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Abstract
Due to the adoption of integral equations instead of partial differential equations to 
describe the deformations of materials, the peridynamics has advantages in dealing with 
fracture problems. However, the non-local effect of peridynamics brings too much compu-
tation cost to make large-scale engineering applications challenging. In this paper, a paral-
lel algorithm in the Compute Unified Device Architecture (CUDA) framework is presented 
to speed up the computational process of a peridynamic model for quasistatic fracture 
simulations on GPU, in which the peridynamic model is numerically implemented by the 
peridynamics-based finite element method (PeriFEM) [1]. The parallel algorithm makes 
crack simulations by the pure peridynamics with millions of degrees of freedom possible 
with one GPU. To validate the accuracy and efficiency of the parallel algorithm based on 
PeriFEM, several numerical benchmarks are performed, and the results are compared with 
those obtained by the finite element method (FEM) and the serial algorithm. The results of 
the comparison show that the presented parallel algorithm is effective and efficient.

Keywords  Peridynamic · Finite element method · CUDA · Parallel computing · Crack simulation

1  Introduction

Due to the classical continuum mechanics (CCM) uses partial differential equations to 
describe the deformations of solid materials and structures, it is difficult to simulate crack 
growth by numerical methods that rely on the CCM theory for a long time. Although there 
are many methods to simulate cracks in the framework of CCM, such as meshfree tech-
niques and extended finite element methods (XFEM), it is needed to add supplementary 
conditions to approximate discontinuous displacement fields [2, 3]. Moreover, they cannot 
be used to spontaneously simulate the deformation process of material from loading to fail-
ure. In this background, Silling firstly proposed the peridynamic theory which uses integral 
equations to describe the motion of material points [4, 5]. The integrand in the peridynamic 
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(PD) equation of motion is free of spatial derivatives of the displacement field. Thus, it is 
applicable in the presence of discontinuities in the displacement field, such as crack initia-
tion and propagation.

On the other hand, PD assumes that one material point can interact with others in its 
horizon by bonds which can be seen as springs. This leads to expensive computation and 
memory costs compared with FEM, which limits the application of PD in engineering. To 
solve this problem, many researchers have proposed plenty of schemes to couple CCM and 
PD, and PD is only applied in the area where damage occurs [6–11]. The coupling meth-
ods are divided into two types that one is force-based schemes and the other energy-based 
schemes. However, the force-based schemes possibly lead to the inconsistency of the strain 
energy density function under the affine deformation, while the energy-based schemes 
may bring the ghost force to the coupling boundary. Furthermore, the coupling methods 
extremely reduce the computation consumption, but it is hard to implement in parallel due 
to the complex algorithm.

For accurate and fast simulations, parallel computing is another option. There are many 
computing techniques such as Message Passing Interface (MPI), Open Multi-Processing 
(OpenMP), CUDA, and Open Computing Language (OpenCL). MPI is a standard for 
developing high-performance computing (HPC) applications on distributed memory archi-
tecture. But due to the massive communications between the master and slave processors 
in MPI programming, the master processor may become the bottleneck of system perfor-
mance [12]. MPI is suitable for large-scale problems which should be executed in clusters. 
OpenMP is a kind of application programming interface (API) with shared memory archi-
tecture, and it provides a multithreaded capacity [13]. So OpenMP can be easily imple-
mented to achieve thread-level parallel computing. However, due to hardware limitations, 
OpenMP can only start a very small number of threads.

With the rising computational power and the increasingly low price, a graphics pro-
cessing unit (GPU) is ubiquitous in HPC [14]. GPU has evolved into a highly parallel, 
multithreaded, multi-core processor with tremendous computational power and super high 
memory bandwidth compared with the central processing unit (CPU). At the same time, 
the popularity of general-purpose graphics processing units (GPGPU) makes it a trend to 
use GPU for computing. CUDA and OpenCL are two major GPGPU frameworks at pre-
sent. CUDA launched by NVIDIA corporation is a general-purpose parallel computing 
platform and programming model that allows users to directly utilize NVIDIA GPU for 
parallel computing [15]. OpenCL was first developed by Apple corporation in 2008 as a 
standard designed to achieve portability and efficiency for parallel computing [16]. CUDA 
is a general-purpose parallel computing architecture developed by NVIDIA, which enables 
GPUs to solve complex computing problems. Compared with OpenCL, programs written 
by the GPU can run on CUDA-enabled processors with ultra-high performance.

