 
fields and the eigenvalues for the peridynamic operator on periodic domains can be derived 
from the tensor multipliers’ eigenvectors and eigenvalues.

2  Overview

Linear peridynamic operators defined in a domain Ω ⊆ ℝ
n have the form [11]

where C(x, y) is a second-order tensor and u ∶ ℝ
n
→ ℝ

n is a vector field. For a homogene-
ous isotropic solid, the linear operator takes the form

where � is a scalar field, and � and �′ are scaling constants that include the material proper-
ties. Taking Ω = ℝ

n , and due to symmetry, the operator reduces to

In this work, we focus on radially symmetric kernels with compact support of the form

where c�,� is given by (3), �B� (x)
 is the indicator function of the ball of radius 𝛿 > 0 centered 

at x, and the exponent satisfies 𝛽 < n + 2 . In this case, the linear peridynamic operator, 
parametrized by the horizon (nonlocality parameter) � and the integral kernel exponent � , 
can be written as

where � and �∗ are Lamé parameters, and the scaling constant c�,� is defined by

Lu(x) = ∫Ω

C(x, y)(u(y) − u(x)) dy,

Lu(x) = 𝜌∫Ω

𝛾(‖y − x‖)
‖y − x‖2

(y − x)⊗ (y − x)
�
u(y) − u(x)

�
dy

+ 𝜌� ∫Ω ∫Ω

𝛾(‖y − x‖)𝛾(‖z − x‖)(y − x)⊗ (z − x)
�
u(z) − u(x)

�
dzdy

+ 𝜌� ∫Ω ∫Ω

𝛾(‖y − x‖)𝛾(‖z − y‖)(y − x)⊗ (z − y)
�
u(z) − u(y)

�
dzdy,

Lu(x) = 𝜌∫
ℝn

𝛾(‖y − x‖)
‖y − x‖2

(y − x)⊗ (y − x)
�
u(y) − u(x)

�
dy

+ 𝜌� ∫
ℝn ∫ℝn

𝛾(‖y − x‖)𝛾(‖z − y‖)(y − x)⊗ (z − y)u(z) dzdy.

(1)�(‖y − x‖) = c�,�
1

‖y − x‖�
�B� (x)

(y),

(2)

L
𝛿,𝛽
u(x) = (n + 2)𝜇 c𝛿,𝛽 ∫B𝛿 (x)

(y − x)⊗ (y − x)

‖y − x‖𝛽+2
�
u(y) − u(x)

�
dy

+ (𝜆∗ − 𝜇)
(c𝛿,𝛽)2

4 ∫B𝛿 (x)
∫B𝛿 (y)

y − x

‖y − x‖𝛽
⊗

z − y

‖z − y‖𝛽
u(z) dzdy,
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Remark 1 Note that the integral in  (3) is only defined for 𝛽 < n + 2 . However, the last 
expression in (3) can be used to define c�,� for larger �.

Remark 2 The second Lamé parameter is usually denoted by � , but we choose to use �∗ 
instead in order to keep � to denote an eigenvalue.

It is convenient to use the following decomposition of L�,�

where, after changing variables,

and

We note that Lb is the linear operator for bond-based peridynamics.
We denote by N  the Navier operator of linear elasticity. For a homogeneous isotropic 

medium, it is given by

3  Fourier Multipliers

3.1  Multipliers for the Nonlocal Laplacian

For scalar fields u ∶ ℝ
n
→ ℝ , the analogue to the peridynamic operator L�,� is the non-

local Laplacian, which in this case is given by

with c�,� given by (3).
The Fourier multipliers for the nonlocal Laplacian in (7) have been studied in [1], in 

which the multiplier m�,� is defined through the Fourier transform by

(3)

c�,� ∶=

�
1

2n ∫B� (0)

‖w‖2

‖w‖�
dw

�−1

,

=
2(n + 2 − �)Γ

�
n

2
+ 1

�

�n∕2�n+2−�
.

L
�,� = Lb + Ls,

(4)Lbu(x) = (n + 2)𝜇 c𝛿,𝛽 ∫B𝛿 (0)

w⊗ w

‖w‖𝛽+2
�
u(x + w) − u(x)

�
dw,

(5)Lsu(x) = (𝜆∗ − 𝜇)
(c𝛿,𝛽)2

4 ∫B𝛿 (0)
∫B𝛿 (0)

w

‖w‖𝛽
⊗

q

‖q‖𝛽
u(x + q + w) dqdw.

(6)Nu = (�∗ + �)∇(∇ ⋅ u) + �Δu.

(7)L�,�u(x) = c�,� ∫B� (x)

u(y) − u(x)

‖y − x‖�
dy,
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where m�,� has the integral representation

The hypergeometric representation of the multipliers is provided by

3.2  Integral Representations for the Peridynamic Multipliers

In this section, we extend the approach developed in [1] for the nonlocal Laplacian L�,� in 
(7) to the peridynamic operator L�,� in (2). We begin by deriving integral formulas for the 
Fourier multipliers of L�,� . Express u through its Fourier transform as

Since the definition of L�,� can be extended to the space of tempered distributions 
through the multipliers derived below, it is sufficient to assume that u is a Schwartz vector 
field. We compute the multipliers for Lb and Ls separately. Applying Lb shows that

providing the representation

where

Similarly, we compute the multipliers of Ls,

(8)L�,�u(x) =
1

(2�)n ∫ℝn

m�,�(�)û(�)ei�⋅x d�,

(9)m�,�(�) = c�,� ∫B� (0)

cos(� ⋅ w) − 1

‖w‖�
dw.

(10)m�,�(�) = −‖�‖2 2F3

�
1,

n + 2 − �

2
;2,

n + 2

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�
.

u(x) =
1

(2�)n ∫ℝn

û(�)ei�⋅x d�.

