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Abstract
Modeling of phenomena such as anomalous transport via fractional-order differential equa-
tions has been established as an effective alternative to partial differential equations, due to 
the inherent ability to describe large-scale behavior with greater efficiency than fully resolved 
classical models. In this review article, we first provide a broad overview of fractional-order 
derivatives with a clear emphasis on the stochastic processes that underlie their use. We then 
survey three exemplary application areas — subsurface transport, turbulence, and anoma-
lous materials — in which fractional-order differential equations provide accurate and pre-
dictive models. For each area, we report on the evidence of anomalous behavior that justi-
fies the use of fractional-order models, and survey both foundational models as well as more 
expressive state-of-the-art models. We also propose avenues for future research, including 
more advanced and physically sound models, as well as tools for calibration and discovery of 
fractional-order models.
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1  Introduction

Understanding and applying the theory of anomalous transport opens up rich fields of 
study in science and engineering, transforming our perspective and facilitating extraor-
dinary discoveries that would not be possible otherwise. This class of phenomena refers 
to fascinating and widespread1 processes that, viewed at appropriate scales, exhibit non-
Markovian long-term memory effects, non-Fickian long-range interactions, nonergodic 
statistics, and non-equilibrium dynamics [1]. Anomalous transport is observed in a wide 
variety of complex, multi-scale, and multi-physics systems such as subdiffusion and super-
diffusion in porous media, kinetic plasma turbulence, aging of polymers, glassy materials, 
amorphous semiconductors, biological cells, heterogeneous tissues, and disordered media 
[2–5]. The crucial point that prompts this work is that conventional mathematical mod-
els cannot describe such processes in a succinct, compact way that directly expresses their 
anomalous and nonlocal character.

This work is founded on the use of fractional-order partial differential equations 
(FPDEs), which seamlessly generalize standard PDEs of integer order to real-valued order. 
In practice, FPDEs appear within tractable mathematical models for anomalous transport, 
ranging from complex fluids to non-Newtonian rheology and the design of aging materials 
[1, 6–9], but also in modeling transport phenomena when rates of change in the quantity 
of interest depend on space or time. In this context, FPDEs with “variable orders” can 
be exploited in diverse physical and biological applications [10–12] to capture transitions 
between different transport regimes. Moreover, even classical long-standing issues such as 
monotonicity, anisotropy, and multi-fractal scaling laws in turbulence can be reformulated 
and reinterpreted in the context of fractional calculus and probability theory. FPDEs there-
fore emerge as an expressive approach to modeling such physics, transforming the current 
practice in mathematical modeling and giving rise to a new generation of flexible, high-
fidelity, and direct approaches [4, 13–15].

In this review article, we focus on three important applications of FPDEs, reporting the 
scientific evidence of how and why fractional modeling naturally emerges in each case, 
along with a review of selected nonlocal mathematical models that have been proposed. 
For brevity, throughout this article we use the term “fractional” to mean “fractional-order”. 
Despite conflicting with the most common usage of the adjective “fractional” in the Eng-
lish language, this is standard in the literature; thus, fractional-order derivatives are referred 
to as “fractional derivatives” and fractional-order models as “fractional models”.

Anomalous Subsurface Transport (Sect.  3)  The accurate prediction at large scales of 
contaminant transport in both surface and subsurface water is fundamental for the man-
agement of water resources and critical for environmental safety. However, the explicit 
description of the systems where transport takes place is extremely challenging, especially 
at large scales, due to the complexity the medium. Such media feature heterogeneities that 
are either difficult or impossible to observe, and hence cannot be described with certainty 
at all relevant scales and locations. Moreover, even when the environment’s microstruc-
ture can be captured, numerical simulations of appropriate PDE models such as systems 
of advection-diffusion equations may be infeasibly expensive if conducted at fully resolved 

1  While the word “anomalous” means “not normal”, Klafter and Sokolov [2] and Sancho et al. [268] point 
out the widespread nature of anomalous diffusion with the statement “anomalous is normal!”.



394	 Journal of Peridynamics and Nonlocal Modeling (2023) 5:392–459

1 3

small scales [16]. In fact, the same types of equations that are accurate at small scales 
do not extrapolate and predict solutes’ behavior at larger scales, due to the appearance of 
“anomalous”, or “non-Fickian” behavior [17–20]. At large scales, FPDEs are called for.

Turbulent Flows (Sect.  4)  Turbulence “remembers” and is fundamentally nonlocal. 
Coherent motions and “turbulence spots” structures inherently give rise to intermittent sig-
nals with sharp peaks, heavy-skirts, and skewed distributions of velocity increments [21, 
22], manifesting the non-Markovian, non-Fickian nature of turbulence. This suggests that 
nonlocal interactions cannot be ruled out in the physics of turbulence [23]. In addition to 
such an inherent nonlocality, filtering the Navier-Stokes and energy equations in the cor-
responding large eddy simulation (LES) of turbulent flows and scalar turbulence, in which 
large-scale motions are “resolved” and only the small scales are “modeled”, would make 
the existing nonlocality in the corresponding subgrid stochastic processes (i.e., turbulent 
fluctuations) even more pronounced [24–26]. This requires the development of new mod-
eling paradigms in addition to new statistical measures that can meticulously highlight the 
nonlocal character of turbulence and their absence in the common turbulence modeling 
practice.

Anomalous Materials/Rheology (Sect.  5)  Accurate modeling of the evolution of mate-
rial response and failure across multiple time and length scales is essential for life cycle 
prediction and design of new materials. While the mechanical behavior of a number of 
standard engineering materials (e.g., metals, polymers, rubbers) is quite well understood, 
a significant modeling effort still needs to be conducted for complex materials, where 
microstructure heterogeneities, randomness and small-scale physical mechanisms [5, 27] 
(e.g., trapping effects and collective behavior) lead to non-standard and, at times, counter-
intuitive responses. Two examples are bio-tissues and natural materials, e.g., biopolymers, 
which are multi-functional products of millions of years of evolution, locally optimized for 
their hosts and environment, and constrained by a limited set of building blocks and avail-
able resources [28, 29]. These materials possess unprecedented properties at low densities, 
especially due to their hierarchical and multi-scale structure, leading to a wide spectrum of 
behaviors, such as power-law viscoelasticity , visco-plastic strains under hysteresis loading, 
damage and failure, fractal avalanche ruptures and self-healing mechanisms [29–34].

1.1 � Outline of the Article

Before describing each of the aforementioned applications, we review the foundations of 
fractional calculus: we classify fractional models via their connection with the underly-
ing stochastic processes that serve as the statistical backbone of fractional modeling. The 
organization of the rest of the review article is as follows: Sects. 3, 4, and 5 are dedicated 
to subsurface transport, turbulent flows, and anomalous materials, respectively. Each sec-
tion has the same structure: first, we motivate the need for fractional modeling and provide 
results or tools necessary for a full understanding of the section. Next, we provide evidence 
of fractional behavior, reporting state-of-the-art results that highlight the improved accu-
racy of FPDEs as opposed to classical PDEs. Then, the core of each section is a description 
of past and current models, with some insights into discretization techniques currently in 
use. At the end of each section, a paragraph on future directions gives our perspective on 
fruitful research directions in each area.
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2 � An Overview of Fractional Derivatives

2.1 � Classification of Fractional Derivatives and Models

We introduce and classify the most commonly used fractional-order differential operators 
in the context of diffusion models based on random walks. For simplicity, we restrict our 
discussion to one spatial dimension except for a few remarks in which the extension to 
higher dimensions is touched upon.

To avoid mathematical difficulties, we discuss stochastic processes in terms of their dis-
cretizations, thinking of them as sequences of random variables XnΔt for time step Δt > 0 
and integer n defined as cumulative sums of increments. Strictly speaking, FPDEs govern 
the statistical properties of continuous-time random walks, which are appropriate scaling 
limits or long-time limits of the discrete random walks, limits in which n becomes large 
relative to Δt [35]. However, the rigorous definition of such stochastic processes requires 
significant excursions into probability theory; this is true even for the classical case of 
Brownian motion [36, 37]. Thus, while not entirely precise, in introducing fractional opera-
tors we characterize the related process in their discretized form, providing references 
where rigorous definitions of the process, as well as proofs of convergence of the discre-
tization to the continuous-time process in appropriate limits, are given.

For the sake of clarity, we summarize the notation used in this section and throughout 
the article in Table 1; there, we record each important symbol, the description of the sym-
bol, and its definition or first appearance in the article.

2.1.1 � Normal, or Fickian, Diffusion

The connection between Brownian motion Bt and the classical diffusion equation was stud-
ied in seminal works by Bachelier [38], Einstein [39], and Von Smoluchowski [40]. The 
diffusion equation is posed in an initial value problem,

in which k2 > 0 is the diffusion coefficient and Δu = �2u∕�x2 denotes the Laplacian. 
Brownian motion Bt is a continuous-time stochastic process defined for t ≥ 0 , which when 
discretized in time steps of size Δt has the property that Bt=0 = 0 and

The above notation indicates that the increment ΔB at each time step of Δt is drawn from a 
normal distribution N(0, k

√
Δt) with mean � = 0 and standard deviation � = k

√
Δt . This 

has probability density function

(1)
{ 𝜕u

𝜕t
(x, t) = k2Δu(x, t), x ∈ ℝ, t > 0,

u(x, t = 0) = u0(x), x ∈ ℝ,

(2)Bt+Δt = Bt + ΔB; ΔB ∼ N(� = 0, � = k
√
Δt).

(3)pN(x;�, �) =
1

�
√
2�

e
−

1

2

�
x−�

�

�2
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The rule (2) for sampling a path of Bt at times mΔt , m = 0, 1, 2, ... , is an example of a 
discrete stochastic differential equation (SDE), and is referred to as the Euler-Maruyama 
discretization2 of Brownian motion [41].

Table 1   Summary of the most relevant symbols used in the paper, their corresponding description, and 
referral to their definition or first appearance

Symbol Description Definition or first appearance

�

�t
Partial derivative in time Eq. (1)

Δ Laplacian Eq. (1)
N(�, �) Normal random variable Eq. (2)
Bt Brownian motion Eq. (2)
⟨⋅⟩  Mean of a random variable Eq. (4)
� Fractional order of spatial derivative Sect. 2.1.2
S� Stable random variable Sect. 2.1.2
f� Stable density function Eq. (8)
X�
t

Stable Lévy walk Eq. (10)
(−Δ)�∕2 Fractional negative Laplacian Eq. (12)
Γ Gamma function Eq. (13)
F Fourier transform Eq. (14)
RL

a
�

�
x
   Left-sided Riemann-Liouville derivative Eq. (16)

RL

x
�

�
b
   Right-sided Riemann-Liouville derivative Eq. (17)

X
�,p
t

Asymmetric Lévy walk Eq. (20)

(−Δ)
�∕2
M

Directional fractional Laplacian Eq. (22)

� Fractional order of temporal derivative Sect. 2.1.4
�� Standard stable subordinator density function Eq. (24)
L Laplace transform Eq. (26)
B�(t) Brownian motion with waiting times Sect. 2.1.4
C

a
�

�
t
   Caputo derivative Eq. (28)

E� One-parameter Mittag-Leffler function E�,1 Eq. (30)
��(⋅,⋅)   Variable-order fractional Laplacian Eq. (35)
∇ Gradient Eq. (42)
∗ Convolution Eq. (45)
𝜙̃ Filtered scalar field � Sect. 4.1.1
� local mean field � Sect. 4.2.1
∇⋅ Divergence Eq. (48)
𝜖̇ Time derivative or rate of scalar field � Eq. (59)
Ea,b(z) Two-parameter Mittag-Leffler function Eq. (68)
RC

a
�

�
b
   Riesz-Caputo derivative Eq. (69)

⟨⋅⟩M Macaulay bracket Eq. (72)

2  Another frequently used discrete random walk that leads to Brownian motion simply involves steps of 
fixed length to the left or right with probability 1/2 each; see Lawler [269]. In the long-time limit, all such 
discrete walks that draw increments from a finite-variance distribution lead to Brownian motion, due to the 
central limit theorem [44]
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The discrete process BmΔt should be thought of as tracing a path in ℝ of a particle undergo-
ing “jumps” in a random direction at time intervals of size Δt . At each time t, the position Bt 
of the particle is a random variable. It can be shown that the paths of the continuous-time pro-
cess Bt are almost surely continuous in time [42]. From Eq. (2) and the central limit theorem, 
it follows that Brownian motion satisfies the scaling property

where the left-hand side denotes the variance or second moment of the random variable 
Bt (Fig. 1). Given an initial distribution of particles u0(x) in ℝ which then undergo Brown-
ian motion, the distribution u(x, t) of particles in ℝ is governed by Eq. (1). In other words, 
diffusing particles described at a microscopic scale by Brownian motion, i.e., by Eq. (2) in 
discrete time, have their distribution in space — a macroscopic property — governed by 
the heat equation [35, Sect. 1.1]. This is illustrated in Fig. 2.

The consistency between this macroscopic description and the microscopic model is 
illustrated by scaling properties. A necessary property of such a Brownian motion model is 
the second-moment condition (4), which states that on average, particles travel a distance 
k
√
t from their initial position after time t. This is reflected in the fact that the solution of 

Eq. (1) with initial condition u0(x) = �0(x) is

which is the normal density (3) with standard deviation k
√
t . Note that this solution has the 

property that

(4)⟨B2
t
⟩ = 2k2t,

(5)u(x, t) =
1√
4�t

e−x
2∕4k2t,

u(x, t2) =

(
t2

t1

)−1∕2

u

(
x

(
t2∕t1

)−1∕2 , t1

)
, t2 > t1 > 0.

Fig. 1   Comparison of normal diffusion, superdiffusion, and subdiffusion via mean-square displacement 
(MSD) of the particle models and the scaling-in-time of the fundamental solution of the diffusion equations 
governing the density functions. Brownian motion exhibits both an MSD and scaling factor that are linear 
in time. Superdiffusive Lévy flight exhibits infinite MSD, and a fundamental solution scaling factor t� for 
𝛼 > 1 , while the superdiffusive Lévy walk exhibits the same scaling of the fundamental solution as well as a 
finite MSD that scales as t� . The subdiffusive Brownian motion with waiting times exhibits sublinear MSD 
and fundamental solution scaling, proportional to t1∕� for 𝛼 < 1
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Thus, the distribution of plume of particles in this diffusion model spreads out as (t2∕t1)1∕2 
as time elapses from t1 to t2 , consistent with Eq. (4).