Currently, PD-based parallel algorithms and codes with great potential for engineering 
applications are limited. There are some open-source codes that can be used for PD simula-
tions, such as PDLammps, Peridigm, PeriPy, and PeriHPX. PDLammps is an add-on mod-
ule to Sandia’s Lammps molecular dynamics package and can implement a simplified PD 
model [17]. Peridigm is an open-source computational PD code. It is a massively parallel 
code for implicit and explicit multi-physics simulations centering on solid mechanics and 
material failure [18]. The state-based PD is successfully applied to Peridigm [19]. OpenMP 
can be used for CPU parallelism. For example, CPU acceleration is used to accelerate PD-
SPH simulations [20]. PeriPy is an open-source and high-performance python package for 
solving PD problems in solid mechanics [21]. PeriHPX implements a PD model of frac-
ture using meshfree and finite element discretizations with an open-source C++ standard 
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library HPX for parallelism and concurrency [22]. There are also some researches that 
pay attention to accelerating part of calculations, such as assembling total stiffness matrix 
by making most of the shared memory on OpenMP or GPU and creating neighbor lists 
[23–27]. But parallel computation of the whole process is still needed. On the other hand, 
most parallel computations for PD models adopt explicit numerical methods to get solu-
tions, while some bond-based PD models of composites are solved by implicit algorithms 
before failure occurs [28, 29].

This paper presents a parallel computing algorithm of bond-based PD for quasi-static 
fracture simulations based on the CUDA framework, which expects to apply PD to engi-
neering without high-performance computers. We compare the calculation speed of Per-
iFEM with that of FEM for structures that have millions of degrees of freedom (DOFs) in 
the CUDA framework and study the relationship between DOFs and the calculation time 
of each part. The results show that the calculation speed of PeriFEM can be close to that of 
FEM in the CUDA framework.

The remainder of this paper is organized as follows. Section  2 briefly introduces the 
bond-based PD theory and describes PeriFEM. Section 3 describes the quasi-static implicit 
solution method and the parallel computing algorithm. The numerical benchmarks and the 
analysis of the results are provided in Sect. 4. Concluding remarks are given in Sect. 5.

2 � A Quick Overview on the Bond‑Based Peridynamics

In this section, we will briefly introduce the bond-based PD and PeriFEM.

2.1 � Bond‑Based Peridynamics

The bond-based peridynamic model is proposed by Silling [4], which assumes 
that a point x in a complete domain Ω interacts with all points in its neighborhood, 
H�(x) =

{
x′ ∈ Ω ∶ ||x′ − x|| ≤ �

}
 , where � is referred to as the peridynamic horizon that 

denotes the cut-off radius of the action scope of x , as shown in Fig. 1.
The bond-based peridynamic equation for a quasi-static problem, which uses a pairwise 

force function f  to describe the interaction between material points, is written as follows

Fig. 1   Continuum body Ω and 
neighborhood of x , H�(x)
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where b(x) is a prescribed body force density, and � = x′ − x is the relative position vector 
called a bond.

For linear elasticity and small deformations, the vector-valued function f  takes the form 
as follows [4]

where �(�) = u(x′) − u(x) is the relative displacement vector with the displacement field 
u , and c(x, �) is the micromodulus function, which is related to the bond stiffness. For the 
homogeneous materials, c(x, �) = c(|�|),∀x ∈ Ω.