Lbu(x) = (n + 2)𝜇 c𝛿,𝛽 ∫B𝛿 (0)

w⊗ w

‖w‖𝛽+2
�
u(x + w) − u(x)

�
dw,

=
1

(2𝜋)n ∫ℝn

�
(n + 2)𝜇 c𝛿,𝛽 ∫B𝛿 (0)

w⊗ w

‖w‖𝛽+2
�
ei𝜈⋅w − 1

�
dw

�
�u(𝜈)ei𝜈⋅x d𝜈,

(11)Lbu(x) =
1

(2�)n ∫ℝn

Mb(�)û(�)e
i�⋅x d�,

(12)

Mb(𝜈) = (n + 2)𝜇 c𝛿,𝛽 ∫B𝛿 (0)

w⊗ w

‖w‖𝛽+2
�
ei𝜈⋅w − 1

�
dw

= (n + 2)𝜇 c𝛿,𝛽 ∫B𝛿 (0)

w⊗ w

‖w‖𝛽+2
(cos(𝜈 ⋅ w) − 1) dw.

Lsu(x) = (𝜆∗ − 𝜇)
(c𝛿,𝛽)2

4 ∫B𝛿 (0)
∫B𝛿 (0)

w

‖w‖𝛽
⊗

q

‖q‖𝛽
u(x + q + w) dqdw,

=
1

(2𝜋)n ∫ℝn

�
(𝜆∗ − 𝜇)

(c𝛿,𝛽)2

4 ∫B𝛿 (0)

w

‖w‖𝛽
ei𝜈⋅w dw⊗ ∫B𝛿 (0)

q

‖q‖𝛽
ei𝜈⋅q dq

�
�u(𝜈)ei𝜈⋅x d𝜈,
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providing the representation

where

Combining (12) and (14), we obtain the multipliers for L�,�,

which satisfy

The following summarizes the results of this subsection.

Proposition 1 The Fourier multipliers M�,� of the linear peridynamic operator L�,� in (2) 
are characterized through integral representations as given by (15), (12), and (14).

We note that the Fourier multipliers of N  , the Navier operator given in (6), are similarly 
defined by

and can be shown to be given explicitly by

where I is the identity matrix.

3.3  Peridynamic Multipliers: Structure and Hypergeometric Representations

We emphasize that the multipliers of linear peridynamics, given by (12),(14), and (15), are 
second-order tensor fields. In this section, we reveal a simple and explicit structure for the 
matrix M�,�(�) in terms of � and the derivatives of the scalar multipliers (multipliers of the 
nonlocal Laplacian) m�,�(�) given by (9) or, equivalently, by (10).

3.3.1  Hypergeometric Formulas

In this section, we derive and present hypergeometric formulas that will be useful in the 
subsequent sections. Let a = (a1, a2,… , ap) and b = (b1, b2,… , bq) be two vectors of coef-
ficients. The generalized hypergeometric function pFq with parameters a and b is defined as

(13)Lsu(x) =
1

(2�)n ∫ℝn

Ms(�)û(�)e
i�⋅x d�,

(14)

Ms(𝜈) = (𝜆∗ − 𝜇)
(c𝛿,𝛽)2

4

�

∫B𝛿 (0)

w

‖w‖𝛽
ei𝜈⋅w dw

�
⊗

�

∫B𝛿 (0)

w

‖w‖𝛽
ei𝜈⋅w dw

�

= −(𝜆∗ − 𝜇)
(c𝛿,𝛽)2

4

�

∫B𝛿 (0)

w

‖w‖𝛽
sin(𝜈 ⋅ w) dw

�
⊗

�

∫B𝛿 (0)

w

‖w‖𝛽
sin(𝜈 ⋅ w) dw

�
.

(15)M�,� = Mb +Ms,

L̂
�,�
u = M�,�

û.

N̂u = MN
û,

(16)MN(𝜈) = −(𝜆∗ + 𝜇)𝜈 ⊗ 𝜈 − 𝜇‖𝜈‖2 I,
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Here, the notation (a)k represents the product

where (a)k is the Pochhammer symbol

We also define the notation

and recall the following useful facts about the Pochhammer symbol.

and

In light of (10), we consider the derivatives of a function of the form

Lemma 1 Let f(x) have the form (19). Then,

and

where

Proof Taking the term-wise first derivative and applying (18) shows that

Taking a term-wise derivative once again, then reindexing and using (17) yields

pFq(a; b; z) ∶=

∞∑

k=0

(a)k

(b)k

zk

k!
.

(a)k = (a1)k(a2)k ⋯ (ap)k,

(a)k =
Γ(a + k)

Γ(a)
= a(a + 1)(a + 2)⋯ (a + k − 1).

∏
a = a1a2 ⋯ ap and a + c = (a1 + c, a2 + c,… , ap + c),

(17)(a)k+1 = a(a + 1)⋯ (a + k − 1)(a + k) = a(a + 1)k,

(18)
(a + 1)k

(a)k
=

a + k

a
.

(19)f (z) = z ⋅ pFq(a; b; z) = z

∞∑

k=0

(a)k

(b)k

zk

k!
=

∞∑

k=0

(a)k

(b)k

zk+1

k!
.

(20)f �(z) = p+1Fq+1(a
�;b

�
; z)

(21)f ��(z) =

∏
�
�

∏
��

p+1Fq+1(a
� + 1;b

� + 1; z),

�
� = (2, a1,… , ap) and �

� = (1, b1,… , bq).

f �(z) =

∞∑

k=0

(a)k(k + 1)

(b)k

zk

k!
=

∞∑

k=0

(a)k(2)k

(b)k(1)k

zk

k!
= p+1Fq+1(a

�; b
�
; z),
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  ◻

Two additional formulas we shall use are found in the following lemmas.

Lemma 2 For any choice of coefficients,

Proof This is again found by term-wise differentiation, reindexing, and applying (17).