The model for normal diffusion reviewed here is also referred to as Fickian diffusion. 
The heat Eq. (1) can be derived from the mass conservation with flux term J,

under Fick’s law J = ∇u . As discussed by  Schumer et  al. [43], the fractional diffusion 
equations we introduce below follow from mass conservation with non-Fickian fluxes.

2.1.2 �  ‑Stable Lévy Flights and the Fractional Laplacian

Many important systems exhibit diffusive behavior, but do not satisfy the scaling prop-
erty (4) [2]. This type of diffusion is referred to as anomalous diffusion, as it cannot be 
described by Eq. (2) with normally distributed increments. We desire a microscopic model 
that generalizes Brownian motion Bt , and a corresponding macroscopic model that gener-
alizes the diffusion equation (1). The first model we propose remains in the framework of a 
discrete SDE with independent identically distributed (i.i.d.) increments,

but the increments ΔX are no longer drawn from a normal distribution. It follows from the 
central limit theorem that the only way to obtain a microscopic model in this framework 
that is statistically distinct from Bt , i.e., not equivalent in distribution, is to draw step sizes 
from a probability density function with infinite variance [35, 44].

�u
�t

+
�J
�x

= 0

(6)Xt+Δt = Xt + ΔX, X0 = 0,

Fig. 2   (Left) Eight independent sample paths of Brownian motion representing the path of a particle start-
ing at the origin and stepping according to the rule (2). (Right) For t = 1, 2, 3 , the probability density of the 
location of the particle, i.e., the fundamental solution to the classical heat Eq. (1)
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We introduce the isotropic �-stable random variable S�(� , �,�) . This family of random 
variables is defined3 most simply by their characteristic function. For a general random 
variable X, the characteristic function �X is related to the probability density function pX by

Thus, the characteristic function of the normal random variable is ei��−�2�2∕2 . The �-stable 
random variable has characteristic function

where

The parameter � ∈ (0, 2] is referred to as the stability parameter of the distribution, � ∈ ℝ 
as the center, � ∈ [−1, 1] as the skewness, and � ∈ (0,∞) as the scale. The isotropic or 
symmetric �-stable distribution S�(� = 0, �,� = 0) therefore has characteristic function

generalizing the characteristic function of the normal distribution with mean � = 0 and 
standard deviation �∕

√
2 and reducing to it when � = 2 . By the Fourier inversion theorem, 

the probability density function of S�(� , �,�) can be written

In general, the �-stable density does not admit a closed-form expression4, but in the sym-
metric case where � = � = 0 , it has the property that

as discussed in, e.g.,  Nolan [45] or  Cont and Tankov [46]. In other words, the density 
exhibits Paretian or power-law tails (Fig.  3). This is in contrast to the rapidly decaying 
square-exponential tails of the normal distribution. In many settings, such tails are infor-
mally referred to as being examples of heavy or fat tails [47, 48].

Using the isotropic distribution introduced above, we introduce the isotropic �-stable 
Lévy flight X�

t
 by providing the corresponding discrete stochastic process. This is given for 

t = kΔt with integer k by X�
0
= 0 and the rule [35]

�X(�) = ∫ ei�xpX(x)dx.

(7)��(�;� , �,�) = ei��−|��|
� (1−i�sgn(�)Φ),

Φ =

{
tan

(
��

2

)
if � ≠ 1,

−
2

�
log(|��|) if � = 1.

��(�;� = 0, �,� = 0) = e−�|�|
�
,

(8)f�(x;� , �,�) =
1

2� ∫ e−i�x��(�;� , �,�)d�.

(9)f𝛼(x;𝛾 = 0, 𝜎,𝜇 = 0) ∼
1

|𝜎x|1+𝛼
for large x, 0 < 𝛼 < 2,

(10)X�
t+Δt

= X�
t
+ ΔX�; ΔX� ∼ S�(� = 0, � = k(Δt)1∕� ,� = 0).

4  Special cases are � = 2 corresponding to the normal distribution, � = 1 and � = 0 corresponding to the 
Cauchy distribution, and � = 1∕2 and � = 1 corresponding to the Lévy distribution.

3  Several parametrizations of the �-stable characteristic function exist. The parametrization Eq. (7) is due 
to Samorodnitsky and Taqqu [270]. See Nolan [45, 271] for discussions of alternate forms.
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The continuous-time stochastic process X�
t
 for t ≥ 0 can be thought of as a scaling limit as 

Δt → 0 of the above random walk, and enjoys several theoretical properties such as sta-
bility and an extended central limit theorem [35, 49]. However, has the property that for 
𝛼 < 2 , the paths of X�

t
 are almost surely discontinuous, in contrast to Brownian motion 

— hence the name Lévy “flight”. Given an initial distribution u0(x) of particles in ℝ which 
undergo �-stable Lévy flight, the evolution of the distribution u(x, t) for t > 0 is governed 
by the space-fractional diffusion equation [35, Sect. 1.2]

as illustrated in Fig. 4. The fractional negative Laplacian (−Δ)�∕2 is defined for 0 < 𝛼 < 2 
and for any dimension d as

with

(11)
�u

�t
(x, t) = −k�(−Δ)�∕2u(x, t)

u(x, t = 0) = u0(x),

(12)(−Δ)�∕2u(x) = Cd,� p.v.∫
ℝd

u(x) − u(y)

|x − y|d+�
dy, x ∈ ℝ

d,

(13)Cd,� =
4�∕2Γ

(
�∕2 + d

2

)

�d∕2|Γ(−�∕2)|
;

Fig. 3   (Left) Eight independent sample paths of symmetric �-stable Lévy flight with � =
√
3 representing 

the path of particle starting at the origin and stepping according to the rule (10). (Right) For t = 1, 2, 3 , the 
probability density of the location of the particle given by Eq. (8), i.e., the fundamental solution to the frac-
tional diffusion equation (11). Compared to Fig. 2, note that despite some qualitative similarity between the 
shapes of the density functions, the presence of long jumps signifies a striking difference between the paths 
of a particle undergoing Lévy flight versus Brownian motion
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see Lischke et al. [50]. Above, “p.v.” denotes the principal value of a singular integral. We 
have defined this operator in any dimension for future reference, although our present dis-
cussion only requires the case d = 1 . Perhaps the simplest characterization of the fractional 
Laplacian is the Fourier representation,

where the Fourier transform is

The simplest case of Eq. (11) is the initial condition u0(x) = �0(x) , in which case the solu-
tion is

This is known as the fundamental solution. Although this solution cannot be written in 
closed form, it satisfies

as shown in [35, Sect. 1.2]. This illustrates that a plume of particles undergoing isotropic �
-stable Lévy flight spreads by a factor of (t2∕t1)1∕� as time elapses from t1 to t2 , a faster rate 
when 𝛼 < 2 than the normal rate t1∕2 . Thus, �-stable Lévy flight is an example of super-
diffusion. The dependence of the above solution as well as sample paths on � is shown in 
Fig. 5.

F
[
(−Δ)�∕2u

]
(�) = |�|�F[u](�),

(14)F[u](�) = ∫ e−i�xu(x)dx.

(15)u(x, t) = f�(x;� = 0, � = kt1∕� ,� = 0).

u(x, t2) =

(
t2

t1

)−1∕𝛼

u

(
x

(
t2∕t1

)−1∕𝛼 , t1

)
, t2 > t1 > 0,

Fig. 4   The seemingly innocuous heavy tails of the �-stable density, signifying non-vanishing probability of 
long jumps, are responsible for the striking properties of �-stable Lévy flights. As � decreases from 2, more 
mass in the middle region of the density is lost and is transferred towards the tails and the center, so that the 
relative probability of very small movements and very long movements increases (right). This is evident in 
the sample paths of the process (left)
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However, since 𝛼 > 0 , the tail behavior of the isotropic �-stable density implies that the 
second moment of X�

t
 diverges for 𝛼 < 2,

with the first moment (the mean) diverging also when � ≤ 1 [45, 44]. This implies that the 
variance of �-stable motion is not a useful statistic for parameterizing �-stable Lévy flight; 
it bears no useful relationship to � . This aspect can be tackled in several ways, motivating 
the introduction of further fractional-order operators, such as tempered operators and frac-
tional material derivatives.

We point out several important properties of the fractional Laplacian. From the defini-
tion (12), it is clear that (−Δ)�∕2c = 0 , c being a constant. The fractional Laplacian also 
satisfies the semigroup property (−Δ)�∕2(−Δ)�∕2 = (−Δ)(�+�)∕2 [51]. However, one prop-
erty that is apparent from the definition is that, unlike integer-order derivatives, the frac-
tional Laplacian is a nonlocal operator, i.e., the value of (−Δ)�∕2u(x) depends on the values 
of u in all of ℝ (or ℝd , for d > 1 ). In contrast, the value of any integer-order derivative of u 
at x depends only on the values of u in an infinitesimal neighborhood of x.

2.1.3 � The Riemann‑Liouville Fractional Derivatives and Asymmetric ̨ ‑Stable Lévy 
Flight

The fractional Laplacian (12) was introduced in the previous section as a symmetric or rota-
tion invariant operator for describing the symmetric or isotropic �-stable Lévy flight. This 
model introduced a stability parameter 0 < 𝛼 ≤ 2 allowing it to generalize normal diffusion, 
with the scale � and center � playing similar roles as the standard deviation and mean of the 
normal distribution. However, the stable distribution also allows for a skewness parameter 
� ∈ [−1, 1] , with � = 0 in the symmetric case, which has no analogue in the normal distribu-
tion or for Brownian motion. This is due to the central limit theorem, which states that the 
use of any finite-variance distribution for the i.i.d. increments ΔX in Eq. (6), no matter how 

⟨X𝛼
t
⟩2 = ∞, 0 < 𝛼 < 2.

Fig. 5   A plot of the �-stable densities in a log-log scale that illustrates the tail behavior asserted in Eq. (9). 
While �-stable densities do not have a closed-form expression for all x, their simple, asymptotic inverse 
power-law behavior is an important heuristic
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asymmetric, leads to Xt being normally distributed, so that the density is necessarily symmet-
ric about the mean. In this section, we introduce the one-sided Riemann-Liouville fractional 
derivatives as appropriate operators for modeling asymmetric �-stably Lévy flights, which are 
defined by Eq. (10) with ΔX� ∼ S�(� , � = k(Δt)1∕� ,� = 0) for nonzero �.

The left-sided and right-sided Riemann-Liouville derivatives in ℝ are defined, for n = ⌈�⌉ , 
as

The texts of  Oldham and Spanier [52],  Podlubny [53], and  Meerschaert and Sikorskii 
[35] discuss these operators in detail. These derivatives are frequently used in models with 
a = −∞ and b = ∞ . In connection with initial value problems, the left-sided Riemann-
Liouville derivative in time, RL

0
�

�
t
u(t) , is sometimes used with a = 0 . We have written the 

definitions (16) and (17) to avoid ambiguities in notation, and clearly show that substitution 
of the variable x occurs after integration and differentiation. An alternative approach is to 
define Riemann-Liouville fractional integrals separately, as in the right-hand sides of Eqs. 
(16) and (17); see [51].

One quirk of the notation for Riemann-Liouville derivatives in Eqs. (16) and (17) is the 
writing of the upper and lower limits of integration [a, x] and [b, x], respectively, as subscripts. 
While this is suggestive, the result is that the variable of evaluation x occurs twice in the nota-
tion for each operator. If these derivatives are evaluated at any numerical value of x, this value 
should be substituted in both locations; thus, RL

a
�

�
5
u(5) represents a valid evaluation of the 

derivatives, but RL
a
�

�
x
u(5) and RL

a
�

�
5
u(x) do not.

With a = −∞ and b = ∞ , the Riemann-Liouville derivatives can be represented in fre-
quency space by

In one dimension, these can be used in the asymmetric diffusion model

which describes anomalous diffusion of independent particles. Here, the positions of each 
particle at time steps of kΔt for integer k are governed by Eq. (6) with increments ΔX being 
drawn from the asymmetric �-stable distribution

The resulting random variable given by sum of k increments is denoted X�,p
t  , for t = kΔt . 

Thus, the skewness ranges from � = −1 when p = 0 to � = 1 when p = 1 . The fundamental 
solution of Eq. (19) is

(16)RL
a
�

�
x
u(x) =

1

Γ(n − �)

[
�n

�zn ∫
z

a

u(y)

|z − y|�−n+1
dy

]

z=x

,

(17)RL
x
�

�
b
u(x) =

(−1)n

Γ(n − �)

[
�n

�zn ∫
b

z

u(y)

|z − y|�−n+1
dy

]

z=x

.

(18)
F
[
RL
−∞

�
�
x
u
]
(�) = (−i�)�F[u](�),

F
[
RL
x
[��

∞
u
]
(�) = (i�)�F[u](�).

(19)
�u
�t

(x, t) =
−k�

cos(��∕2)

[
p
(
RL
−∞

�
�
x
u(x, t)

)
+ (1 − p)

(
RL
x
�

�
∞
u(x, t)

)]

u(x, t = 0) = u0(x),

(20)ΔX ∼ S�(� = 2p − 1, � = k(Δt)1∕� ,� = 0).
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cf. Eq. (15).
Sample paths of the process X�,p

t  are illustrated in Fig. 6. Note that when p = 1∕2 , the 
distribution reverts to the symmetric �-stable distribution, and it can be shown in this 
case that Eq. (19) reduces to Eq. (11); more specifically,

The Fourier representation (Eq. 18) suggests that the left-sided Riemann-Liouville deriv-
ative RL

−∞
�

�
x
u should be thought of as a fractional power of the operator �∕�x . However, 

the correspondence between Eqs. (19) and (20) makes it clear that to obtain a complete 
description of �-stable Lévy flights in one dimension necessitates two operators, a left-
sided and a right-sided operator, which agree with one another when � = 2 . Our interest is 
these models lie in the fact that an extended centralized limit theorem hold for processes 
with i.i.d. increments drawn from distributions with infinite variance, but for which the 
tails of the density function satisfy Pareto-type conditions as in Eq. (9). For such processes, 
�-stable distributions play an analogous role to the normal distribution in the classical cen-
tral limit theorem; unlike the classical theorem, for full generality, skewed �-stable dis-
tributions must be included in such a result. See Meerschaert and Scheffler [49] or Meer-
schaert and Sikorskii [35] for a treatment of these results.