In PD, the stretch-based criterion proposed by Silling and Askari [5] has been widely 
used for fracture simulations. When the bond stretch s is larger than a critical value scrit , the 
bond will break in an irreversible manner. The bond stretch s is defined as

This failure law is implemented by introducing a history-dependent scalar-valued func-
tion �(�, t) to describe the status of bonds, which is defined as

where t and t′ denote the computational steps. Note that the critical bond stretch scrit is 
considered as an intrinsic material parameter. And the effective damage for each point x is 
defined as

which can indicate the damage of the structure.

2.2 � Peridynamics‑Based Finite Element Method (PeriFEM)

PeriFEM is an algorithm framework for numerically implementing the bond-based PD 
model that is compatible with the traditional algorithm framework of the FEM. So the PD 
simulation can make use of the existing FEM software platform or high-performance com-
puting architecture, to facilitate the promotion of PD in engineering applications.

From [7], in order to reconstruct the formulation for potential energy, the finite element 
framework is used to solve the PD problems. The total potential energy can be rewritten as

where the first and second terms on the right-hand side are the deformation energy and 
external work, respectively.

(1)∫H�(x)

f (�)dV� + b(x) = 0,

(2)f (�) =
c(x, �) + c(x′, �)

2

� ⊗ �

|�|2 ⋅ �,

(3)s =
|� + �| − |�|

|�| .

(4)𝜇(�, t) =

{
1, if s

(
t�, �

)
< scrit for all 0 ⩽ t� ⩽ t,

0, otherwise ,

(5)�(x, t) = 1 −

∫
H�(x)

�(�, t)dV�

∫
H�(x)

dV�

,

(6)Π(u) =
1

4 ∫
Ω
∫H�(x)

f (�) ⋅ �(�)dV�dVx − ∫
Ω

u(x) ⋅ b(x)dVx,
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Note that f (�) = 0 , for ∀|�| > 𝛿 , i.e., ∀x′ ∉ H�(x) , then the inner integral defined on 
H�(x) can be extended to the entire domain Ω . Furthermore, a new type of integral operation 
is defined as [1]

where Ω̄ is an integral domain generated by two Ω s, and ḡ(x′, x) is a double-parameter 
function related to g(�) and is defined on Ω̄ . Then, Eq. (6) can be represented in a single 
integral form

A new type of element called the peridynamic element (PE) is introduced in the new inte-
gral domain Ω̄ in Eq. (8). These PEs are constructed based on the elements in the classical 
FEM, which are characterized as sharing nodes between adjacent elements, and are thus 
called the continuous elements (CEs). Also, there is another situation that each element 
has its own nodes (nodes are not shared between adjacent elements), which is called the 
discrete elements (DEs) [30]. Both CE and DE are called local elements. In the following, 
we will only use CE as a type of local elements for discussion, and DE as another local ele-
ments also applies to the discussion below.

In this paper, for domain Ω , we use the method in Han and Li [1] to generate a new 
integral domain Ω̄ and then discretize the domain Ω with CEs and the domain Ω̄ with PEs. 
Now, we have two sets of elements, CEs and PEs. For any CE ei , we define the shape func-
tion matrix of CE

and the nodal displacement vector of CE

For any PE ēk , we define the shape function matrix of PE

and the nodal displacement vector of PE

so the difference matrix for shape function can be written as

where H̄ = [I,−I] is the difference operator matrix with I being an identity matrix. In 
addition, the micromodulus tensor has the matrix form

(7)∫
Ω̄

ḡ(x′, x)dV̄x′x ∶= ∫
Ω
∫
Ω

g(�)dV�dVx,

(8)Π(u) =
1

4 ∫
Ω̄

f̄ (x�, x) ⋅ �̄(x�, x)dV̄x�x − ∫
Ω

u(x) ⋅ b(x)dVx.

(9)Ni(x) =

⎡
⎢⎢⎢⎣

Ni1
(x) 0 0 Ni2

(x) 0 0 ⋯ Nini
(x) 0 0

0 Ni1
(x) 0 0 Ni2

(x) 0 ⋯ 0 Nini
(x) 0

0 0 Ni1
(x) 0 0 Ni2

(x) ⋯ 0 0 Nini
(x)

⎤
⎥⎥⎥⎦
,

(10)di =
[
ui1 vi1 wi1

ui2 vi2 wi2
⋯ uini

vini
wini

]T
.