Lemma 3 For any choice of hypergeometric coefficients and for any numbers c and d,

Proof This can be seen by term-wise addition and using (18):

  ◻

3.3.2  Derivatives of the Scalar Multipliers

In this section, we show how the tensor multipliers M�,� , and in particular Mb and Ms , can 
be recognized in terms of the derivatives of the scalar multipliers m�,� . Here we present 
an intuitive approach that exposes the connection between the scalar multipliers and the 

f ��(z) =

∞�

k=1

(��)kk

(��)k

zk−1

k!
=

∞�

k=0

(��)k+1(k + 1)

(��)k+1

zk

(k + 1)!

=

∏
�
�

∏
��

∞�

k=0

(�� + 1)k

(�� + 1)

zk

k!
=

∏
�
�

∏
��

p+1Fq+1(a
� + 1; b

� + 1; z).

(22)pFq(a;b; z) − 1 =

∏
a

∏
b
z ⋅ p+1Fq+1(1, a + 1; 2, b + 1); z).

pFq(a;b; z) − 1 =

∞�

k=1

(a)k

(b)k
⋅
zk

k!
=

∞�

k=0

(a)k+1

(b)k+1
⋅

zk+1

(k + 1)!

=

∏
a

∏
b
z

∞�

k=0

(a + 1)k(1)k

(b + 1)k(2)k
⋅
zk

k!
.

(23)

c p+1Fq+1(1, a; 2, b; z) + d pFq(a; b; z) = (c + d) p+2Fq+2

(
1,

c + 2d

d
, a; 2,

c + d

d
, b; z

)
.

c p+1Fq+1(1, a; 2, b; z) + d pFq(a;b; z) =

∞∑

k=0

(
c(a)k(1)k

(b)k(2)k
+

d(a)k

(b)k

)
zk

k!

=

∞∑

k=0

(
c + dk + d

k + 1

) (a)k

(b)k

zk

k!

= d

∞∑

k=0

k +
c+d

d

k + 1

(a)k

(b)k

zk

k!

= (c + d)

∞∑

k=0

(
c+2d

d

)

k
(1)k

(
c+d

d

)

k
(2)k

(a)k

(b)k

zk

k!
.
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tensor multipliers. In doing so, we focus on the derivation rather than specific integrability 
requirements on � ; some integrals need to be understood in a principal value sense. The 
Appendix presents an alternative, but more technical, approach that shows that the results 
are valid for all values of 𝛽 < n + 2.

Differentiating m�,� in (9) with respect to �i shows that

Substituting this into (14) yields the formula

Differentiating a second time in (24) (and replacing � by � + 2 ) yields

which implies that

Moreover,

Substituting these last two formulas into (12) shows that

The scalar multipliers m�,� can be written as

where f has the form (19) with p = 2 , q = 3 , and coefficients a and b defined to match (29). 
Differentiating once shows that

Differentiating a second time shows that

(24)
�

��i
m�,�(�) = c�,� ∫B� (0)

−wi sin(� ⋅ w)

‖w‖�
dw.

(25)
(
Ms(�)

)
ij
= −

�∗ − �

4

�

��i
m�,�(�)

�

��j
m�,�(�).

(26)
�2

��i��j
m�,�+2(�) = c�,�+2 ∫B� (0)

−wiwj cos(� ⋅ w)

‖w‖�+2
dw,

∫B� (0)

wiwj cos(� ⋅ w)

‖w‖�+2
dw = −(c�,�+2)−1

�2

��i��j
m�,�+2(�).

(27)∫B� (0)

wiwj

‖w‖�+2
dw = �ij ∫B� (0)

w2

i

‖w‖�+2
dw = 2(c�,�+2)−1�ij.

(28)
(
Mb(�)

)
ij
= −

(n + 2)�c�,�

c�,�+2

(
�2

��i��j
m�,�+2(�) + 2�ij

)
.

(29)

m�,�(�) = −‖�‖22F3

�
1,

n + 2 − �

2
; 2,

n + 2

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�

=
4

�2

�
−
1

4
‖�‖2�2

�
2F3

�
1,

n + 2 − �

2
; 2,

n + 2

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�

=
4

�2
f
�
−
1

4
‖�‖2�2

�

(30)
�

��i
m�,�(�) =

4

�2
f �
�
−
1

4
‖�‖2�2

�
⋅

�
−
1

2
�2�i

�
= −2f �

�
−
1

4
‖�‖2�2

�
�i.
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The results of this subsection are summarized by the following.

Proposition 2 The tensor multipliers Mb and Ms can be represented in terms of the gradi-
ents of the scalar multipliers m�,� as

where f has the form  (19) with p = 2 , q = 3 , and coefficients a =
(
1,

n−�

2

)
 and b =(

2,
n+2

2
,
n+2−�

2

)
 , and,

where f has the form  (19) with p = 2 , q = 3 and coefficients a =
(
1,

n+2−�

2

)
 and b =(

2,
n+2

2
,
n+4−�

2

)
.

This result together with the formulas derived in Sect. 3.3.1 allows us to express the ten-
sor multipliers as hypergeometric functions.

3.3.3  The Tensor Multipliers: Hypergeometric Representations

In this section, we provide a simple and explicit form for the tensor multipliers Mb(�) and Ms(�).
Equations (25) and (30) and Lemma 1 show that Ms(�) is a rank-one symmetric matrix 

of the form

with

(31)

�2

��i��j
m�,�(�) = −2f �

�
−
1

4
‖�‖2�2

�
�ij − 2f ��

�
−
1

4
‖�‖2�2

�
�i ⋅

�
−
1

2
�2�j

�

= −2f �
�
−
1

4
‖�‖2�2

�
�ij + �2f ��

�
−
1

4
‖�‖2�2

�
�i�j.