We mention how the Riemann-Liouville derivative can be utilized in dimensions d > 1 . 
An anisotropic diffusion operator was introduced by Meerschaert et  al. [54] and Benson 
et al. [17] as

(21)u(x, t) = f�(x;� = 2p − 1, � = kt1∕� ,�);

1

cos(��∕2)

[
1

2

(
RL
−∞

�
�
x
u(x)

)
+

1

2

(
RL
x
�

�
∞
u(x)

)]
= (−Δ)�∕2u(x).

(22)−(−Δ)
�∕2
M

u(x) = C�,d ∫|�|=1
D�

�u(x)M(d�), C�,d =
Γ(

1−�

2
)Γ(

d+�

2
)

2�
1+d

2

.

Fig. 6   �-stable Lévy flights allow for asymmetric diffusion, which has no analogue within the classical dif-
fusion framework. The �-stable density (Eq.  20) admits a skewness parameter � , ranging from −1 to 1, 
which can adjust the relative probability of long jumps in a given direction (right), a statistical property that 
is evident in the sample paths (left). Such models are governed by the fractional-order diffusion equation 
involving Riemann-Liouville derivatives, as in Eq. (19)
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Here, M(d�) denotes a nonnegative measure on the angle � in the unit sphere {|�| = 1} in 
ℝ

d , and the Riemann-Liouville directional derivative is given by

Benson et  al [17] showed that when the measure M is uniform, the operator (Eq.  22) 
reduces to the fractional Laplacian (Eq. 12). In higher dimensions and for general measures 
M, the operator (Eq. 22) plays an analogous role to the operator in the right-hand side of 
Eq. (19), which is in fact a special case of it for d = 1 . As such, it is used in models of anis-
tropic multivariate �-stable Lévy diffusion.

2.1.4 � Subdiffusion and the Caputo Fractional Derivative

The superdiffusive model introduced above, in which a plume of particles spreads out in 
space with rate t1∕� for 0 < 𝛼 < 2 , raises the question of whether a process can be con-
structed which results in diffusion slower than the Brownian rate t1∕2 . In this section, we 
introduce such a model, constructed as Brownian motion with random waiting times drawn 
from a skewed stable distribution, supported over positive real numbers with a power-law 
tail. Here, we step away from the framework of the SDE given by Eq. (6). Rather than 
being defined by a simple time-stepping scheme with i.i.d. increments, the paths of the pro-
cess are defined by a transformation, or “postprocessing”, of Brownian paths Bt.

We introduce Brownian motion with waiting times, denoted by B�(t) . The intuition is 
that the particle paths traced out in space by a discretization of B�(t) are paths of discre-
tized Brownian motion Bt , but the particles wait at each point of the path for a random 
time drawn from the totally skewed stable distribution. The operational time �(t) , which 
introduces waiting and replaces linear time t, is an inverse stable subordinator. This is a 
stochastic process in the variable t, although we write �(t) rather than using a subscript for 
typographical reasons. This process is constructed by first defining the stable subordinator 
D(t), and defining �(t) to be the inverse process5 of D(�) . Both D(t) and �(t) are nonde-
creasing processes with units of time. In terms of paths, �(t) arises from D(t) as

Intuitively, D(t) represents a cumulative waiting time process, keeping track of the total 
time waited by a particle throughout a path, while the inverse �(t) represents an operational 
time, i.e., the time spent traveling. The increments of D(t) represent the time waited at 
each location of a particle before the jump to the next location. More specifically, D(t) is a 
totally skewed �-stable Lévy process (Eq. 20) with stability index � ∈ (0, 1) , � = 1 , scale 
� = cos(��∕2) , and center � = 0 ; see Meerschaert and Sikorskii [35], Example 5.14. The 
construction of sample paths of B�(t) is demonstrated in Fig. 7.

The resulting probability density function of D(t),

D�
�u(x) =

RL
−∞

�
�
t
v(t)||t=0, where v(t) = u(x + t�).

(23)𝜏(t) = inf{𝜏 such that D(𝜏) > t}.

(24)��(t) = f�(t;� = 1, � = cos(��∕2),� = 0)

5  The definition of � in terms of D is an example of a right-continuous inverse of an increasing function. 
Paths of D, thought of as functions of t, are nondecreasing, so that each path of � constructed in this way is 
a continuous-from-the-right inverse of the parent path of D used to construct it.
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for waiting times is supported in nonneagative real numbers. Due to the nonnegative sup-
port of the waiting time density, the characteristic function (Eq. 7) yields the Laplace trans-
form of the waiting time density as

where the Laplace transform is defined as

(25)L
[
��

]
(s) = e−s

�
,

(26)L[u](s) = ∫
∞

0

e−stu(t)dt.

Fig. 7   (Top left) Example of an �-stable subordinator density function, representing the density for random 
waiting times for the processes corresponding to the time-fractional diffusion equation (27). (Top right) 
Sample path of the subordinator (cumulative waiting time) D(t), the parent path, and the inverse subordina-
tor (operational time) �(t) given by Eq. (23). Note that as t increases, �(t) need not advance. (Bottom left) 
Three sample paths of Brownian motion. (Bottom right) Three sample paths of Brownian motion with wait-
ing times, constructed from the Brownian paths in the bottom left panel. The particles trace out the same 
Brownian paths in space, but now wait for potentially several time steps at each location, as specified by the 
operation time �(t)
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See Meerschaert and Sikorskii [35], p. 108 and p. 156 for a discussion. The variance of the 
process B�(t) is given by

which is the desired subdiffusive property. Note that the finiteness of the variance does not 
imply that the normal central limit theorem applies to B�(t) , which is not equal in distribu-
tion to Brownian motion nor to any Lévy process. In fact, B�(t) is not a Markov processes.

The probability density of Brownian motion with waiting times B�(t) is governed by 
the time-fractional diffusion equation,

Here, the Caputo derivative is defined for 0 < 𝛽 < 1 by

For a = 0 , this operator is characterized by the simple Laplace transform representation 
(see Meerschaert and Sikorskii [35], page 111)

Higher order Caputo derivative can be defined, although the Laplace transforms of the 
resulting operators involve initial conditions for derivatives of u; see Sect.  2.3 of  Meer-
schaert and Sikorskii [35]. The Caputo derivative is most frequently utilized as a derivative 
in time for initial value problems, with the fractional order 0 < 𝛼 < 1.

Before introducing the fundamental solution to the time-fractional diffusion, we 
introduce the Mittag-Leffler function [55, 56]

This Mittag-Leffer E�(z) reduces to the exponential function ez when � = 1 , and has 
Laplace transform property

which immediately implies that E�(−k
2t�) solves the fractional ordinary differential 

equation

Returning to the diffusion Eq. (27) with initial condition u(x, t = 0) = �(x) , applying the 
Fourier transform in space implies that

⟨
B𝜏(t)

⟩2
=

2

Γ(𝛽 + 1)
t𝛽 , 0 < 𝛽 < 1,

(27)
C
0
�

�
t u(t) = k2Δu(x, t)

u(x, t = 0) = u0(x).

(28)C
a
�

�
t u(t) =

1

Γ(1 − �) ∫
t

a

du

dt
(s)

1

|s − t|�
ds.

(29)L

[
C
0
�

�
t u
]
(s) = s�L[u](s) − s�−1u(0).

(30)E𝜃(z) =

∞∑

�=0

z�

Γ(𝜃� + 1)
, 𝜃 > 0.

L
[
E�(−k

2t�)
]
(s) =

s�−1

s� + k2
,

C
0
�

�
t u = k2u.

F[u(⋅, t)](�) = E�(−k
2�2t�),
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which, as shown by Mainardi et al. [56], yields a solution that can be written

with

being a special case of the Fox-Wright function. Note that U(x) = u(x, t = 1) . While the 
fundamental solution above is transcendental, it has the following properties: for � = 1 , it 
reduces to the solution (Eq. 5) of the classical diffusion equation; for 0 < 𝛼 < 1 , the solu-
tion decays faster than exponential and slower than Gaussian; and the second moment of 
the solution is

Note that the t� scaling of this second moment is consistent with the scaling of the funda-
mental solution above.

2.1.5 � Continuous‑Time Random Walks and Space‑Time‑Fractional Diffusion

Both the �-stable Lévy flight X�,p
t  , which led to the space-fractional diffusion equation discused 

in Sect. 2.1.3, and Brownian motion with �-stable subordinator operational time BT� (t) , which 
led to the time-fractional diffusion equation discussed in Sect. 2.1.4, are examples of continu-
ous-time random walks [35]. A continuous-time random walk (CTRW) allows for a general 
family of processes in space to be time-changed by a general family of waiting time processes. 
To illustrate this concept, we consider the process X�,p

T� (t)
 , which is �-stable Lévy flight X�,p

t  
defined at the discrete level by Eq. (20) time-changed by the �-stable subordinator process 
t ↦ T�(t) introduced in Sect. 2.1.4. This models a particle that performs independent jumps 
drawn from the �-stable process, waiting at each point for a random time drawn independently 
from the �-stable subordinator process. As shown by, e.g.,  Meerschaert and Sikorskii [35] 
(Sect. 4.5), the probability density of this particle position is then governed by a differential 
equation that is fractional in both time and space,

While intuitive, this result deserves a more detailed outline within the general theory of 
CTRWs. In the standard CTRW model, particles wait at a location for time drawn from a 
density function � , and jump to a new location by an increment drawn from a density func-
tion � . The waiting time and jump samples are assumed to be i.i.d., and uncoupled from 
each other [44, 57–59]. Thus, the densities � and � completely determine the CTRW. From 
the waiting time density � , the probability that a particle will remains at any given position 
for time t is

u(x, t) = t−�∕2U(|x|∕t�∕2);

U(x) =
1

2

∞∑

k=0

(−x)k

k!Γ[−(�∕2)k + 1 − (�∕2)]
.

�2(t) = 2
t�

Γ(� + 1)

(31)
C
0
�

�
t u(t, x) =

−k�

cos(��∕2)

[
p
(
RL
−∞

�
�
x
u(x, t)

)
+ (1 − p)

(
RL
x
�

�
∞
u(x, t)

)]

u(x, t = 0) = u0(x),

(32)Ψ(t) = 1 − ∫
t

0

�(t)dt;
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this is referred to as the survival probability of a CTRW particle. Then, given an initial 
probability density of a particle u0(x) = u(x, t = 0) , which can also be thought of as an 
initial distribution of an ensemble of independent particles, the following equation was 
derived by Montroll and Weiss [60] for the density at later times:

This equation is central to the CTRW theory6. Taking the Laplace transform in time, the 
Fourier transform in space, and solving for F[L[u]](�, s) yields the Montroll-Weiss equa-
tion [60],

In the case that � is the �-stable density (Eq. 20) and � is the �-stable subordinator density 
(Eq. 24), then F[�] is given by the analytical formula (7) and L[�] by Eq. (25), so that the 
Montroll-Weiss equation represents a closed-form solution of u in (�, s)-space. Unsurpris-
ingly, it is impossible to perform inverse transforms and obtain u itself analytically, but u 
can be shown to satisfy (Eq. 31) using the representations Eq. (29) and (18) [35].

2.1.6 � Lévy Walks and Fractional Material Derivatives

Superdiffusive �-stably Lévy flight exhibits infinite MSD, which is a drawback for certain 
applications. Related to this is the infinite speed of propagation intrinsic to Lévy flights, 
i.e., the fact that particles have a nonzero probability of traveling an arbitrary large distance 
in a unit of time. Brownian motion also suffers from this feature, although this probability 
of large excursions is so low that MSD remains finite. A prototypical model of superdiffu-
sion that cannot be described by a Lévy flight is ballistic motion, in which particles simply 
move from an initial configuration in fixed random directions with speed v, for all time t. A 
ballistic particle travels a distance vt in time t from an initial position x0 . If reorientations 
are allowed, then the positions of these so-called sub-ballistic particles in space-time are 
confined to a ballistic cone

Because the density function of the particle positions is compactly supported, all moments 
of the position are finite. Such a process cannot be described by Lévy flights.

To capture such behavior, we introduce the Lévy walk model, following Zaburdaev et al. 
[44]. Such models are based on continuous-in-time motion of particles, rather than instan-
taneous jumps. A speed v of particles in a medium is specified; each particle moves with 
speed v in a chosen direction, before a reorientation event occurs in which the direction 
changes instantaneously and the particle continues to move with speed v before the next 
direction. Assuming the direction at reorientation is sampled uniformly on the unit sphere, 

(33)u(x, t) = Ψ(t)u0(x) − ∫
t

0

�(t − �)∫
∞

−∞

�(y)u(x − y, �)dyd�.

F[L[u]](�, s) =
1 − L[�](s)

s

F[u0](�)

1 − L[�](s)F[�](�)
.

{
(x, t) such that x ∈ [x0 − vt, x0 + vt], t ≥ 0

}
.

6  This equation was also derived by Scher and Lax [272, 273] and is referred to as the CTRW equation of 
Scher and Lax by Klafter and Silbey [126]. Other authors, such as Torrejon and Emelianenko [59] refer to 
this as the master equation of a CTRW.
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such a walk is determined by a probability density function for the duration of movement 
�(�) . This leads to a survival probability Ψ(t) given by Eq. (32), with � now representing 
the duration density. Thus, Ψ(t) returns the probability that a particle has persisted in a 
given direction for time � , i.e., has not experienced reorientation for time � . Similar to the 
CTRW case, a master equation can be derived for the probability density u(x, t) of the loca-
tion of the particle in Laplace-Fourier space:

Unlike the master equation for CTRWs, this equation exhibits coupling in Fourier and 
Laplace variables, representing coupling in space-time7. This results in governing equa-
tions that are considerably more complex than those of a standard CTRW. For a Lévy walk, 
� is taken to be a Pareto-type distribution,

An asymptotic expansion of L[�] and L[Ψ] substituted in Eq. (34) yields the following 
approximation for the evolution of the density function of a Lévy walk in Fourier-Laplace 
space:

Given v and u0 , this equation can be inverted to compute u(x,  t), but obtaining a govern-
ing equation in (x,  t) is less straightforward from this point on, due to space-time cou-
pling.  Sokolov and Metzler [61] suggest defining a fractional material or substantial 
derivative

in order to obtain a governing equation for u(x,  t). Recent works, such as those of [62], 
have explored numerical discretizations for these operators.