(11)N̄k(x
′, x) =

[
Nj(x

′) 0

0 Ni(x)

]
,

(12)d̄k =

[
dj
di

]
,

(13)B̄k(x
′, x) = H̄N̄(x′, x),
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Consequently, the total potential energy can be approximated as

where d is the total nodal displacement vector and

are the total stiffness matrix and total load vector, respectively. Ḡk and Gi are the transform 
matrix of the degree of freedom, which satisfies

respectively. Furthermore,

are the element stiffness matrix and the element load vector, respectively.
Finally, from Eq. (15), a linear system including the solution of the nodal displacement 

vector d can be derived as

Remark 1  A special case: two-node PE. Typically if the 2-node, 4-node, and 8-node local 
elements (CEs or DEs) are used in 1, 2, and 3-dimensional classical finite element discre-
tization, a PE generated by them is 4-node, 8-node, and 16-node, respectively. Particularly, 
let us consider a special kind of DE that is only one node in the centroid of the element, 
and its shape function is constant, which can be regarded as a material point. As a result, 
Eq. (11) becomes an identity matrix. In this case, the corresponding PE will only have two 
nodes and the PeriFEM will be reduced to a special form [31], i.e., two-node PE. It should 
be noted that the two-node PE is suitable to 1-, 2-, and 3-dimensional cases. In addition, a 
PE composed of a DE and itself is ignored, because its PE stiffness is zero [30].

3 � Numerical Implementation of PeriFEM in CUDA

By reviewing PeriFEM in Sect.  2.2, it is worth noting that there is no data exchange 
among PEs, so this numerical algorithm is naturally suitable for parallel computing in 
GPU by matching each CE with a thread. The flowchart of the numerical algorithm is 

(14)D(�) =
c(���)�(�, t)

���2
⎡
⎢⎢⎣

�2
1

�1�2 �1�3
�2�1 �2

2
�2�3

�3�1 �3�2 �2
3

⎤
⎥⎥⎦
.

(15)Π(d) =
1

4
dT K̄d − dTF,

(16)K̄ =

m̄∑
k=1

Ḡ
T

k
K̄kḠk, F =

m∑
i=1

GT
i
Fi,

(17)d̄k = Ḡkd, di = Gid,

(18)K̄k = ∫
Ω̄k

B̄
T

k
(x′, x)D(�)B̄k(x

′, x)dV̄x′x,

(19)Fi = ∫
Ωi

NT
i
(x)b(x)dVx,

(20)
1

2
K̄d = F.
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provided in Fig. 2. Next, we will introduce in detail the implementation processes of some 
steps in CUDA.

3.1 � Generating PE Mesh Data by GPU

The PE mesh data is generated from the CE mesh data in PeriFEM. It is known that theo-
retically, we need to execute the loop N2 times to construct the neighborhood data for N 
CEs in serial computation. It is acceptable for small-scale problems, but it is hard to imple-
ment due to the increasing computational cost for large-scale problems for example with 
millions of elements.

It is found that the process of creating neighborhood data for different CEs is independ-
ent and repetitive, so we can match each CE with a thread in GPU to construct the neigh-
borhood data. The diagram of generating neighborhood data for CEs by multithreads in 
GPU is shown in Fig. 3.

During generating neighborhood data for CEs by multithreads at the same time, the PE 
data is obtained and a list is chosen to store it. As shown in Fig. 4, in the list for the cur-
rent thread, the first number represents the number of related elements, and the parameter 
step_length is directly related to the maximum number of elements in all neighborhoods, 
for example, we can set step_length to 30 if choosing � to be 3 times the mesh size. Finally, 
a one-dimensional list with a size of the number of CEs times step_length is used to store 
PE data in global memory [27].