Mb(𝜈) = −
(n + 2) 𝜇 c𝛿,𝛽

c𝛿,𝛽+2

�
∇∇m𝛿,𝛽+2(𝜈) + 2I

�
,

= −
(n + 2)𝜇c𝛿,𝛽

c𝛿,𝛽+2

�
𝛿2f ��

�
−
1

4
‖𝜈‖2𝛿2

�
𝜈 ⊗ 𝜈 +

�
2 − 2f �

�
−
1

4
‖𝜈‖2𝛿2

��
I
�
,

Ms(𝜈) = −
𝜆∗ − 𝜇

4
∇m𝛿,𝛽(𝜈)⊗ ∇m𝛿,𝛽(𝜈),

= −(𝜆∗ − 𝜇)
�
f �
�
−
1

4
‖𝜈‖2𝛿2

��2

𝜈 ⊗ 𝜈.

(32)Ms(𝜈) = 𝛼s(𝜈)𝜈 ⊗ 𝜈,

(33)

�s(�) = −
�∗ − �

4

�
−2f �

�
−
1

4
‖�‖2�2

��2

= −(�∗ − �)
�
f �
�
−
1

4
‖�‖2�2

��2

= −(�∗ − �)3F4

�
1, 2,

n + 2 − �

2
;1, 2,

n + 2

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�2

= −(�∗ − �)1F2

�
n + 2 − �

2
;
n + 2

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�2

.
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Equations (28) and (31) and Lemma 1 show that Mb(�) is a symmetric matrix of the form

The coefficient of the identity matrix is (keeping in mind that this time we are differen-
tiating m�,�+2),

Applying Lemma 2 simplifies this expression to show that

The other coefficient can be computed as

It is interesting to see how these formulas combine to provide a formula for the trace 
of the tensor Mb . Since we know all eigenvalues of Mb , using (32)–(37), we can compute 
the trace as

Applying Lemma 3, cancelling the repeated (n + 4)∕2 term from the hypergeometric 
series coefficients, and then applying (10) shows that

(34)Mb(𝜈) = 𝛼b1(𝜈)I + 𝛼b2(𝜈)𝜈 ⊗ 𝜈.

(35)

�b1(�) = −
(n + 2)�c�,�

c�,�+2

�
2 − 2f �

�
−
1

4
‖�‖2�2

��

=
2(n + 2)�c�,�

c�,�+2

�
3F4

�
1, 2,

n − �

2
;1, 2,

n + 2

2
,
n + 2 − �

2
; −

1

4
‖�‖2�2

�
− 1

�

=
2(n + 2)�c�,�

c�,�+2

�
1F2

�
n − �

2
;
n + 2

2
,
n + 2 − �

2
; −

1

4
‖�‖2�2

�
− 1

�
.

(36)

�b1(�) =
2(n + 2)�c�,�

c�,�+2

�
2(n − �)

(n + 2)(n + 2 − �)

��
−
1

4
‖�‖2�2

�

× 2F3

�
1,

n + 2 − �

2
;2,

n + 4

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�

= −�‖�‖22F3

�
1,

n + 2 − �

2
;2,

n + 4

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�
.

(37)

�b2(�) = −
(n + 2)�c�,�

c�,�+2
�2f ��

�
−
1

4
‖�‖2�2

�

= −
(n + 2)�c�,�

c�,�+2

�
2(n − �)

(n + 2)(n + 2 − �)

�
�2

× 3F4

�
2, 3,

n + 2 − �

2
; 2, 3,

n + 4

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�

= −2� 1F2

�
n + 2 − �

2
;
n + 4

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�
.

traceMb(�) = n�b1 + ‖�‖2�b2

= −n�‖�‖2 2F3

�
1,

n + 2 − �

2
;2,

n + 4

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�

− 2�‖�‖2 1F2

�
n + 2 − �

2
;
n + 4

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�
.
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This same formula can also be derived directly from (12), since

yielding the integrand in (10).
The main results of this subsection are summarized as follows.

Proposition 3 The tensor multipliers Mb and Ms have the following hypergeometric representations

and

An immediate consequence of this result is the convergence of the multipliers of L�,� to 
the multipliers of N  in the limits as � → 0 or as � → n + 2.

Proposition 4 Let � ≤ n + 2 . Then,

Moreover, let 𝛿 > 0 . Then,

Proof This result follows from the fact the hypergeometric functions in Proposition 3 are 
equal to 1 under the considered limits.   ◻

Remark 3 The same results hold true for the limit from above � → n + 2+.

traceMb(�) = −(n + 2)�‖�‖2 3F4

�
1,

n + 4

2
,
n + 2 − �

2
; 2,

n + 2

2
,
n + 4

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�

= −(n + 2)�‖�‖2 2F3

�
1,

n + 2 − �

2
; 2,

n + 2

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�

= (n + 2)�m�,�(�).

trace (w⊗ w)

‖w‖𝛽+2
(cos(𝜈 ⋅ w) − 1) =

cos(𝜈 ⋅ w) − 1

‖w‖𝛽
,

Mb(𝜈) = −𝜇‖𝜈‖2 2F3

�
1,

n + 2 − 𝛽

2
; 2,

n + 4

2
,
n + 4 − 𝛽

2
; −

1

4
‖𝜈‖2𝛿2

�
I

− 2𝜇 1F2

�
n + 2 − 𝛽

2
;
n + 4

2
,
n + 4 − 𝛽

2
; −

1

4
‖𝜈‖2𝛿2

�
𝜈 ⊗ 𝜈,

Ms(𝜈) = −(𝜆∗ − 𝜇) 1F2

�
n + 2 − 𝛽

2
;
n + 2

2
,
n + 4 − 𝛽

2
; −

1

4
‖𝜈‖2𝛿2

�2

𝜈 ⊗ 𝜈.

lim
𝛿→0+

Mb(𝜈) = − 𝜇‖𝜈‖2 I − 2𝜇 𝜈 ⊗ 𝜈,

lim
𝛿→0+

Ms(𝜈) = − (𝜆∗ − 𝜇) 𝜈 ⊗ 𝜈,

lim
𝛿→0+

M𝛿,𝛽(𝜈) = − (𝜆∗ + 𝜇)𝜈 ⊗ 𝜈 − 𝜇‖𝜈‖2 I = MN(𝜈).