Despite the greater mathematical difficulties related to governing equations, as com-
pared to other fractional models, Lévy walks have been widely used due to the physi-
cal nature of finite speed of propagation and finite MSD; see [44] for a survey. When 
1 < 𝛾 < 2 , by numerical approximations, it can be seen that u(x, t) evolves from a �-distri-
bution with “a central part of the profile approximated by the Lévy distribution sandwiched 
between two ballistic peaks” that propagate at speed v (Fig.  8), with an MSD and self-
similarity property for large t that features a superdiffusive scale factor of t1∕� [44].

(34)F[L[u]](�, s) =
L[Ψ](s + iv�) + L[Ψ](s − iv�)

2 − L[�](s + iv�) + L[�](s − iv�)
F[u0](�).

𝜓(𝜏) =
1

𝜏0

𝛾

(1 + 𝜏∕𝜏0)
𝛾
, 𝜏0 > 0, 𝛾 > 0.

F[L[u]](�, s) ≈
(s + iv�)�−1 + (s − iv�)�−1

(s + iv�)� + (s − iv�)�
F[u0](�).

(v−1�t ± �x)
1∕�u ∶= F

−1
L
−1
[
(s + iv�)� + (s − iv�)�F[u0](�)

]
,

7  A Lévy walk may be compared to a non-standard CTRW in which waiting times prior to jumps are corre-
lated to the jump length, e.g., proportional to the jump length, so that long excursions are penalized by long 
waiting times. See Zaburdaev et al. [44]
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2.1.7 � Variable‑Order Fractional Derivatives

Given the physical meaning within stochastic models of the fractional order � in deriva-
tives such as Eqs. (12), (16), and (28), it is reasonable to expect that these parameters may 
vary in space and time. Variable-order fractional models are convenient to describe anoma-
lous diffusion in the case of heterogeneous materials or media, or, more generally, when 
the nature of the diffusion process (subdiffusive, superdiffusive, and classical) changes 
with space and time. While models with constant fractional order are the simplest and 
most widely used, some of the model descriptions we discuss in the following sections 
are improved by the use of a variable fractional order. In recent years, with the purpose of 
increasing the descriptive power of fractional operators, new models characterized by a 
variable fractional order have been introduced for both space- and time-fractional differen-
tial operators [63–67] and several discretization methods have been designed [68–72]. The 
improved descriptive power of variable-order fractional operators has been demonstrated 
in some recent works on parameter estimation [73–75].

Given a function

i.e., a function �(�, t) of space and time, we define variable-order operators as follows. For 
a function u(�, t) with � ∈ ℝ

d and t ∈ ℝ , we define the variable-order fractional Laplacian8 
as

Here, �(�, t) is restricted to take values in (0, 2). Note that for constant � , �� = (−Δ)�∕2 . 
For d = 1 and �(x, t) restricted to (0, 1), we define the variable-order left-sided Riemann-
Liouville fractional derivative as

� ∶ ℝ
d ×ℝ → ℝ,

(35)�
�(⋅,⋅)u(�, t) = Cd,�(�,t) p.v.∫

ℝd

u(�, t) − u(�, t)

|� − �|d+�(�,t)
d�.

Fig. 8   The evolution of the prob-
ability density function (denoted 
PLW in the figure) of a Lévy 
walk, reproduced from [44]. 
Here, � = 3∕2 and the density 
is plotted for t = 100 (black), 
t = 200 (blue), and t = 300 (red). 
The density mimics the density 
of a �-stable Lévy flight in an 
interior region of the ballistic 
cone, scaling outwards as t1∕� , 
supported inside the ballistic 
front (consisting of two points 
in one dimension) that scales 
outwards as t 

8  For more recent works and novel definitions of variable-order fractional Laplacians we refer the reader to 
[63, 65].
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The right-sided Riemann-Liouville may be defined for variable order in an analogous way. 
We define the variable-order Caputo fractional derivative, again for �(x, t) taking values in 
(0, 1), as

2.1.8 � Relationships Between Processes, Fractional Models, and Applications

To summarize and offer a quick look-up of anomalous diffusion processes, their cor-
responding fractional models, and applications of each process/model, we have included 
these relationships in Table 2. This table includes references to the previous sections where 
each process and model is described, as well as pointers to the applications in the following 
sections where the models are utilized. We have limited references to applications to only 
those three areas that we focus on in this article.

2.2 � Connection to Nonlocal Calculus

Fractional-order differential operators can be viewed as a special case of nonlocal models 
[76–78]. The intrinsic nonlocality of fractional operators has been illustrated in the previ-
ous section; this property describes the fact that fractional-order derivatives of a function 
at a point � ∈ ℝ

d typically depend on values of the same function at all points � ∈ ℝ
d , no 

matter how large the distance between � and � may be. An example of this is the formula 
(12) for the fractional Laplacian.

General nonlocal diffusion (or Laplace) models include integral operators of the form 
[79, 80]

with kernels � having support in {|� − �| ≤ �} , where the so-called interaction radius � is 
such that � ∈ (0,∞] . A quick comparison with the integral formula (12) shows that when 
the kernel � is properly selected and � = ∞ , then the fractional Laplacian is formally equiv-
alent to (37) (see [78] for a rigorous derivation and a discussion).

Nonlocal Laplace operators featuring kernels with bounded support may be preferred to 
fractional operators for physical reasons when modeling short-range interactions [81, 82] 
as well as mathematical convenience when posing volume conditions, the nonlocal coun-
terpart of classical boundary conditions [79, 83]. The latter reason gives rise to truncated 
fractional-order derivatives [77, 84].

General nonlocal models also allow for more flexibility with regard to regularity. Con-
sidering diffusion or Poisson’s problems, fractional-order problems exhibit regularity 
explicitly parametrized by the fractional order [51]; in contrast, nonlocal models involving 
nonsingular kernel operators lead to problems that impose no regularity on the solution 
[79] and can be naturally utilized to model fracture dynamics [82, 85]. Finally, we remark 
that the relationship between fractional and nonlocal models extends to more general 

RL
−∞

�
�(⋅,⋅)
x

u(x, t) =
1

Γ(1 − �(x, t))
�
�x ∫

x

−∞

u(y, t)

|x − y|�(x,t)
dy,

(36)C
0
�

�(⋅,⋅)
t u(x, t) =

1

Γ(1 − �(x, t)) ∫
t

−∞

du

dt
(s)

1

|s − t|�(x,t)
ds.

(37)�[u](�) = ∫
ℝd

�(�, �)[u(�) − u(�)]d�
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operators than those of diffusion/Laplace type. There is indeed a well-established nonlo-
cal vector calculus [80, 86], of which fractional-order vector calculus is a special case (see 
[77] for rigorous results where the convergence of truncated fractional gradient and diver-
gence is proven in norm and pointwise).

2.3 � A Remark About Numerical Methods for Fractional‑Order Models

Over the past two decades, a significant amount of progress has been made in developing 
numerical methods, ranging from finite difference/volume schemes to finite-element meth-
ods, in addition to a variety of new spectral theories for single and multi-domain spectral 
methods, obtaining efficient and easy-to-construct smooth/non-smooth basis and test func-
tions. Performing a thorough and inclusive review of all the contributions made in this 
direction is nearly impossible and out of the scope of the present work. Interested readers 
can find a wide spectrum of research carried out in the context of numerical analysis of 
fractional models in [87–105], and references therein.

We restrict ourselves to discussing one aspect related to numerical methods, on the compu-
tational feasibility of solving fractional models. In the time-fractional case, efficient long-time 
numerical integration is of interest to capture inherent long-time far-from-equilibrium dynamics 
and to enable the full convolution computations for large-scale systems. To this end, a number of 
fast time-stepping schemes have been developed during the last 20 years, which greatly reduce 
the cost of solving fractional models, making them quite comparable to classical models. These 
include the fast convolution method by Lubich and Schädle [106], which reduced the computa-
tional complexity of direct finite difference discretizations of time-fractional models from O(N2) 
to O(N logN) , and memory requirements from O(N) to O(logN) , where N denotes the number 
of time steps. High-order extensions of the method were developed [107, 108] and applied to 
three-dimensional simulations of fluid-structure interactions in cerebral arteries and aneurysms 
[107]. Among a vast number of works in the literature, we also briefly outline matrix-based 
schemes, such as fast-inversion approaches [109] and kernel compression methods [110] for 
time-fractional problems. For space-fractional FPDEs, adaptive methods and hierarchical matri-
ces approaches have accomplished similar, dramatic reductions in computational complexity and 
memory costs for solving models [111–113]. Efficient solvers and preconditioners for the frac-
tional Laplacian were also developed by [114]. The point we make is that from two decades of 
numerical methods development in the field, the current state-of-the-art numerical methods for 
fractional models produce computational costs comparable to integer-order cases, therefore being 
timely computational tools to be readily employed in large-scale systems modeled by FPDEs.

3 � Anomalous Subsurface Transport

The accurate prediction at large scales of contaminant transport in both surface and sub-
surface water is fundamental for efficient management of water resources and hence criti-
cal for environmental safety. However, the explicit description of the systems where trans-
port takes place is extremely challenging, especially at large scales, due to the complexity 
of surface and subsurface environments. In fact, the latter, feature heterogeneities that are 
either hard or impossible to measure and, hence, cannot be described with certainty at all 
scales and locations of relevance. On the other hand, even when the environment’s micro-
structure can be captured, numerical simulations of PDE models such as the advection-
diffusion equation (ADE) may be prohibitively expensive if conducted at small scales. 
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Furthermore, the same equations that are accurate at small scales, fail to predict solutes’ 
behavior at larger scales, due to the appearance of “anomalous”, or “non-Fickian” behavior 
[19].

Still, in the past, the classical ADE has been broadly utilized as a model for solute trans-
port [115–117]. As thoroughly explained in [20], in the presence of heterogeneous media, 
ADEs fail to be accurate at large scales due to the fact that they are treated as determin-
istic models. A coarse-grained model can be considered deterministic only when media 
properties do not vary rapidly in the neighborhood of a point; however, even with mild 
heterogeneities [18] quantities defined at large scales vary rapidly enough to justify treating 
them as random functions of space and/or time over a fictitious macroscopic continuum. 
In this case, the ADE becomes an SDE. Interestingly, when treating the ADE’s parameters 
as stochastic, the ensemble mean concentration through randomly heterogeneous media is 
generally non-Fickian, i.e., non-classical. This can be observed in a simple manner by per-
forming Monte Carlo numerical simulations. After generating several random realizations 
of the underlying velocity field, the ADE is numerically solved for each field and the con-
centration is averaged over all realizations, revealing a non-classical behavior [20].

In view of the following section where fractional behavior is discussed in the context 
of turbulence, we point out that the above stochastic theories are closely related to those 
governing turbulent diffusion. However, while transport in porous media takes place at 
small Reynolds numbers, the latter take place at large ones. Furthermore, porous velocities 
depend on hydraulic properties in a known manner, whereas turbulent velocities fluctuate 
randomly in space-time, making the first uncertainty epistemic (e.g., incomplete knowl-
edge of medium properties) and the second aleatory (i.e., controlled by chance). This 
makes it easier to reduce the uncertainty in solute transport models by tuning them using 
hydrogeologic data (see, e.g., [118]).

In this section we show that Fractional ADEs (FADEs) are appropriate models to 
describe non-Fickian transport of solutes without the prohibitive burden of resolving the 
heterogeneities at the small scales explicitly thanks to their integral nature that allows to 
embed length scales in the definition of the operator. Before reporting on early works fea-
turing a plain fractional Laplacian model and later works where variable fractional orders 
are introduced, we dedicate a few words to another nonlocal model, also popular in the 
literature: the continuous-time random walk (CTRW) approach. As we point out later on, 
these models have similarities and share advantages being, perhaps, the most important the 
strong connection to stochastic processes that makes them easier to analyze and interpret.

Fractional Subsurface Models Based on Continuous‑Time Random Walks  In Sect. 2.1.5, 
we discussed the basic concepts of CTRWs, introduced by Montroll andWeiss [60]. We 
now explain how these models arise in subsurface transport and lead to fractional equa-
tions, following  Berkowitz et  al. [119]; further relevant works in the literature include 
[120–124].

To analyze subsurface particles, we begin by examining the solute concentration C(�, t) 
for a given configuration of particles; C(�, t) refers to the number of particles at a site � , 
normalized by the total number of particles in the system. In the absence of sinks and 
sources, the solute concentration C(�, t) varies with time t at the site � by following a sto-
chastic mass balance expression, i.e.,

�C(�, t)

�t
= −

∑

�

(
w(�, �)C(�, t) − w(�, �)C(�, t)

)
.
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The expression above is known in the literature as (discrete) master equation [125]. Here, 
w(�, �) is the transition rate at which a particle moves from � to � , the first term in the sum 
represents the normalized rate of solute outflow from site � to all sites � , whereas the sec-
ond term represents the normalized rate of solute inflow from all sites � to � . We further 
assume that the transition rates corresponding to different sites or displacements are sta-
tistically independent, i.e., hydraulic and transport properties of porous media and system 
states (e.g., hydraulic fluxes) lack spatial correlations. This is referred to as statistical inco-
herence; under this assumption, the ensemble mean concentration c(�, t) = ⟨C(�, t)⟩ , where 
⟨⋅⟩ refers to an average over all possible configurations of the particle system, satisfies the 
so-called generalized master equation, i.e.,

As discussed in Berkowitz et al. [119], this equation is equivalent to a spacetime coupled 
CTRW equation

with an explicit correspondence between the function � and the space-time density function 
�(s, t) ; see also Klafter and Silbey [126]. If the CTRW is uncoupled, i.e.,

then this equation is equivalent to the CTRW equation (33) discussed in Sect. 2.1.5. As a 
result, c(x, t), in absence of advection, and with � and � given by the stable distributions 
specified in Sect. 2.1.5, is governed by the FPDE (Eq. 31). This cements the importance of 
FPDEs in subsurface transport, although in some cases, the incoherence assumption that is 
required to derive the generalized master equation may not be valid.