After the PE mesh data is obtained, the PE stiffness matrices are calculated in parallel 
according to Eq. (18) by matching the PEs in a CE’s neighborhood with one thread. Com-
pared with the serial algorithm, it can be seen that parallel computation in GPU is an effec-
tive way to improve computational efficiency.

Fig. 2   Flowchart of the numerical algorithm with N being the number of total progressive increments
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3.2 � Assembling and Storing Total Stiffness Matrix by CPU

After getting the PE stiffness matrices, we need to assemble the total stiffness matrix. There exists 
a security problem called the thread race condition when assembling the total stiffness matrix in 
GPU, so the step of assembling the total stiffness matrix is executed by the CPU in serial.

Fig. 3   Diagram of generating 
neighborhood data for CEs by 
multithreads in GPU

Fig. 4   The data format of the list of storing the PE data
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It is well known in the PeriFEM that only the interacting elements contribute to the 
total stiffness matrix; this brings the banded and sparse distribution of the non-zero val-
ues in the total stiffness matrix. Therefore, the sparse storage of the total stiffness matrix 
is an effective way to reduce memory usage. We adopt the method of compressed sparse 
row (CSR) [32] to save the total stiffness matrix. In order to display how to store a matrix 
using CSR, we give an example of the mapping relationship between full storage and CSR 
sparse storage as shown in Fig. 5. The related parameters in CSR such as two indexes row 
and col are described in Table 1. Thus, we can directly assemble the total stiffness matrix 
saved in sparse format, which can reduce the memory and time consumption, and then 
allow us to solve the problems with more degrees of freedom by GPU.

3.3 � Applying Displacement Boundary Conditions and Solving Linear Equations 
by GPU

After getting the total stiffness matrix, we need to apply boundary conditions and then 
obtain the linear equations. For simplicity, we adopt the penalty method of multiply-
ing by a big number [33] to apply boundary conditions. In general, it is easy to apply 

Fig. 5   The example of how a matrix is stored using CSR

Table 1   The related parameters in CSR

Matrix The m × n sparse matrix.
nnz The number of nonzero elements in the Matrix.
val Store the data of length nnz that holds all nonzero values of full Matrix in row-major format.
row Store integer array of length m + 1 that holds indices into the arrays col and val. The first m entries 

of this array contain the indices of the first nonzero element in the i-th row for i = 0, ...,m − 1 , 
while the value of the last entry is nnz.

col Store the integer array of length nnz that contains the column indices of the corresponding  
elements in array val.
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displacement boundary conditions for a fully stored total stiffness matrix because we 
just need to find the nodes that should be processed in turn. However, this step is trou-
blesome when the stiffness matrix is compressed into sparse format storage. But, we 
can use the parallel algorithm with thousands of threads to modify the values in the 
total stiffness matrix and create the load vector at the same time.

We get the linear Eq. (20) where d is the unknown displacement vector after processing 
the boundary conditions and creating the load vector. The linear equations are solved by 
applying the conjugate gradient (CG) method as shown in Algorithm 1. As we know, solv-
ing linear equations in FEM is usually the most time-consuming part because of nonlinear 
iterations. But from the above CG algorithm, it is found that the algorithm contains a lot of 
vector additions, internal products, and matrix multiplications, which is suitable for paral-
lel calculations to save computational time.

The cuSPARSE library in CUDA is a set of basic linear algebra subroutines for han-
dling sparse matrices, and it can accelerate the calculations of matrices and vectors in GPU 
[32, 34]. The cuBLAS library is an implementation of Basic Linear Algebra Subprograms 
(BLAS) at the NVIDIA®CUDA™runtime which allows the user to access the computa-
tional resources of NVIDIA GPU [35]. Therefore, the solver used in this paper is written 
by the cuSPARSE and cuBLAS libraries, which make us get the best efficiency in solving 
linear equations.