lim
𝛽→n+2−

Mb(𝜈) = − 𝜇‖𝜈‖2 I − 2𝜇 𝜈 ⊗ 𝜈,

lim
𝛽→n+2−

Ms(𝜈) = − (𝜆∗ − 𝜇) 𝜈 ⊗ 𝜈,

lim
𝛽→n+2−

M𝛿,𝛽(𝜈) = − (𝜆∗ + 𝜇)𝜈 ⊗ 𝜈 − 𝜇‖𝜈‖2 I = MN(𝜈).
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3.3.4  Eigenvalues of the Tensor Multipliers

The form of the multiplier M�,�(�) is found through (32) and (34),

where �b1 , �b2 , and �s are given by (36), (37), and (33), respectively. This implies that M�,� 
is a real symmetric matrix. Moreover, � is an eigenvector of M�,�(�),

where

Using (33), (36), and (37), this eigenvalue, which is associated with the direction of 
� , has the following hypergeometric representation

An alternative expression for this eigenvalue can be obtained by using Lemma 3 to 
combine the first two hypergeometric functions, yielding

The other n − 1 eigenvectors are orthogonal to � . Denote by �⟂ a vector in ℝn orthog-
onal to � . Then,

where

Using (36), this eigenvalue, which is associated with orthogonal directions to � , has 
the following hypergeometric representation

The results in this subsection are summarized in the following.

(38)M𝛿,𝛽(𝜈) = 𝛼b1(𝜈)I + (𝛼b2(𝜈) + 𝛼s(𝜈))𝜈 ⊗ 𝜈,

(39)M�,�(�)� = �1(�)�,

�1(�) = �b1(�) + (�b2(�) + �s(�))‖�‖2.

(40)

�1(�) = −‖�‖2
�
� 2F3

�
1,

n + 2 − �

2
;2,

n + 4

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�

+ 2� 1F2

�
n + 2 − �

2
;
n + 4

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�

+ (�∗ − �) 1F2

�
n + 2 − �

2
;
n + 2

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�2�
.

(41)

�1(�) = −‖�‖2
�
3� 3F4

�
1,

5

2
,
n + 2 − �

2
;2,

3

2
,
n + 4

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�

+ (�∗ − �) 1F2

�
n + 2 − �

2
;
n + 2

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�2�
.

(42)M�,�(�)�⟂ = �2(�)�
⟂,

(43)�2(�) = �b1(�).

(44)�2(�) = −�‖�‖22F3

�
1,

n + 2 − �

2
; 2,

n + 4

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�
.
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Theorem 1 For � ∈ ℝ
n , the eigenvalue �1(�) of M�,�(�) , associated with the direction of � , is 

given by the hypergeometric representation (41) and the eigenvalue �2(�) of M�,�(�) , associ-
ated with orthogonal directions to � , is given by the hypergeometric representation (44).

Corollary 1 Let � ∈ ℝ
n . Then, the tensor multipliers M�,�(�) and MN(�) have the same set 

of eigenvectors: � and n − 1 eigenvectors orthogonal to � . Moreover, the eigenvalues of 
M�,�(�) converge to the eigenvalues of MN(�) in the local limits as follows: for � ≤ n + 2,

and for 𝛿 > 0,

3.3.5  Integral Representations for the Eigenvalues of the Peridynamic Multipliers

In this section, we provide integral representations for the eigenvalues �1 and �2 , given by 
(40) and (44), respectively.

Theorem 2 The eigenvalue of M�,�(�) associated with the direction of � is given by

The eigenvalue of M�,�(�) associated with orthogonal directions to � is given by

Proof Solving (39) for �1(�) , we obtain

The result (45) follows from (47) combined with the fact that M = Mb +Ms and the 
integral representations of the multipliers given in (12) and (14).

To derive (46), we use (43) and (35) to write

From (24), (30), and (33), we obtain

lim
�→0+

�1(�) = −(�∗ + 2�)‖�‖2,

lim
�→0+

�2(�) = −�‖�‖2,

lim
�→n+2−

�1(�) = −(�∗ + 2�)‖�‖2,

lim
�→n+2−

�2(�) = −�‖�‖2.

(45)

�1(�) = (n + 2)�c�,� ∫B� (0)

(� ⋅ w)2

‖�‖2‖w‖�+2
(cos(� ⋅ w) − 1) dw

− (�∗ − �)

�
c�,�

2 ∫B� (0)

� ⋅ w

‖�‖‖w‖�
sin(� ⋅ w) dw

�2

.

(46)�2(�) =(n + 2)�c�,� ∫B� (0)

� ⋅ w

‖�‖2‖w‖�+2
(sin(� ⋅ w) − � ⋅ w) dw.

(47)�1(�) = M(�)� ⋅
�

‖�‖2
.

(48)�2(�) =
(n + 2)�c�,�

c�,�+2

�
2 1F2

�
n − �

2
;
n + 2

2
,
n + 2 − �

2
; −

1

4
‖�‖2�2

�
− 2

�
.
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Thus, by replacing � by � + 2 , then multiplying both sides of the above equation by 
⋅

�

‖�‖2 , we find

Using (27), we have the following identities

Using (48), (49), and (50), we obtain

from which the result follows.  ◻

4  Eigenvalues of the Linear Peridynamic Operator

Consider L�,� as an operator on the periodic torus

In this section, we use the multiplier approach developed in the previous sections to iden-
tify the eigenvalues and the eigenvector fields of the operator L�,�,

Let � be a fixed vector in ℝn . For any k ∈ ℤ
n , define

Then, by applying Lb in (4), and using (12), we obtain

c�,� ∫B� (0)

w

‖w‖�
sin(� ⋅ w) dw = 2 1F2

�
n + 2 − �

2
;
n + 2

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�
�.