A simple and fairly general FADE for subsurface transport under the influence of both 
advection and anomalous diffusion is the one-dimensional advection and space-time-fractional 
diffusion equation with constant coefficients (see, e.g., [16]):

where c is the solute concentration, V a constant velocity, D a constant diffusion coefficient 
and � the fractional order. In Sect. 2.1.5, we presented equation (31), which is identical to 
the above equation except for the advection term −V�c∕�x , as the governing equation for 
the probability density of a continuous-time random walk. As discussed by [35], the inclu-
sion of the advection term corresponds to a stochastic model in which the particle drifts 
with constant velocity and jumps to the left or the right with density specified by the diffu-
sion term. Thus, when � = 1 in (Sect. 2.1.5), the FADE (Eq. 38) governs the evolution of 
the probability density

�c(�, t)

�t
= −

∑

�

t

∫
0

(
�(� − �, t − �)c(�, �) − �(� − �, t − �)c(�, �)

)
d�.

c(x, t) =
∑

y
∫

t

0

�(s� − s, t� − t)c(s�, t�)dt� + �(s)�(t − 0+),

�(s, t) = �(s)�(t),

(38)
C
0
�

�
t c(x, t) = −V

�c
�x

− D
[
p
(
RL
−∞

�
�
x
c(x, t)

)
+ (1 − p)

(
RL
x
�

�
∞
c(x, t)

)]

c(x, t = 0) = c0(x),

f�(x;� = 2p − 1, � = k(Δt)1∕� ,� = Vt)
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of the skewed �-stable process S�(� = 2p − 1, � = k(Δt)1∕� ,� = Vt) . Comparing to the 
asymmetric diffusion model in Sect. 2.1.3, with fundamental solution (Eq. 21), this density 
differs only in that the center drifts with velocity vt. This describes a particle that drifts 
with velocity Vt and makes jumps to the left or right drawn from the stable distribution 
(20). More specifically, when particle paths are discretized in steps of Δt , the position of 
the particle changes by VΔt + ΔX at each time step, where ΔX is an increment of the pro-
cess X�,p

t  given by Eq. (20). When 0 < 𝛽 < 1 , similar to the CTRW model described in 
Sect. 2.1.5, this equation governs the probability density of a particle undergoing the pro-
cess just described, time-changed by the inverse �-stable subordinator, again introducing 
waiting times to the process.

As pointed out by Neuman and Tartakovsky [20], when � = 1 , Eq. (38) corresponds to 
Markovian random walk processes of statistically independent and identically distributed 
non-Gaussian displacements, and, as such, they can only occur in an uncorrelated veloc-
ity field; in hydrology, this can be viewed as a limitation of both CTRW and plain FADEs. 
Instead, it is possible that variable-coefficient or variable-order models may be able to 
describe processes associated with statistically non-homogeneous velocity fields. However, 
we are not aware of a specific theoretical framework that relates variable-coefficient and 
variable-order FADEs and CTRWs. Nor are we aware of a framework that relates such 
variable parameters to physical properties of the medium. At present, the only way of esti-
mating such parameters is by fitting the models to observed concentrations and/or mass 
fluxes, and not by hydraulic data such as hydraulic conductivity, advective porosity or flow 
parameters such as hydraulic gradients, fluxes and advective porosities [20].

As discussed in Sect. 2.1.5, limits of a CTRW with infinite and statistically independ-
ent waiting times lead to time-fractional FPDEs. A physical mechanism that would result 
in time-fractional derivatives in a FADE is particle trapping due to media heterogeneities 
[127, 128]. Such models are discussed in Sect. 3.2.2.

We conclude this section with advantages in using FADEs as opposed to more general 
CTRW models. First, it is well known [129] that FADEs can account for source and bound-
ary terms and velocity dynamics can be easily included by an additional velocity equation, 
which leads to a velocity-concentration coupled system. Furthermore, even though not 
thoroughly explored, making model fitting for FADEs is a computationally less challeng-
ing task, due to the limited number of parameters to fit.

3.1 � Evidence of Fractional Behavior in the Presence of Heterogeneity

In this section we provide two examples of fractional behavior of solute concentration. We 
start by considering a highly heterogeneous environment and then we show that even in 
circumstances where a classical behavior is expected, i.e., in the absence of heterogenei-
ties, the macroscopic solute concentration behaves nonlocally and, hence, can be described 
by a FADE.

Fractional behavior is most readily seen in transport through heterogeneous media. The 
first experiment we discuss studied subsurface transport of tritium in a highly heteroge-
neous environment such as the MADE site, located on the Columbus Air Force Base in 
northeastern Mississippi. This unconfined, alluvial aquifer consists of generally uncon-
solidated sands and gravels with smaller clay and silt components. Irregular lenses and 
horizontal layers were observed in an aquifer exposure near the site [130]. Detailed studies 
characterizing the spatial variability of the aquifer and the spreading of the conservative 
tracer plume for the experiment conducted at the beginning of the 1990s can be found in 
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[131]. Benson et al. [18] used Eq. (38) to model particle concentration; here, model param-
eters are determined a priori by tuning them on the basis of measurements (we refer to 
[18], Sects. 4.2 and 4.3, for a detailed description of the calibration process). In Fig. 9 we 
report four snapshots of the normalized longitudinal tritium mass distribution. These plots 
are obtained by numerical integration of the analytic solutions of both the classical ADE 
and the FADE. These distributions clearly indicate that the fractional model outperforms 
the classical one.

Strong heterogeneity, however, is not necessary to observe fractional behavior. Increas-
ing experimental evidence suggests that in laboratory experiments where the media is 
“constructed” as nearly homogeneous, the observations are consistent with anomalous 
transport, see, e.g., [19, 132]. In fact, some authors even claim that strict classical trans-
port may not even exist [133]. Benson et al. [17] analyzed a test case where the tracer’s 
concentration was intuitively expected to follow a classical ADE. They considered a one-
dimensional tracer test in a laboratory-scale, 1m, sandbox, constructed with very uniform 
sand in an effort to minimize heterogeneity, see Fig.  10, left. In other words, the sand-
box was designed and built using as homogeneous a porous medium as possible by fol-
lowing the setup in [134]. Here, simple tracer tests, conducted to estimate the transport 

Fig. 9   A comparison of classical (Gaussian) and fractional ( �-stable) predictions of the normalized mass as 
a function of space at specific time instants for the MADE data set. The data points represent the maximum 
concentration measured in vertical slices perpendicular to the direction of the plume. These maxima were 
then integrated versus the travel distance. Source: [18]
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characteristics of the sand, indicated the appearance of non-classical breakthrough curves 
(BTCs, i.e., plots of the concentration as a function of time) with heavy tails, similar to �
-stable solutions. This behavior was likely due to channeling within smaller and smaller 
grains that resulted from sand emplacement through standing water and from cracked and 
intact surface clays on the sand particles [17]. In Fig. 10, right, a comparison, conducted 
in [17], between BTCs obtained with the classical ADE and the FADE equation shows the 
agreement of the latter with measured BTCs at a specific location. While in this figure the 
differences between classical and fractional behavior are not striking as in Fig. 9, they are 
still noticeable.

We also mention that evidence of anomalous behavior and its successful description 
by FADEs has been observed in unsaturated soils [135], saturated porous media [136], 
streams and rivers [137, 138], and overland solute transport due to rainfall [139].

3.2 � State of the Art: a Progression of Fractional Models for Subsurface Transport

As described at the beginning of this section, classical diffusion does not take into account 
long-distance spatial and time correlations. The anomalous movement of particles in the 
subsurface, however, depends on both far upstream/downstream concentrations (resulting 
in space-fractional equations [43, 132, 140, 141]) or past conditions (resulting in time-
fractional equations [141–144]). Considering only the movement of solute particles in an 
infinitesimal neighborhood, like in the classical diffusion model for Brownian motion, is 
too restrictive for the complexities of groundwater pore spaces or trapping zones in natural 
streams. More specifically, the presence of preferential paths in hydrologic domains results 
in high-velocity zones (superdiffusion), whereas the presence of trapping regions results 
in low-velocity zones where the particles “wait” before they return to the higher velocity 
zone (this concept is also known in the literature as the distinction between immobile and 
mobile zones) [16].

In this section we review fractional models of increasing complexity for anomalous sub-
surface transport. While the simpler models are viable choices in the presence of a low 
degree of heterogeneity, as this degree increases, more sophisticated models are required to 
obtain reliable predictions. We first present early works featuring a one-dimensional space 
FADE with constant coefficients and constant fractional order. Next, we extend this model 

Fig. 10   Tracer transport in homogeneous sand shows evidence of anomalous behavior which can be repro-
duced by a fractional diffusion-advection equation. On the left, the setup of the homogeneous sand tracer 
experiment (as described in [134]). On the right, a comparison of the corresponding classical (Fickian) and 
fractional ( �-stable) predictions. Source: [17]
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to the case of variable coefficients and generalize it to the multidimensional setting. We 
then present two types of one-dimensional time-FADEs and conclude the section with a 
very general model featuring both space- and time-fractional derivatives of variable order. 
For all these models, we refer to Sect. 2.1 for their mathematical details and interpretation 
in the context of stochastic processes.

3.2.1 � Spatial Fractional Derivatives

We introduce the constant coefficients, constant-order spatial FADE in one dimension 
introduced in [17] and provide details regarding its parameters in relation to solute trans-
port. The solute concentration at point x and time t, c(x, t), satisfies the equation

where V is the average plume velocity, D is a fractional diffusion coefficient9 that controls the 
rate of spreading, 1 ≤ � ≤ 2 (dimensionless) is the fractional order, and 0 ≤ p ≤ 1 determines 
the skewness � = 2p − 1 . Solutions can be positively ( p = 0 ) or negatively ( p = 1 ) skewed, 
whereas they are symmetric when p = 0.5 , for which the sum of the Riemann-Liouville 
derivatives results in the fractional Laplacian The fractional order � codes for the heterogene-
ity of the velocity field, with a higher probability of large velocities as it decreases towards 
one [145]. We recall that for � = 2 the FADE reduces to the traditional advection-diffusion 
equation (ADE) for groundwater flow and transport. The FADE above was introduced for the 
first time by Benson et al. [146] to model scale-dependent dispersivity in fitted groundwater 
plumes. In this paper the authors observed that, given a data set of solute concentration, the 
fitted parameter D grows with time when the classical ADE is used; such evidence of superdif-
fusion is an indicator that a space-fractional model is preferable. Indeed, in subsequent works, 
see, e.g., [18], the same authors show that the FADE allows the same data set to be fit with a 
constant-coefficient model such as Eq. (38), where D does not vary over time. From a particle 
perspective, the combination of left-sided and right-sided RL derivatives allows a solute par-
ticle to jump to any point in the domain; this simple concept was used by Schumer et al. [43] 
to provide a derivation of Eq. (38) using an Eulerian interpretation of the particles’ behavior.

The Grünwald‑Letnikov Discretization Technique  A standard discretization technique 
used in the FADE community for the approximation of the left-sided and right-sided RL 
derivatives Eqs. (16) and (17) in Eq. (38) is the shifted Grünwald-Letnikov (GL) finite dif-
ference formula introduced by Meerschaert and Tadjeran [147]. The GL scheme is based 
on the following identities:

where the GL weights are given by

�c
�t

(x, t) = −V
�c
�x

− D
[
p
(
RL
−∞

�
�
x
c(x, t)

)
+ (1 − p)

(
RL
x
�

�
∞
c(x, t)

)]

(39)

RL
−∞

�
�
x
u(x, t) = limh→0 h

−�
∞∑
j=0

g�
j
u(x + (j − 1)h, t)

RL
x
�

�
∞
u(x, t) = limh→0 h

−�
∞∑
j=0

g�
j
u(x − (j − 1)h, t),

9  The units of D are given by L�∕T where � is the fractional order, L indicates space and T indicates time.
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The GL approximation of the one-dimensional FADE is obtained by truncating the sum-
mation in Eq. (39). The temporal derivative and the classical first-order spatial derivative 
can be obtained by standard time discretization schemes for PDEs. Formulas (39) clearly 
highlight the nonlocal nature of fractional derivatives and the associated high computa-
tional cost compared to PDEs.

FADEs with Variable Coefficients on Bounded Domains  In a heterogeneous porous 
medium, at a scale where the geological character of the medium changes with location, 
the constant-coefficient model (38) is insufficient for accurate and reliable predictions. A 
first step towards a more accurate model is introducing space dependence in the material 
parameters V and D. Furthermore, in practical settings, simulations of solute transport 
must be confined to bounded domains, so that it becomes mandatory to establish ways to 
prescribe nonlocal boundary conditions that guarantee existence and uniqueness of solu-
tions. In the literature there are at least three variants of the FADE with space-dependent 
coefficients [148]: the fractional-flux ADE (FF-ADE), the fractional-divergence ADE (FD-
ADE), and the fully fractional-divergence ADE (FFD-ADE). In this review we focus on 
the former because of its resemblance with classical advection-diffusion equations and for 
which we formulate the associated equation on bounded domains10.

The FF-ADE model in the one-dimensional domain (−L, L) is derived from the classical 
conservation of mass equation

where the flux q is given by the following constitutive equation [43]

Here, the first term is the advective flux that models the average drift of contaminant par-
ticles, whereas the second and third terms are the dispersive fluxes, which model large 
particle jumps in the left and right directions, respectively. Note that, because we consider 
the bounded domain (−L, L) , the integrals in the left- and right-sided derivatives are “trun-
cated” at −L and L, respectively. Furthermore, since �(RL

−L
�

�−1
x

c(x, t))∕�x =RL
−L

�
�
x
c(x, t) the 

RL derivatives in the definition of the flux q have exponent � − 1 . The resulting FF-ADE 
corresponds to the models proposed in, e.g., [149]. We point out that, as described in detail 
in [150], Caputo derivatives as the ones introduced in Sect. 2.1 can also be used in place of 
RL derivatives in the definition of the flux (leading to what is referred to as Caputo flux).

The restriction of the FADE to a bounded domain requires the prescription of appropri-
ate boundary conditions to guarantee that Eq. (40) is well-posed. We consider two types of 
boundary conditions: reflecting and absorbing. Using the flux function defined in Eq. (41), we 
can identify a reflecting (or no-flux) condition by setting the diffusive part of the flux q equal 

g�
j
= (−1)j

Γ(� + 1)

Γ(j + 1)Γ(� − j + 1)
.