3.4 � Updating the Bond State for Every PE by GPU

Before starting the next increment step, we need to update the bond state for every PE. 
Exactly, it is necessary to judge whether the bond stretch of each bond in every PE exceeds 
the threshold, and then the contributions of broken bonds are removed from the total stiff-
ness matrix. Because the state of each bond is independent, it is easy to update the state of 
each bond by the parallel program. One thread in GPU matches one CE to update the states 
of all bonds in this element as shown in Fig. 6.
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4 � Numerical Results

In this section, the uniform deformation of a plate is firstly investigated to verify the validity 
of PeriFEM based on GPU by comparing it with results obtained by FEM in Sect. 4.1. Next, 
in Sect. 4.2, the damage of a single-edge-notched plate under symmetric stretches is investi-
gated to show the computational efficiency brought by GPU. Finally, the PeriFEM based on 
GPU is applied to other typical examples in Sect. 4.3. In these examples, Young’s modulus 
and Poisson’s ratio are fixed as E = 2.06 × 1011 Pa and � = 1∕3 respectively, and the horizon 
size is chosen as � = 3Δx where Δx is the mesh size of CEs. The micromodule coefficient is 
assumed to be the exponential function [36].

Table 2 gives the information on the hardware configuration of CPU and GPU in the calcu-
lation. For the software environment configuration, the 11.4 version of CUDA toolkit is used 
where the driver is 516.94 and the compiler is nvcc. The two-dimensional grids and blocks 
are used in all the CUDA computations. The size of block is (32, 32) and the size of grids 
is (int(sqrt(NUM∕32.0∕32.0)) + 1, int(sqrt(NUM∕32.0∕32.0)) + 1) with NUM representing 
the total number of threads that need to be excuted. In the below simulations, all programs in 
the CPU framework are run in serial.

In addition, the size of the load step should change with the grid size. In order to quantita-
tively compare the computational efficiency, we choose the following equation to calculate the 
load step

(21)load_step =
displacement

element_size∕5
.

Fig. 6   The diagram of how to update the bond states for a PE

Table 2   The information of 
hardware configuration of CPU 
and GPU

Host CPU 1×Intel CoreTM i7-9700 (with 8 cores, 8 
threads, 3GHz)

RAM 16GB, DDR4
Device GPU 1×Nvidia RTX 2060 SUPER (2176 cores)

RAM 8GB, GDDR6



217Journal of Peridynamics and Nonlocal Modeling (2024) 6:206–229	

1 3

4.1 � Uniform Deformation of a Plate

Considering the uniform deformation of a square plate, the geometry and boundary condi-
tions of the problem are shown in Fig. 7. The square plate has sides of a length of 1 m. 
The left and right sides are free sides, the lower side is fixed along the vertical direction, 
and the upper side bears a vertical displacement of 0.1 m. The plane is discretized into 
100 × 100 quadrilateral CEs, that is, the mesh size is Δx = Δy = 0.01 m.

The displacement contours calculated by the PeriFEM in CUDA are shown in Fig. 8a, 
b. The results obtained from FEM in CUDA are shown in Fig. 8c, d. It can be seen that the 
results from the two methods are in good agreement, except that the horizontal displace-
ment corresponding to the PeriFEM has obvious errors due to the surface effect of PD. 
There are many techniques to avoid or modify the surface effect of PD [7, 31, 37].

In the CUDA framework, we compare the time cost of PeriFEM simulations with 
that of FEM simulations with the increase in the number of CEs. The total time con-
sumption is shown in Fig.  9. As we know, these two kinds of simulations consume 
more time as the number of CEs increases. However, compared with the FEM simu-
lations, the PeriFEM simulations need more time for the same number of CEs, and 
this happens because generating the PEs from CEs needs to take much time in the 
PeriFEM simulations.

It is well known that in the CPU framework compared with FEM simulations based on 
CEs, PeriFEM simulations need to generate a large number of PEs from CEs, which leads 

Fig. 7   The geometry and bound-
ary conditions of the problem
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to more time cost in calculating PE stiffness matrices. But in the CUDA framework, it can 
be computed simultaneously, so the time consumption of calculating PE stiffness matri-
ces in PeriFEM simulations is essentially the same as calculating CE stiffness matrices in 
FEM simulations, although the number of PE is much more than CE. This just reflects the 
advantages of GPU.