(49)

c�,�+2 ∫B� (0)

� ⋅ w

‖w‖�+2‖�‖2
sin(� ⋅ w) dw = 2 1F2

�
n − �

2
;
n + 2

2
,
n + 2 − �

2
; −

1

4
‖�‖2�2

�
.

(50)

2 = (2I)𝜈 ⋅
𝜈

‖𝜈‖2

=

�
c𝛿,𝛽+2 ∫B𝛿 (0)

w⊗ w

‖w‖𝛽+2
dw

�
𝜈 ⋅

𝜈

‖𝜈‖2

= c𝛿,𝛽+2 ∫B𝛿 (0)

(𝜈 ⋅ w)2

‖w‖𝛽+2‖𝜈‖2
dw.

�2(�) =
(n + 2)�c�,�

c�,�+2

�
c�,�+2 ∫B� (0)

� ⋅ w

‖w‖�+2‖�‖2
(sin(� ⋅ w) − � ⋅ w) dw

�
,

T
n =

n∏

i=1

[0,�i], with �i > 0, i = 1, 2,… , n.

L
�,�� = ��.

�k = (2�k1∕𝓁1, 2�k2∕𝓁2,… , 2�kn∕𝓁n)
T ,

� k(x) = ei�k ⋅x� .

(51)

Lb� k(x) = (n + 2)𝜇 c𝛿,𝛽 ∫B𝛿 (0)

w⊗ w

‖w‖𝛽+2
�
ei𝜈k ⋅(x+w) 𝛾 − ei𝜈k ⋅x 𝛾

�
dw,

=

�
(n + 2)𝜇 c𝛿,𝛽 ∫B𝛿 (0)

w⊗ w

‖w‖𝛽+2
�
ei𝜈k ⋅w − 1

�
dw

�
ei𝜈k ⋅x 𝛾 ,

= Mb(𝜈k)� k(x).
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Similarily, by applying Ls in (5), and using (14), we obtain

Equations (51), (52), and (15) yield

Denote by Mk = M�,�(�k) , the tensor multiplier evaluated at �k . From (38), (39), and (39), 
the matrix Mk is real symmetric and has n orthogonal eigenvectors: one in the direction of �k , 
and n − 1 orthogonal to �k , denoted by �2

k
,… , �n

k
 . The associated eigenvalues are denoted by 

�1(k) ∶= �1(�k) and �2(k) ∶= �2(�k) , respectively. Explicitly,

Define

Then,

and, for j = 2,… , n,

This shows that the eigenvalues �1(k) and �2(k) of the peridynamic operator L�,� , 
defined on the periodic torus, are the eigenvalues of the tensor multipliers Mk.

(52)

Ls� k(x) = (𝜆∗ − 𝜇)
(c𝛿,𝛽)2

4 ∫B𝛿 (0)
∫B𝛿 (0)

w

‖w‖𝛽
⊗

q

‖q‖𝛽
ei𝜈k ⋅(x+q+w) 𝛾 dqdw,

= (𝜆∗ − 𝜇)
(c𝛿,𝛽)2

4

�

∫B𝛿 (0)

w

‖w‖𝛽
ei𝜈k ⋅w dw

�
⊗

�

∫B𝛿 (0)

q

‖q‖𝛽
ei𝜈k ⋅q dq

�
ei𝜈k ⋅x 𝛾 ,

= Ms(𝜈k)� k(x).

(53)
L
�,�� k = Lb� k + Ls� k,

= Mb(�k)� k +Ms(�k)� k,

= M�,�(�k)� k.

Mk�k = �1(k)�k,

Mk�
j

k
= �2(k)�

j

k
, j = 2,… , n.

(54)�1

k
(x) =ei�k ⋅x�k,

(55)�
j

k
(x) =ei�k ⋅x�

j

k
, j = 2,… , n.

(56)

L
�,��1

k
= M�,�(�k)�

1

k
,

= ei�k ⋅xMk�k,

= ei�k ⋅x�1(k)�k,

= �1(k)�
1

k
,

(57)

L
�,��

j

k
= M�,�(�k)�

j

k
,

= ei�k ⋅xMk�
j

k
,

= ei�k ⋅x�2(k)�
j

k
,

= �2(k)�
j

k
.
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Remark 4 In the eigenvector fields definition in (54) and (55), the complex-valued func-
tions ei�k ⋅x can be replaced by the real-valued functions cos (�k ⋅ x) or sin (�k ⋅ x).

The summary is given in the following result.

Theorem  3 Let k ∈ ℤ
n . The eigenvalues of the linear peridynamic operator L�,� are 

�1(k) ∶= �1(�k) with associated eigenvector fields �1

k
 and �2(k) ∶= �2(�k) with associated 

eigenvector fields �j

k
 , for j = 2,… , n , where �1 and �2 are given in Theorem 1, or equiva-

lently, in Theorem 2. The eigenvector fields {�j

k
}k∈ℤn , with j = 1,… , n , are defined in (54) 

and (55).

Convergence of the eigenvalues of the peridynamic operator to the eigenvalues of the 
Navier operator follows immediately from Corollary 1 and Theorem 3. The eigenvalues of 
the Navier operator in (6) are given by

5  Discussion

The hypergeometric representations of the eigenvalues, given in (40) and (44), are 
utilized to compute the eigenvalues �1 and �2 as shown in Fig.  1. It easily follows 
from (58) that for the Navier operator, the eigenvalues are non-positive and �N

1
(�) is 

decreasing in �∗ for a fixed value of � , which additionally can be seen from the eigen-
values’ curves for the Navier operator (top-left) in Fig.  1. The non-positivity of the 
eigenvalues and the monotonicity of �1(�) as a function of �∗ hold true as well for 
the peridynamic operator. These observations follow from (45) and (46) for any 𝛿 > 0 
and 𝛽 < n + 2 and can also be observed in Fig. 1. In addition, in this figure, we note 
that in the first row (which corresponds to � being close to 0) and the first column 
(which corresponds to � being close to n + 2 ) the eigenvalues satisfy �1(�) ≈ �N