(40)
�
�t
c(x, t) +

�
�x

q(x, t) = 0, for x ∈ (−L, L),

(41)q(x, t) = V(x)c(x, t) + D(x)
[
p
(RL
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�
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c(x, t)
)
− (1 − p)
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�

�−1
L

c(x, t)
)]
.

10  We refer to [148] for more details regarding the FD-ADE and FFD-ADE models.
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to zero at the boundary, i.e., x = ±L . As an example, the reflecting boundary condition on the 
right boundary corresponds to

Instead, absorbing boundary conditions correspond to prescribing a zero “Dirichlet” condi-
tion at the boundary, i.e.,

Clearly, these conditions can be mixed resulting in absorbing/reflecting boundary condi-
tions on either the left or right boundary of the domain. It is important to note that, in the 
absence of advection, the no-flux (reflecting) condition implies that the total mass is con-
served, see Proposition 2.3 in [150].

We also mention that a new space-fractional model with variable advection and diffusion 
coefficients for anomalous, anisotropic transport has been proposed in [151].

Multidimensional FADEs  The multidimensional version of Eq. (38) was proposed 
by Meerschaert et al. [54] and further analyzed in [17]. For (−Δ)�∕2

M
 defined as in Eq. (22), 

we have that for � ∈ ℝ
d the concentration of a solute is described by the following law:

where � is the average solute velocity and D is the fractional diffusion coefficient. In [54] 
the operator (−Δ)�∕2

M
 corresponding to Eq. (22), is introduced via inverse Fourier transform, 

i.e.,

Here, � is a d-dimensional unit vector, � is the wave vector and ĉ is the spatial Fourier 
transform of c. Note that the coefficient D can be embedded in the measure M (even when 
it depends on the space variable). As for the one-dimensional constant-coefficient equa-
tion (38), the multidimensional FADE can also be extended to the variable-coefficient case. 
Furthermore, in the special case of jumps occurring only along the standard coordinate 
vectors �j , it is possible to derive fundamental solutions to Eq. (42). Finally, the special 
case of uniform measure over the d − 1 unit sphere corresponds to an advection-diffusion 
equation where the diffusion term is given by the standard fractional Laplacian operator 
(−Δ)�∕2.

3.2.2 � Temporal Fractional Derivatives

The time-FADE, used to model particle trapping in heterogeneous porous media, is 
characterized, in a jump process perspective, by long waiting times between jumps. This 
FADE replaces the first-order time derivative in an ADE with a time-fractional deriva-
tive of either RL or Caputo type. In this section, we review two popular time-FADEs: 
the time-FADE (with RL derivatives) and the fractional mobile-immobile equation 
(with Caputo derivatives), also known as FMIM.

RL
0
�

�−1
L

c(L, t) −RL
L
�

�−1
1

c(L, t) = 0.

c(±L, t) = 0.

(42)
�
�t
c(�, t) + � ⋅ ∇c(�, t) − D(−Δ)
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c(�, t) = 0,
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�∕2
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{

∫|�|=1
(i� ⋅ �)� ĉ(�, t)M(d�)

}
.
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Time‑Fractional Advection‑Diffusion Equation  The time-fractional advection-diffusion 
equation (time-FADE) was introduced in the works by Zaslavsky [152] and, independently, 
by Liu et al. [153]. In one dimension, it is given by

where the first term is the Caputo derivative defined in Eq. (28) on the half-axis. The 
units of the velocity parameter v are L∕T� and the ones of the diffusion coefficient D are 
L2∕T� , where L denotes units of space and T units of time. Note that, in the literature, 
C
0
�

�
t
f (t) is often denoted by �

�

�t�
f (t) , where � plays the same role as � . Furthermore, as 

pointed out at the beginning of this section, the time-FADE can be seen as the scaling 
limit of a CTRW. It is possible to obtain representations of solutions to Eq. (43) by sub-
ordination, i.e., via randomization of the time variable by the inverse stable subordina-
tor [154].

Fractional Mobile‑Immobile Equation  The fractional mobile-immobile (FMIM) model 
proposed by Schumer et al. [155] is a generalization of the classical mobile-immobile (MIM) 
model [156]. The latter, in its classical definition, partitions the solute concentration into a 
mobile phase, cm , and an immobile phase, cim and equates the divergence of the total flux of 
the mobile concentration to a weighted sum of the time rate of change of each phase, i.e.,

where � = �im∕�m , being �im and �m the porosities of the immobile and mobile phases. The 
relationship between cm and cim is then given by one or more coupled mass transfer equa-
tions, resulting in the following relationship

where ∗ indicates the convolution operation and f(t) is a memory function. The FMIM 
model in [155] defines f(t) as the power function f (t) = t−�∕Γ(1 − �) with 0 < 𝛼 < 1 . By 
noting that

the combination of Eqs. (45) and (44) results in the time-FADE

A CTRW model for the FMIM model was developed by Benson and Meerschaert [157]; 
here, waiting times experienced by solute particles in the immobile phase are modeled by 
a power law (as for the time-FADE). Power-law waiting times have also been observed in 
river transport studies by Haggerty et al. [158] and Schmadel et al. [159].
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3.2.3 � Variable‑Order FADEs

Constant-coefficient and constant-order models are invaluable basic tools for the analysis 
of complex engineering systems such as the flow through the subsurface; however they are 
unable to evolve between different physical behaviors, i.e., they cannot capture transitions 
between diffusive regimes. These transitions are caused by the fact that solutes in the sub-
surface diffuse through porous, fractured, layered and heterogeneous aquifers, whose struc-
ture changes with space as well as time. This leads to anomalous diffusion characterized by 
a variable-order scaling of the MSD. A first step towards more descriptive models was the 
introduction of variable-coefficient models, as described in the previous section. Yet, mod-
eling such transitions using constant-order fractional operators would require a continuous 
update of the underlying governing equations. For this reason, several recent works (in the 
context of subsurface modeling and beyond) have explored the use of variable-order opera-
tors. The use of these operators becomes particularly important in the presence of complex 
media that feature a hybrid anomalous mechanism [11]. As an example, we can exploit 
variable-order fractional operators, like the ones introduced in Sect. 2.1.7, when the nature 
of the transport processes transitions across very different underlying physical phenom-
ena such as transitions from subdiffusive flow to diffusive flow, and from diffusive flow 
to superdiffusive flow [160–165]. Note that these complex transport processes have been 
observed experimentally in various fields; for fluid flow through porous media we mention, 
e.g., [166, 167].

A complete variable-order fractional model was proposed in [165] and further explored 
in [168] for the description of the same MADE data set introduced at the beginning of this 
section. The one-dimensional variable-order time-space FADE is given by

where the variable-order derivatives are defined as in Sect. 2.1.7.
To confirm the improved accuracy of models such as the one in (46) we report in Fig. 11 

a comparison, conducted in [165], of a classical model, a constant-order fractional model 

(46)C
0
�

�(x,t)
t c(x, t) = −V

�c
�x

− D−
(
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−∞

�
�(x,t)
x

c(x, t)
)
− D+

(
RL
x
�

�(x,t)
∞

c(x, t)
)
,

Fig. 11   A comparison in semi-
log scale of the normalized 
concentration at the extraction 
point for the Grimsel test site 
[169] obtained using the classical 
advection-diffusion equation, 
the constant-order time-FADE, 
and variable-order time-FADE 
(ADE, Constant-index FDM, 
and Variable-index time FDM, 
respectively in the legend) 
together with the normalized 
experimental data. Source: Sun 
et al. [165]. Note that their use 
of � and � is switched from our 
use of the same symbols in the 
text; thus, in the above legend, 
� denotes the order of the time-
fractional derivative
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and a variable-order fractional model. Here, the authors consider concentration data from 
the field experiment conducted at the Grimsel test site [169] where uranine, a fluorescent 
dye, was injected into a shear zone as a tracer and its concentration was measured at an 
extraction well away from the injection site. The BTC of uranine, measured at the extrac-
tion well corresponds to the blue crosses in the figure. The authors compare the follow-
ing models: the classical advection-diffusion equation, corresponding to � = 1 and � = 2 in 
(46), the constant-order time-FADE with � = 0.9 and � = 2 , and the variable-order time-
FADE with �(t) = 0.9 + t∕150 , t ∈ (0, 15] , and � = 2 . BTCs in the figure show that the 
classical ADE model is not capable to depict the tailing/subdiffusive behavior, whereas 
the constant-order time-FADE underestimates the late-time decay, which features classical 
behavior. The choice of � and � in the variable-order time-FADE is based on the follow-
ing considerations: first, the measured BTC has a fast-increasing early time tail, implying 
a Gaussian-type of particle jump that corresponds to � = 2 . Second, the heavy late-time 
tail suggests a time-dependent � that should be less than 1 at early times (subdiffusive) 
and should slowly converge to 1 at late times (classical diffusion). The corresponding solid 
black BTC clearly captures the variable diffusion behavior of the normalized concentration.

3.3 � Future Directions in Anomalous Subsurface Modeling

In the previous sections we provided evidence of the occurrence of anomalous behavior 
in subsurface transport even for a low degree of heterogeneity and we have shown that 
FADEs can be accurate models when properly tuned. However, the identification of an 
optimal fractional model for a specific setting (e.g., for specific hydraulic properties) is not 
trivial and has not been thoroughly explored in the literature. One of the main challenges 
in this context is the fact that model parameters cannot be directly related to media proper-
ties, as carefully explained in [20]. Furthermore, oftentimes, it is hard or nearly impossible 
to collect solute measurements, so that only a very small set of data that are sparse in time 
and space and potentially affected by noise is available. Yet, in this context, FADEs have 
the advantage, compared to other models for subsurface transport, of having only a handful 
of parameters to tune, i.e., the identification problem consists in discovering a small set of 
parameters such as the diffusivity and the fractional order.

Only a few works in the literature have addressed this problem. In the context of highly 
heterogeneous settings, we mention the work by Pang et al. [168] where the authors pro-
pose to use multi-fidelity Bayesian optimization to discover variable-order fractional oper-
ators for the advection-diffusion equation (46) from field data in the MADE data set men-
tioned at the beginning of this section. Other recent works addressing a similar learning 
problem for fractional operators include optimization-based approaches such as the one 
used in [84], fractional/nonlocal physics-informed neural network approaches such as [74, 
170] and operator-regression techniques such as the one developed in [171]. It is important 
to keep in mind that in all these works the computational cost may become prohibitive, due 
to the integral nature of the operators involved and to the strong singularities that require 
sophisticated (and expensive) quadrature rules. Thus, together with the development of 
new learning techniques or the extension of the current ones to more complex settings, it is 
mandatory to design more efficient discretization schemes and numerical solvers.
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4 � Turbulence

Richard P. Feynman described turbulence as the most important unsolved problem in clas-
sical physics [172], a problem that stands today. By “turbulence”, we refer to the three-
dimensional and highly vortical fluid motions characterized by stochastic perturbations in 
pressure and flow velocity, and caused by excessive kinetic energy in areas of fluid flow 
that overcome the “damping effects” of the fluid’s viscosity. The onset of turbulence can 
be predicted by the dimensionless Reynolds number Re, a ratio of kinetic energy to viscous 
damping in the fluid flow. Yet, the question remains of what mathematically governs the 
evolution of a turbulent flow and whether it is feasible to fully simulate turbulent flows by 
means of numerical methods.

In 1970,  Emmons [173] reviewed the possibilities for computational fluid dynamics, 
concluding: “... the problem of turbulent flows is still the big holdout. This straightforward 
calculation of turbulent flows — necessarily three-dimensional and unsteady — requires a 
number of numerical operations too great for the foreseeable future.” After almost a dec-
ade, however, the field of direct numerical simulation (DNS) of turbulence was established 
with successful numerical simulations of wind-tunnel flows at moderate Re by  Hussaini 
and Voigt [174], Karniadakis et al. [175], Kim et al. [176], and Orszag and Patterson [177]. 
These early computational developments were based on employing a Newtonian fluid 
assumption and applying the principles of conservation of mass, momentum, and energy to 
an infinitesimally small fluid element or parcel; see, e.g., [178–180]. This led to the deriva-
tion of the Navier-Stokes and energy equations, emerging as a set of convective nonlinear 
PDEs that govern the evolution of fluid velocity/temperature fields in turbulence. In this 
context, assuming some proper (random) initial/boundary conditions, one can discretize 
the governing equations and solve for the “entire degrees of freedom of turbulence” in the 
physical and parametric (stochastic) space.

The great challenge is that, in practice, DNS becomes prohibitively expensive, especially 
at high Re, more so in complex geometries. Hence, one of the main goals in turbulence 
modeling has been to systematically lower the total number of degrees of freedom to a man-
ageable level, at the cost of reducing the accuracy of turbulence predictions. This approach 
has been mainly centered around the overarching theme of ensemble averaging the set of 
PDEs representing the various scalar and vector turbulence fields; see, e.g., [181, 182]. This 
gives rise to new mathematical terms in the averaged or filtered governing equations, known 
as turbulence closure terms that can only be modeled as they are essentially unknown. 
When the entire time and length scales of turbulence are averaged, an operation denoted 
by � ↦ � , the Reynolds Averaged Navier-Stokes (RANS) equations are obtained, solely 
describing the mean-flow dynamics of turbulence. Alternatively, if one applies a mathemati-
cally well-defined low-pass filter to the Navier-Stokes equations, an operation denoted by 
𝜙 ↦ 𝜙̃ , the resulting filtered governing equations describe the large eddy dynamics of tur-
bulence, where only small-scale subgrid dynamics need be modeled; this is referred to as 
large eddy simulation (LES). The common approach in the literature for modeling closure 
terms of any kind has been based on the use of classical local differential operators. More 
specifically, the majority of turbulence models have been constructed based on Boussinesq’s 
turbulent viscosity concept [183], in which one assumes that the turbulent stress tensors are 
proportional to the local gradient of mean velocity at any point. The proportionality coef-
ficient, referred to as turbulent viscosity, is to be inferred from data.