Furthermore, we find an interesting phenomenon in the processes of simulations. When 
applying the same solver based on the conjugate gradient method to solve linear equations, 
although the bandwidth of the total stiffness matrix in PeriFEM is wider than that in FEM, 
the time consumption of solving linear equations in PeriFEM is smaller than that in FEM. 
In other words, for the same error criterion in the conjugate gradient method, the iteration 
steps in PeriFEM are fewer than those in FEM. The time consumption of solving linear 
equations in PeriFEM and FEM simulations with the increase in the number of CEs is dis-
played in Fig. 10.

Fig. 8   Displacement contours by (a, b) PeriFEM in CUDA and (c, d) FEM in CUDA
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4.2 � Single‑Edge‑Notched Plate Under Symmetric Stretches

Here, we consider a single-edge-notched square plate under symmetric stretches to com-
pare the computational efficiency between CPU and GPU. The geometry and boundary 
conditions are shown in Fig. 11a. The plane is discretized into 200 × 200 quadrilateral CEs, 
that is, the mesh size is Δx = Δy = 0.005 m. The critical stretch in Eq. (4) is set to be 
scrit = 0.02.

Fig. 9   The total time consump-
tion of PeriFEM similations 
and FEM similations with the 
increase of number of CEs

Fig. 10   Time consumption of 
solving linear equations in Per-
iFEM and FEM simulations with 
the increase of number of CEs
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Figure 11b shows the crack paths predicted by the PeriFEM based on CUDA. It can be 
seen that the crack paths are along the horizontal direction. The result is the same as in 
literature [26].

In order to display the computational efficiency of GPU, the PeriFEM based on 
CPU is also used to predict the crack paths. For the different parts with the increase 
in the number of CEs, we compare the time consumption based on GPU simulations 
with that based on CPU simulations, as shown in Fig. 12. It is noted that no matter 
which part in the calculations, the CPU computation time is much longer than that 
of the GPU, which demonstrates that the GPU has an incomparable advantage com-
pared to the CPU.

Meanwhile, we also compared the time consumption of different parts for GPU simu-
lations when the number of CEs increases. Figure 13 shows the most time-consuming 
parts in one iteration step, while the most time-consuming parts in the whole simulation 
are displayed Fig. 14. It is found from Fig. 13 that the steps of assembling the total stiff-
ness matrix and generating PE mesh data are the two most time-consuming parts in one 
step, but the total stiffness matrix is only assembled once and the PE mesh data is only 
generated once, so they do not spend much time in the whole simulation as shown in 
Fig. 14. As we know, the linear equations must be solved repeatedly in the whole simula-
tion, which makes it the most time-consuming step. It is concluded that the speed of the 
CUDA program mainly depends on the speed of solving linear equations, and the opti-
mization should mainly focus on how to solve linear equations in order to speed up the 
PeriFEM GPU calculation.

Fig. 11   (a) The geometry and boundary conditions of the problem. (b) Damage contours of the notched plate 
predicted by PeriFEM based on CUDA
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Fig. 12   Time consumption for the different parts based on GPU simulations and CPU simulations with the 
increase of number of CEs: (a) total time consumption, (b) generating PE mesh data, (c) calculating the PE 
stiffness matrix, (d) applying boundary conditions, (e) solving linear equations and (f) updating the bond 
state
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4.3 � Typical Examples

In the last two subsections, the validity and high efficiency of the PeriFEM based on GPU 
have been verified. In the following, typical example applications will be considered by 
using the PeriFEM based on GPU.