1
(�) 

and �2(�) ≈ �N
2
(�) , which is consistent with Corollary 1 and the fact that the hyper-

geometric functions in (41) and (44) are continuous. Moreover, in the second row of 
Fig. 1, which corresponds to � = n + 1 , we observe that the curves of the eigenvalues 
�1(�) and �2(�) are linear, of order ‖�‖ , for large values of ‖�‖ . The asymptotic behav-
ior of the eigenvalues in the third row of this figure, which corresponds to � = n , can 
be shown to be logarithmic in ‖�‖ . Furthermore, for integrable kernels (when 𝛽 < n ), 
it can be seen from the fourth row of Fig. 1 that the eigenvalues are bounded. These 
observations can be rigorously proved, similar to the approach followed in [1], using 
the hypergeometric representations (41) and (44), and can be used to derive regular-
ity results for peridynamic equations. Lastly, we notice in the figure that the curves of 
�1(�) for different values of �∗ converge to a single curve for large values of ‖�‖ , in the 
case that 𝛽 < n . This can be shown using the integral representation (45) of �1 and the 
Riemann-Lebesgue Lemma, which implies that sin(� ⋅ w) weakly converges to 0 in the 
limit as ‖�‖ → ∞.

(58)�N
1
(k) = − (�∗ + 2�)‖k‖2, and �N

2
(k) = −� ‖k‖2.
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Appendix. Alternative Derivations of the Hypergeometric Representations

In this section, we provide an alternative derivation of the hypergeometric representa-
tions summarized in Proposition 3. In the following, the n-sphere is denoted

while the n-ball is denoted

The (n − 1)-sphere has surface area

while the n-ball has volume

Sn = {x ∈ ℝ
n+1 ∶ ‖x‖ = 1},

Bn = {x ∈ ℝ
n ∶ ‖x‖ < 1}.

Sn−1 =
2�

n

2

Γ
(

n

2

) ,

Vn =
�

n

2

Γ
(

n

2
+ 1

) .

Fig. 1  The eigenvalues (vertical axis) �1(�) and �2(�) , as given by (45) and (46), for the 3D case. Here ‖�‖ 
(horizontal axis) is sampled at 1000 equispaced points in the interval [0, 15] and � and � are as given in the 
titles. The shear modulus and the second Lamé parameter are given by � = 1 and �∗ = −1.9,−1, 0, 1, 2 . For 
each plot, the dashed line shows �2(�) and the solid lines show �1(�) corresponding to the different values 
of �∗ in a decreasing order, i.e., the top solid curve corresponds to �∗ = −1.9 , the second corresponds to 
�∗ = −1 , etc.
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Formula for Mb

Consider the integral

Since the numerator is of order O(‖w‖4) , the integral converges as long as 𝛽 < n + 2 . Moreover,

Now, we rewrite (59) in spherical coordinates oriented so that � ⋅ w = ‖�‖r cos�1 . The 
integral can be written as

The innermost integral consists of three terms. The first term is simply

For the second term, we write

For the final term, we use [12, Eq. (9.1.20)].

(59)gb(�) ∶= ∫B� (0)

1 −
1

2
(� ⋅ w)2 − cos(� ⋅ w)

‖w‖�+2
dw.

�2gb(�)

��i��j
= ∫B� (0)

wiwj

‖w‖�+2
(cos(� ⋅ w) − 1) dw.

(60)gb(�) = ∫
�

0

rn−�−3 ∫Sn−1

�
1 −

1

2
‖�‖2r2 cos2 �1 − cos(‖�‖r cos�1)

�
dSn−1V dr.

∫Sn−1
dSn−1V = Sn−1.

−
1

2
‖�‖2r2 ∫

S
n−1

cos2 �1dSn−1V = −
1

2
‖�‖2r2S

n−2 ∫
�

0

cos2 �1 sin
n−2 �1 d�1

= −
1

4
‖�‖2r2S

n−2

�
1

2 Γ
�

n−1

2

�

Γ
�

n

2
+ 1

�

= −
1

4
‖�‖2r2 2�

n−1

2

Γ
�

n−1

2

�
�

1

2 Γ
�

n−1

2

�

Γ
�

n

2
+ 1

�

= −
1

2
‖�‖2r2 �

n

2

Γ
�

n

2
+ 1

� = −
1

2
‖�‖2r2V

n
.

−∫Sn−1
cos(‖�‖r cos�1) dSn−1V = −Sn−2 ∫

�

0

cos(‖�‖r cos�1) sin
n−2 �1 d�1

= −Sn−2

�
1

2 Γ
�

n−1

2

�

�
1

2
‖�‖r

� n

2
−1

J n

2
−1(‖�‖r)

= −
2�

n−1

2

Γ
�

n−1

2

�
�

1

2 Γ
�

n−1

2

�

�
1

2
‖�‖r

� n

2
−1

J n

2
−1(‖�‖r)

= −
2�

n

2

�
1

2
‖�‖r

� n

2
−1

J n

2
−1(‖�‖r).
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Now, we can apply [12, Eq. (9.1.10)] to obtain a series representation.

Combining the three terms for the inner integral in (60) yields

Substituting into (60) and integrating provides the series representation

Differentiation shows that

and

Thus, the second gradient of gb has the form

The functions gb1 and gb2 can be expressed as generalized hypergeometric series as follows.
For gb1 , we write

−∫Sn−1
cos(‖�‖r cos�1) dSn−1V = −2�

n

2

∞�

k=0

(−
1

4
‖�‖2r2)k

k!Γ
�

n

2
+ k

� .