The impetus for the fractional models we describe in this section is that the small-scale 
dynamics of turbulence are statistically anomalous, i.e., non-Markovian and non-Fickian, 
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so that nonlocal closure models emerge as appropriate tools. Employed at the continuum 
level, fractional models therefore capture anomalous features in the small-scale stochastic 
subgrid dynamics of turbulence. The mathematical modeling of turbulence must address 
the fact that nonlinear interactions between the turbulence structures and motions create 
statistically complex phenomena that lead to a variety of anomalous features, including 
multi-power-law scalings in space-time, rare events, short-to-long-range coherent motions, 
and enhanced turbulent mixing. These features urge better and novel understanding of the 
underlying nonlocal closure terms that appear as a result of the ensemble averaging or fil-
tering of the governing equations. The nonlocal mode of thinking has the potential to shift 
the turbulence modeling paradigm and achieve a new level of physical and statistical con-
sistency compared to classical approaches. This is especially true at high Re, for which 
a proper and efficient framework that unites computational, mathematical, and statistical 
aspects was not available until recently.

4.1 � Evidence of Fractional Behavior in Turbulence

An intuitive concept of nonlocality and memory effects was been established by 
Eringen  and Wegner [184], where a point within a fluid field (medium) is influ-
enced by all points of the body at all past times. Coherent random motions and 
the spatially turbulence spots structures inherently give rise to intermittent signals 
with self-similarities, sharp peaks, heavy-skirts, and skewed distributions of veloc-
ity increments. Such statistical features have been well observed experimentally 
even in the context of most canonical problems, e.g., grid turbulence, in which the 
skewness factor negatively appears and the Kurtosis factor strongly exceeds three, 
emphasizing the non-Gaussian character of statistics (see, e.g., [23]). Moreover as 
demonstrated by  Egolf and Kutter [185] (page 92), nonlocal effects appear even 
in the context of turbulent fields obtained numerically solving the Navier-Stokes 
equations. Such widespread statistical measures indicate the non-Markovian and 
non-Fickian nature of turbulence, and they are the consequence of nonlinear and 
coherent vortical effects that occur in a wide spectrum of length and time scales. 
Therefore, nonlocal interactions cannot be ruled out of modern turbulence physics. 
These considerations are particularly timely; in fact, we can now benefit from the 
spectrum of modern nonlocal and fractional modeling tools reviewed in Sect.  2.1, 
equipped with well-established mathematical/statistical theories, that enable us to 
take such nonlocal/history effects into account with physical consistency and math-
ematical rigor.

Furthermore, averaging entire spatial scales as in RANS models or applying a spatial 
filter to the Navier-Stokes and energy equations as in LES models would make the under-
lying physical nonlocality in the corresponding closure terms in RANS models and the 
subgrid turbulent fluctuations in LES models even more pronounced. This sheds lights 
on why turbulence modeling is a nonlocal task and further motivates the development 
of “nonlocal closure models” that can properly address and incorporate the underlying 
memory and long-range effects. Specifically, in what follows, we present a DNS study, 
recently presented by Akhavan-Safaei et al. [24], that introduces new statistical measures 
and highlights the nonlocal character of subgrid-scale dynamics in the context of scalar 
turbulence.
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4.1.1 � The Case of Scalar Turbulence Subgrid Dynamics

An ideal LES is such that the true, filtered turbulent intensity is captured accurately through 
a robust subgrid scale (SGS) modeling that is physically and mathematically expressive. In 
fact, the LES equations include closure terms that directly link the correct evolution in time 
of turbulent intensity to the nature of the SGS closure and its modeling. Here, as a canoni-
cal problem, we consider the advection-diffusion (AD) equation

in which D denotes the molecular diffusion coefficient of the passive scalar, and the 
imposed mean scalar gradient is taken to be uniform as ∇⟨Φ⟩ = (0, �, 0) , where � is a real-
valued constant. In the LES representation of the scalar turbulence, multiplying both sides 
of the filtered AD equation by �̃  , the filtered scalar field � , yields the time-evolution of the 
filtered turbulent intensity as

Here, qR
i
 denotes the i-th component of the residual, SGS scalar flux defined as 

qR
i
= �̃Vi − �̃Ṽi . Employing the filtered continuity equation ∇ ⋅ Ṽ = 0 and the chain rule 

for differentiation, we obtain

Applying the ensemble-averaging operator, ⟨⋅⟩ , on Eq. (48) returns a transport equation for 
the filtered scalar variance, 

⟨
�̃ �̃

⟩
. Akhavan-Safaei et al. [24] considers the case of homo-

geneous turbulent velocity and scalar fields, in which 
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=
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filtered scalar gradient as G̃(�) = ∇�̃(�) , the time-evolution of the filtered scalar variance 
takes the following form

In Eq. (49), T̃  denotes the turbulent transport of filtered scalar variance while P̃ rep-
resents the production of resolved scalar variance by the uniform mean scalar gradient, 
and �̃  is the resolved scalar variance dissipation due to the molecular diffusion. Unlike 
these three terms, Π (representing the SGS production of resolved scalar variance) is the 
only contributing term in Eq. (49) that contains the effects of the SGS scalar flux. There-
fore, as pointed out earlier, understanding the true statistical nature of qR ⋅ G̃ is essential 
for the SGS modeling and precise evaluation of the resolved scalar variance in the LES. 
This examination of qR ⋅ G̃ might be viewed both from single-point and two-point statis-
tics as discussed by Meneveau [186] in the context of the LES for homogeneous isotropic 
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turbulent flows. We focus on the two-point statistics of the SGS production of resolved 
scalar variance. This quantity is well represented in terms of the following normalized two-
point correlation function

where r = (r1, r2, r3) denotes the spatial shift from the location � . Moreover, the probabil-
ity density function (PDF) of the SGS production of scalar variance normalized by its L2
-norm, i.e., qR ⋅ G̃∕‖qR ⋅ G̃‖ , is a novel statistical measure for studying the statistical behav-
ior of Π and yielding a more comprehensive insight into the SGS modeling.

Let TLE be the eddy turnover time. By taking a large sample space over 10 TLE of this 
stationary process (after resolving the passive scalar field for 15 TLE ), the PDF of the nor-
malized SGS production of filtered scalar variance is computed for four different filter 
widths, Δ∕� = 8, 20, 41, 53 . These computations, shown in Fig. 12a, demonstrate that as 
Δ becomes larger, the PDF exhibits broader tails. Emergence of this tail behavior implies 
that as the filter width increases, long-range spatial interactions become stronger and more 
pronounced [187]. Motivated by this observation, a two-point diagnosis of the SGS sca-
lar production of the filtered variance as defined in Eq. (50) would be another statistical 
measure shedding light on the long-range interactions in addition to the filter width effects. 
Considering ∥ as the direction along the imposed mean scalar gradient and ⟂ representing 
the directions perpendicular to the imposed mean gradient, we focus on the evaluation of 
C(qR

∥
, G̃∥).

Here, one case takes r = (r1, 0, 0) and r = (0, 0, r3) and takes the average of the result-
ing two-point correlation functions. Due to the statistically stationary turbulence, such 
procedure is performed for 20 data snapshots that are uniformly spaced over 10 TLE (on 
the same spatio-temporal data, used to compute the PDFs); hence, the time-averaged value 
of C(qR

∥
, G̃∥) is obtained. Figure 12b illustrates this two-point correlation function extend-

ing over a wide range of spatial shift, r = |r| , and evaluated at four filter widths similar to 
the ones utilized in Fig.  12a. This plot quantitatively and qualitatively reveals that as Δ 
increases, greater correlation values between the SGS scalar flux qR

∥
(�) , and filtered scalar 
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Fig. 12   Statistics of true subgrid-scale contribution to the filtered scalar variance rate. (a) PDF of normal-
ized SGS dissipation of filtered scalar variance, −qR ⋅ G̃ , computed over a sample space of 10TLE of stati-
cally stationary turbulence. (b) Time-averaged two-point correlation function (50) between qR

∥
 and G̃∥ with 

r = |r⟂| . Source: [24]
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gradient G̃∥(� + r) are observed at a fixed r. These spatial correlations are significant both 
in the dissipation and also inertial subranges.

This confirms substantial nonlocal effects in the true SGS dynamics, which need to be 
carefully addressed in the SGS modeling for LES. A popular and fairly simple approach 
for modeling the SGS scalar flux is eddy diffusivity modeling (EDM). In EDM, the main 
assumption is that the SGS scalar flux is proportional to the resolved scale scalar gradient 
(i.e., the conventional locality assumption) as

and DED is the proportionality coefficient. Obviously, EDM is a local modeling approach 
by construction. Computing C(qR

∥
, G̃∥) while qR

∥
 is approximated with EDM, one can com-

pare it with its true value as shown in Fig. 12b. Figure 13 illustrates such comparison for 
two filter widths, Δ∕� = 8, 53 , and it reveals that in both of the cases local EDM substan-
tially fails to predict the conspicuous long-range spatial correlations observed in the true 
two-point correlation values. This evidence strongly suggests the adoption of more sophisti-
cated, nonlocal mathematical modeling tool that goes beyond conventional SGS modeling.

4.2 � State of the Art: Fractional Turbulence Modeling

In what follows, we present the history and state of the art in fractional turbulence mode-
ling, including nonlocal RANS, fractional eddy viscosity modeling, fractional scalar turbu-
lence LES modeling, in addition to tempered fractional LES SGS modeling for turbulence.

4.2.1 � Nonlocal RANS Models: a Narrative Survey

Recall that most of turbulence models are built based on Boussinesq’s turbulent viscosity 
concept. Thus, one conventionally assumes that the turbulent stress tensors �R

ij
 are propor-

tional to the symmetric part of local mean velocity gradient at any point (i.e., strain rate 
tensor). Hence, the corresponding proportionality coefficient, known as the turbulent vis-
cosity, emerges as the unknown turbulence model parameter �T in

(51)qR(�) ≈ −DED G̃(�),

𝜏R
ij
= 𝜇T

(
𝜕ūi
𝜕xj

+
𝜕ūj

𝜕xi

)
,

Fig. 13   Comparison between the 
true values of two-point correla-
tion function given in Eq. (50) 
and the ones obtained from the 
local eddy diffusivity modeling 
of the SGS scalar flux given in 
Eq. (51). The evaluations are 
performed at two filter widths of 
Δ∕� = 8, 53 . Source: [24]
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where ūi represents the local mean velocity components. Prandtl [188] in 1942 aimed to 
move beyond this local constraint by introducing the extended mixing length concept for 
the first time. The corresponding new model was a great migration from locality to non-
locality, but did not achieve a remarkable success as it did not significantly improve accu-
racy. Afterward, he parametrized the primitive model in a way that the mixing length was 
taken to be greater than the (differential) length scale of the problem, including a higher  
(second-order) Taylor expansion term. This strategy was analogous to adding a “weak 
sense of (short-range) nonlocality” to the model. This was regarded as a weak nonlocal 
model in the sense that the stress term was still in the form of Boussinesq’s and the rela-
tion with the strain rate tensor in the same point was collinear. However, von Karman  
insisted on the consideration of the common local mixing length, which is generated by 
the local flow conditions and suggested considering the mixing length in terms of two suc-
ceeding derivatives [185]. Bradshaw [189] in 1973 showed that Boussinesq’s hypothesis  
fails over curved surfaces and noted that form of the stress-strain relations was the main 
cause of this failure. It should be mentioned that there were some important developments 
mostly based on polynomial series, compared to the Boussinesq-type modeling includ-
ing the works done by Lumley [190], Spencer and Rivlin [191, 192], and Pope [193];  
however, a noticeable lack accuracy both in terms of physics and mathematics emerged as 
additional second- (and higher) order tensor series developments were demanded, where 
an interplay between predictability and practicality remained an open question.

As indicated in Sect. 2.1, Brownian motion can serve as a statistical model for the spread 
of a cloud of particles the continuum limit of which is a parabolic integer-order diffusion 
equation. Generalizing this approach to heavy-tailed processes such as Lévy processes can 
model the intermittency in turbulent flow signals and through a heavy-tailed central limit 
theorem converge to an anomalous diffusion equation with fractional derivatives in space 
and/or time [4]. This suggests that employing fractional-based Reynolds stresses would be 
a proper model for the turbulent diffusion term. In a pioneering work by Hinze et al. [194] 
in 1974, the authors described the memory effect in a turbulent boundary layer flow. They 
utilized the experimental data produced downstream of a hemispherical cap, attached to 
the lower wall of channel geometry. They demonstrated that when one computes eddy vis-
cosity using Boussinesq’s theory in the lateral gradient of the mean flow and turbulence 
shear-stresses, there is a huge non-uniform distribution that exists in the outer region of the 
boundary layer. Interestingly, we see a nonlocal expression for the gradient of the trans-
ported field in a novel approach by Kraichnan [195] in the same year (1974), for the scalar 
quantity transport. Afterward, fractional-order models based on the RANS approach were 
offered in [196–200]. Most of these works are using Green’s functions based on the resid-
ual velocity to provide the expression for the Reynolds stress or scalar fluxes.

One of the main contributions for the development of nonlocal models has been done 
by Egolf and Hutter [185, 201]. They started from Lévy flight statistics and generalized 
the zero-equation local Reynolds shear stress expression to a nonlocal and fractional type. 
The method is based on Kraichnanian convolution-integral approach and utilizing differ-
ent weighting functions. Using the mentioned weighting functions, one can make a bridge 
between the first-order gradient of the common eddy diffusivity models and the mean 
velocity difference term. The proposed model is based on the four distinct steps that can 
be followed conveniently to replace a local operator with a nonlocal one. In reality, the 
final proposed model is a more general and extended version of Prandtl’s zero-equation 
mixing length and shear-layer turbulence models. The proposed model is called Difference- 
Quotient Turbulence Model (DQTM), given by
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Although well motivated and presented as somewhat of a generalization of classical mod-
els, such models have not been thoroughly tested against established integer-order mod-
els, and their practical efficiency in addressing the nonlocalities has not been adequately 
examined. Recently, a series of remarkable developments in fractional turbulence modeling 
gave a new and practical perspective on employing fractional calculus in turbulence, and 
introducing new statistical measures that directly reveal where classical approaches have 
room for modernization and enhancement. In what follows we review such cutting edge 
approaches.

4.2.2 � Fractional Eddy Viscosity Models

Recently, Di Leoni et al. [202] developed a new nonlocal eddy viscosity-based model (see 
Eq. 52 below) that can be applied in both isotropic and anisotropic turbulent flows. They 
obtained a proper two-point stress-strain rate correlation structure for a priori testing the 
developed model and performed tests based on the high-resolution DNS data set for the 
homogeneous isotropic turbulence (HIT) and the channel flow canonical test cases.