4.3.1 � Single‑Edge‑Notched Plate Under Nonsymmetric Stretch

Let us consider a single-edge-notched square plate under nonsymmetric stretch. The geom-
etry and boundary conditions are shown in Fig. 15. The plane is discretized into 200 × 200 
structured quadrilateral CEs, that is, the mesh size is Δx = Δy = 0.005 m and the DOFs are 
81002. The critical stretch in Eq. (4) is set to be scrit = 0.02 . It takes around 43.4 h to com-
plete the whole simulation.

Figure 16 shows the evolution of the effective damage contours predicted by the Per-
iFEM based on CUDA. First, the damage initiates, i.e., the bond breaks for the first time, at 
Step 3. Then, the damage develops slowly in the next several steps. After that, the damage 

Fig. 13   Time consumption of different parts in one iteration step of GPU simulations with the increase of 
number of CEs
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propagates suddenly at Step 8, which drops drastically. The predicted crack path is in good 
agreement with that in literature [38].

4.3.2 � Double‑edge‑Notched Plate Under Tension and Shear

In this example, we consider the mixed-mode fracture of a double-edge-notched square 
plate. The geometry and boundary conditions are shown in Fig.  17. The plane is dis-
cretized into 29,944 unstructured quadrilateral CEs, that is, the average size of the CEs  
is Δx = 1.25 mm and the DOFs are 60,618. The critical stretch in Eq. (4) is set to be 
scrit = 0.02 . It takes around 19.9 h to complete the whole simulation.

The effective damage evolution contours of this test are shown in Fig. 18. The dam-
age appears first at the notched corners at Step 4. In Step 5, the damage is more obvious 

Fig. 14   Time consumption of different parts in the whole GPU simulations with the increase of number of CEs
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than in Step 4, and it could be found that the damage of the left notched corner propa-
gates downward, and the damage of the right notched corner propagates upward. Then, 
the cracks propagate destructively at Step 6. The predicted crack path is similar to the 
results reported in [39].

4.3.3 � A Skewly Notched Beam Under Load

In this example, we consider the mixed mode I + III failure of a skew notched beam in 
three dimensions. The geometry and boundary conditions are shown in Fig. 19. In this 
case, we choose the two-node PEs (see Remark 1). The beam is discretized into 172,109 
nodes with 516,327 DOFs, the average distance of the nodes is Δx = 1 mm and the  
average volume is 1.195 mm3 . Poisson’s ratio is � = 1∕4 and the critical stretch in Eq. 
(4) is set to be scrit = 0.05 . It takes around 57.8 h to complete the whole simulation.

The effective damage path of this test is shown in Fig. 20. The top of the damage 
profile, at various heights, is shown in Fig. 21 respectively. The crack starts from the 
45◦ slanted notch and then twists until it aligns with the mid-plane. The twist and rota-
tion, with the final position of the crack surface close to the symmetric plane of the 
beam, are similar to the [40], which further demonstrates the accuracy of the PeriFEM 
based on GPU.

Fig. 15   The geometry and bound-
ary conditions of the problem
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Fig. 16   Damage contours of the single-edge-notched plate predicted by the PeriFEM based on CUDA at the dif-
ferent steps: (a) Step 3, (b) Step 6, (c) Step 8 and (d) Step 11. The black dotted line in (d) shows the results in [38]

Fig. 17   The geometry and bound-
ary conditions of the problem
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Fig. 18   Damage contours of the double-edge-notched plate predicted by the PeriFEM based on CUDA at 
the different steps: (a) Step 4, (b) Step 5, (c) Step 6 and (d) Step 10. The black dotted line in (d) shows the 
results in [39]

Fig. 19   The geometry and boundary conditions of the problem with a 2-mm cross section
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5 � Conclusions

The PeriFEM based on GPU is proposed to rapidly implement peridynamics simulations in 
this paper. Five examples were successfully carried out using this parallel algorithm, which 
demonstrates its validity and high efficiency. Consequently, the parallel algorithm can be 
easily applied to large-scale engineering problems, especially for fracture peridynamics 
simulations.

We only consider the situation of one GPU in our algorithm, and for the larger-scale 
problems, the multi-GPUs simulation is a good choice, which will be the focus of our 
future work.
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