∫Sn−1

�
1 −

1

2
‖�‖2r2 cos2 �1 − cos(‖�‖r cos�1)

�
dSn−1V

= Sn−1 −
1

2
‖�‖2r2Vn − 2�

n

2

∞�

k=0

(−
1

4
‖�‖2r2)k

k!Γ
�

n

2
+ k

�

= 2�
n

2
1

Γ
�

n

2

� + 2�
n

2

−
1

4
‖�‖2r2

Γ
�

n

2
+ 1

� − 2�
n

2

∞�

k=0

(−
1

4
‖�‖2r2)k

k!Γ
�

n

2
+ k

�

= −2�
n

2

∞�

k=2

(−
1

4
‖�‖2r2)k

k!Γ
�

n

2
+ k

� .

gb(�) = −2�
n

2

∞�

k=2
∫

�

0

(−
1

4
)k‖�‖2kr2k+n−�−3

k!Γ
�

n

2
+ k

�

= −2�
n

2

∞�

k=2

(−
1

4
)k‖�‖2k�2k+n−�−2

(2k + n − � − 2)k!Γ
�

n

2
+ k

� .

�gb(�)

��i
= −4�i�

n

2

∞�

k=2

k(−
1

4
)k‖�‖2k−2�2k+n−�−2

(2k + n − � − 2)k!Γ
�

n

2
+ k

� ,

�2gb(�)

��i��j
= −4�ij�

n

2

∞�

k=2

k(−
1

4
)k‖�‖2k−2�2k+n−�−2

(2k + n − � − 2)k!Γ
�

n

2
+ k

� − 8�i�j�
n

2

∞�

k=2

k(k − 1)(−
1

4
)k‖�‖2k−4�2k+n−�−2

(2k + n − � − 2)k!Γ
�

n

2
+ k

� .

∇∇gb = gb1(𝜈)I + gb2(𝜈)𝜈 ⊗ 𝜈.
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where

The ratio of consecutive coefficients is

We can recognize the constant in front of the series by writing

Thus,

Using a similar procedure for gb2 , we write

where

In this case, the ratio between consecutive coefficients is

gb1(�) = −4�
n

2

∞�

k=0

(−
1

4
)k+2‖�‖2k+2�2k+n−�+2

(2k + n − � + 2)(k + 1)!Γ
�

n+4

2
+ k

�

= −4�
n

2

(−
1

4
)2‖�‖2�n−�+2

(n + 2 − �)Γ
�

n+4

2

�
∞�

k=0

ak

k!

�
−
1

4
‖�‖2�2

�k

,

ak =
(n + 2 − �)Γ

(
n+4

2

)

(2k + n + 2 − �)Γ
(
k +

n+4

2

)
(k + 1)

.

ak+1

ak
=

(
k +

n+2−�

2

)
(k + 1)

(
k +

n+4−�

2

)(
k +

n+4

2

)
(k + 2)

.

−
1

4

�
n

2 �n+2−�

(n + 2 − �)Γ
(

n+4

2
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1

4

�
n

2 �n+2−�

(n + 2 − �)Γ
(

n

2
+ 1

)(
n

2
+ 1

) = −
1

c�,�(n + 2)
.

gb1(�) = −
‖�‖2

c�,�(n + 2)
2F3

�
1,

n + 2 − �

2
;2,

n + 4

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�
.

gb2(�) = −8�
n

2

∞�

k=0

(−
1

4
)k+2‖�‖2k�2k+n−�+2

(2k + n − � + 2)k!Γ
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n+4

2
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= −8�
n

2

(−
1

4
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k +
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The constant in front of the sum can be written as

therefore

To connect this with the multiplier matrix Mb(�) , we observe that

recovering the first formula of Proposition 3.

Formula for Ms

The formula for Ms is similar, but we begin with the function

Since the numerator is of order O(‖w‖2) , the integral converges as long as 𝛽 < n + 2 . 
Taking a derivative yields

Again, we can use spherical coordinates to write

The terms in the inner integral were found in the previous section and allow us to 
rewrite the inner integral as

ak+1

ak
=

(
k +

n+2−�

2

)

(
k +

n+4−�

2

)(
k +

n+4

2

) .

−
�

n

2 �n+2−�

2(n + 2 − �)Γ
(

n

2
+ 1

)(
n+2

2

) = −
2

c�,�(n + 2)
,

gb2(�) = −
2

c�,�(n + 2)
1F2

�
n + 2 − �

2
;
n + 4

2
,
n + 4 − �

2
; −

1

4
‖�‖2�2

�
.

Mb(𝜈) = (n + 2)𝜇 c𝛿,𝛽 ∫B𝛿 (0)

w⊗ w

‖w‖𝛽+2
(cos(𝜈 ⋅ w) − 1) dw

= (n + 2)𝜇 c𝛿,𝛽∇∇gb(𝜈)

= −𝜇‖𝜈‖2 2F3

�
1,

n + 2 − 𝛽

2
;2,

n + 4

2
,
n + 4 − 𝛽

2
; −

1

4
‖𝜈‖2𝛿2

�
I

− 2𝜇 1F2

�
n + 2 − 𝛽

2
;
n + 4

2
,
n + 4 − 𝛽

2
; −

1

4
‖𝜈‖2𝛿2

�
𝜈 ⊗ 𝜈,

(61)gs(�) ∶= ∫B� (0)

1 − cos(� ⋅ w)

‖w‖�
dw.

�gs(�)

��i
= ∫B� (0)

wi

‖w‖�
sin(� ⋅ w) dw.

(62)gs(�) = ∫
�

0

rn−�−1 ∫Sn−1

�
1 − cos(‖�‖r cos�1)

�
dSn−1V dr.
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Therefore, by integrating,

Differentiating yields

where

Again, the series is a generalized hypergeometric series with coefficient ratio

In order to recognize the constant in front of the series, we rewrite

therefore

∫Sn−1

�
1 − cos(‖�‖r cos�1)

�
dSn−1V = Sn−1 − 2�

n

2

∞�
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To connect this to the operator Ms , we note that

recovering the second formula in Proposition 3.
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