The investigation of the model performance is set based on the necessary conditions for 
any LES approach in providing the accurate two-point statistics of the filtered quantities in 
the terms of correlations and spectra. The proposed model is given by:

where the derivative operators D�
i
 and D�

j
 are both of order 0 < 𝛼 < 1 respectively in i and 

j directions, however, they are employed as the truncated Caputo derivative variations, still 
being the convolution of the first derivative of velocity with respect to an inverse power-
law kernel with index � , however, over a truncated (compact) integral support, forming a 
finite nonlocality horizon, for the purpose of lowering the computational cost.

Several numerical tests conducted in [202] indicated that the new model provides a better 
correlation between the filtered rate of strain rate and subgrid-scale stress tensor. Specifically, 
this model predicts the long tails in the ground-truth subfilter stress-strain rate correlation 

u�
2
u�
1
= −��2[u1(x1, x2) − u1,min(x1)]

u1,max(x1) − u1(x1, x2)

x2,max − x2
.

(52)𝜏𝛼
ij
= −𝜈T

(
D𝛼

i
ūj + D𝛼

j
ūi
)
.

Fig. 14   Two-point correlations between SGS stress and filtered rate of strain rate in different scenarios 
( � = 1 corresponds to the local model) at the filter size Δ = 31� (a) , and Δ = 53� (b). Source: [202]



433Journal of Peridynamics and Nonlocal Modeling (2023) 5:392–459	

1 3

functions. However, other conventional local eddy viscosity-based models like classical 
Smagorinsky, which corresponds to � = 1 , miss this important feature as they decay faster 
(see Fig. 14).

In addition to the significantly better capability in the prediction of the long-tail inter-
actions in the new model, the probability density functions of the dissipation quantities 
for the HIT flow using the box filtering approach, are matching much better than the 
local model. The local model predictions are purely dissipative and with no tail behavior, 
which is in contrast with the ground-truth DNS data sets. Moreover, effects of the different 
parameters in the LES procedure have been analyzed including filter size, filter type, wall 
distance for the channel flow case, and integration radius.

Alternatively in studying the turbulent transport and mixing, kinetic Boltzmann theory 
has shown a rich and promising ground based upon principles of statistical mechanics, 
which by construction is well suited for the stochastic description of turbulence at micro-
scopic level [203]. In the following, the fundamental sources of nonlocal closure and the 
SGS modeling for the residual passive scalar flux are studied at the kinetic Boltzmann 
transport framework. Our objective is to derive a nonlocal eddy diffusivity SGS model at 
the continuum level. In what follows we present three recent development of LES SGS 
where the SGS small motions are modeled by the BGK kinetics transport.

4.2.3 � Fractional LES SGS Modeling for Scalar Turbulence

Statistical description of LES is well represented through incorporating a filtering pro-
cedure into the kinetic Boltzmann transport. For the purpose of passive scalar transport, 
applying a spatially and temporally invariant filtering kernel, G = G(r) , onto the distribu-
tion function g(t, �, u) linearly decomposes that into the filtered, g̃ = G∗g , and the residual, 
g� = g − g̃ , components. Therefore, filtering the BGK equation results in the following fil-
tered BTE (FBTE) for the passive scalar:

where B represents the generic Boltzmann filter size. As elaborated by Girimaji [204], the 
nonlinear nature of the collision operator, CBGK(g) , prohibits the filtering kernel to com-
mute with; thus, it initiates a source of closure at the kinetic level in FBTE (Eq. 53). Defin-
ing B̃ ∶= (u − Ṽ)2∕c2

T
 , this closure problem is manifested in the following inequality,

The identified closure requires proper means of modeling so that one can numerically solve 
the FBTE (Eq. 53). A common practice is to approximate this closure problem with a mod-
ified relaxation time approach that is described in detail in [205]. Despite the success of 
this approach in some applications, it is not physically consistent with the filtered turbu-
lent transport dynamics [204]. Nevertheless, here we manage to adjust this inconsistency 
by looking at the nonlocal effects arising from filtering the Maxwell distribution function, 
geq(B) , and model them with proper mathematical tools. Considering the spatial filtering 
kernel G(r) with the filter width Δ , and applying it on the Maxwell equilibrium distribution 
as

(53)
�g̃

�t
+ u ⋅ ∇ g̃ = −

g̃ − g̃eq(B)

�g
.

(54)g̃eq(B) =
̃Φ exp(−B∕2)

(2�)3∕2 c3
T

≠ Φ̃ exp(−B̃∕2)

(2�)3∕2 c3
T

= geq(B̃).



434	 Journal of Peridynamics and Nonlocal Modeling (2023) 5:392–459

1 3

where Rf = [−Δ∕2 ,Δ∕2]3 . Subsequently, by rewriting the right-hand side of the passive 
scalar FBTE (Eq. 53) into the following form

the unclosed part is structurally multi-exponentially distributed and maybe approximated 
by a power-law distribution model as we propose

where F�(B̃) denotes an �-stable Lévy distribution that is mathematically designed based 
on heavy-tailed stochastic processes and replicate the power-law behavior [8, 206]. The 
corresponding macroscopic continuum variables associated with the filtered Eq. (47) are 
obtained in terms of the filtered distribution functions, f̃  and g̃ , as

According to the microscopic reversibility of the particles that assumes the collisions occur 
elastically, the right-hand side of Eq. (53) equals zero [207]. Therefore,

Since we are working with spatial filtering kernels, G = G(r),

By plugging Eq. (57) into Eq. (56), we obtain that

where

The corresponding filtered passive scalar flux is obtained through a sequence of step-by-
step derivations as

and the divergence of residual scalar flux is derived as the fractional Laplacian of the fil-
tered total scalar concentration,

g̃eq(B) = G∗geq
(
B(t,u, �)

)
= ∫Rf

G(r) geq
(
B(t,u, � − r)

)
dr,

−
1

�g

(
g̃ − g̃eq(B)

)
= −

1

�g

(
g̃ − geq(B̃)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
closed

+
1

�g

(
g̃eq(B) − geq(B̃)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
unclosed

,

g̃eq(B) − geq(B̃) ≈ g�(B̃) =
Φ̃

c3
T

F�(B̃),

(55)
Φ̃ = ∫

ℝd g̃(t, �, u) du,

Ṽi =
1

�
∫
ℝd ui f̃ (t, �, u) du, i = 1, 2, 3.

(56)�Φ̃
�t

+ ∇ ⋅ ∫
ℝd

u g̃ du = 0.

(57)∫
ℝd

u g̃ du = ∫
ℝd

(u − Ṽ) g̃ du + ∫
ℝd

Ṽ g̃ du.

�Φ̃
�t

+ ∇ ⋅

(
Φ̃ Ṽ

)
= −∇ ⋅ q,

qi = ∫
ℝd

(
ui − Ṽi

)
g̃ du.

q̃ = −D∇Φ̃,
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where D� ∶=
C� (cT �g)

�

�g
(� + 2) Γ(�) is a model coefficient with the unit [ L�∕T  ]. The filtered 

AD equation for the total passive scalar concentration, developed from the filtered kinetic 
BTE with an �-stable Lévy distribution model, yields a fractional-order SGS scalar flux 
model at the continuum level. The aforementioned filtered AD equation reads as

Through a proper choice for the fractional Laplacian order � , the developed model opti-
mally works in an LES setting. Applying the Reynolds decomposition and considering the 
passive scalar with imposed uniform mean gradient, Eq. (58) fully recovers the filtered 
transport equation for the transport of the filtered scalar fluctuations, �̃ .

4.2.4 � Nonlocal Spectral Transfer Model and Scaling Law for Scalar Turbulence

Recently, Akhavan-Safaei and Zayernouri [208] revisited the spectral transfer model for the 
turbulent intensity in passive scalar transport, and proposed a physically meaningful modi-
fication to the scaling of scalar variance cascade, given by

in which � represents the rate of spectral flux function, � denotes the dissipation rate of tur-
bulent kinetic energy (TKE) and � is the Fourier wave number. This generalizes the −5∕3 
law, which corresponds to � = 0 . The comparison between the classic scaling law and this 
generalized model is depicted in Fig. 15. This work begins with redefining the correspond-
ing length scale of the scalar transport, being traditionally approximated only as 1∕� . While 
this way of thinking is quite consistent with the Brownian motion model at small scales 
(considering small jumps of finite variance) the authors argued using several experimental 
studies that the scalar turbulence (i.e., both the scalar increments and the scalar fluctua-
tions) do not obey the K41 local-isotropy hypotheses, and they are anomalous and lead to 

∇ ⋅ qR = −D� (−Δ)
� Φ̃, � ∈ (0, 1],

(58)
�Φ̃
�t

+
�
�xi

(
Φ̃ Ṽi

)
= DΔΦ̃ +D�(−Δ)

� Φ̃.

E�(k) ∼ � �−1∕3 �−2∕3 (�2 + C��
2�)−1∕2,

(a) (b)

Fig. 15   (Left) Turbulent scalar intensity E�(k) ∼ � �−1∕3 �−5∕3 , versus (Right) the modified (generalized) 
scaling law E�(k) ∼ � �−1∕3 �−2∕3 (�2 + C��

2�)−1∕2 in [208], obtained from the DNS data
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nonlocal behavior. Hence, they modified the corresponding scalar variance length scale in 
a way that it additionally included a new scale-free term to directly take the corresponding 
self-similar large jumps into account. This new inclusive length scale, combined with the 
Kolmagorov’s velocity-scale and obtained from TKE, defined a new scalar time scale that 
leads to a new nonlocal power-law scaling for the cascade of scalar variance. From the 
generalized spectral transfer model, the authors obtained back a new fractional-order sca-
lar transport model, which can be viewed as a re-derivation of their earlier fractional LES 
work, originally derived from the filtered Boltzmann transport equation in [24].

4.2.5 � Fractional/Tempered Fractional LES Models for Fluid Turbulence

For some pedagogical purposes, we first presented the case of fractional LES SGS mod-
eling for scalar turbulence. However, this new paradigm in LES modeling actually began 
prior to [24]. Samiee et al. [25] developed the first ever fractional LES model for homoge-
neous isotropic turbulent flows as

being based on the derivation of fractional Laplacian closure term in the spatially filtered 
Navier-Stokes equations when employing a Lévy stable distribution as the equilibrium 
model in the filtered BGK kinetic transport equation. In [209], they later developed a gen-
eralized version of this earlier model (suitable for incorporating data with tailored/trun-
cated tails). Employing rather a tempered Lévy stable distribution in the kinetic level this 
time gave rise to the formulation of the tempered fractional LES closure term as

forming a novel, data-friendly and expressive tempered fractional Laplacian SGS model 
for turbulence. They also showed that the newly developed nonlocal models can better 
recover the non-Gaussian statistics of subgrid-scale stress motions while they are being 
employed at the continuum level.

4.2.6 � Dynamic Nonlocal LES Modeling

The recent developments in [24, 25, 209] offer a novel LES modeling paradigm for 
modeling the stochastic SGS motions. By employing fractional and tempered fractional 
Laplacian operators as additional linear terms to the filtered Navier-Stokes equations, 
this paradigm directly takes the superdiffusive nature of turbulence into account. How-
ever, all of the aforementioned models feature a static order of the fractional deriva-
tive that does not vary in time. To dynamically calculate the corresponding optimal 
fractional indices and tempering parameters throughout the flow simulation, dynamic 
nonlocal LES models have recently been formulated in [210, 211] along with the cor-
responding a priori and a posteriori studies. Such automated dynamic nonlocal LES 
modeling has been performed in the context of both flow and scalar turbulence, and has 
significantly enhanced the capability of the SGS LES models in prediction of turbulence 
TKE back-scattering and in properly addressing the notion of intermittency in the SGS 

(∇.𝜏R) = 𝜇𝛼(−Δ)
(𝛼)V̄ ,

(∇.𝜏R) = 𝜈𝛼

𝜅∑

k=0

𝜙𝜅
k
(Δ + 𝜆k)

(𝛼)V̄ ,
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dynamics. These features subsequently lead to sharp peaks and heavy tails of distribu-
tions in the small-scale motion statistics, e.g., in the dissipation of TKE and turbulent 
scalar variance.

4.3 � Future Directions in Fractional Turbulence Modeling

Laval et al. [212] analyzed the effects of the local and nonlocal interactions on the inter-
mittency corrections in the scaling properties in three-dimensional turbulence. They 
observed that nonlocal interactions are responsible for the creation of the intense vorti-
ces and on the other hand, local interactions are trying to dissipate them. Inspired by the 
mentioned observations, they came up with a new turbulence model that accounts for 
both the local and nonlocal interactions for the study of intermittency. In their proposed 
model, the large and small scales are being coupled by nonlocal interactions using a 
multiplicative process and additive noise along with a turbulent viscosity model for 
the local interactions. The results of the new model qualitatively cover the previously 
observed anomaly and intermittency aspects.

In the context of nonlocal turbulence modeling, Song and Karniadakis [213] proposed 
a variable-order fractional model for wall-bounded turbulent (mean) flows. They repre-
sented the Reynolds stresses with a nonlocal fractional derivative of variable-order that 
decays with the distance from the wall. Interestingly, they found that this variable frac-
tional order has a universal form for all Re and for three different flow types, i.e., chan-
nel flow, Couette flow, and pipe flow. In addition to the aforementioned fully developed 
flows, they modeled turbulent boundary layers and discussed how the streamwise variation 
affects the universal curve (see also [214] for a follow-up work). Later, Pang et al. [215] 
proposed a nonlocal truncated operator with spatially variable order, which is suitable for 
modeling wall-bounded turbulence, e.g., turbulent Couette flow. They showed that nonlocal 
physics-informed neural networks (nPINNs) can jointly infer the variable order, exhibiting 
a universal behavior with respect to Re, a finding that can contribute to better understand-
ing of nonlocal interactions in wall-bounded turbulence. In terms of memory effects (i.e., 
nonlocality in time), Parish and Duraisamy in [216] developed a dynamic SGS model for 
LES, based on the Mori–Zwanzig (MZ) formalism. This closure model was constructed by 
exploiting similarities between two levels of coarse-graining via the Germano identity of 
fluid mechanics and by assuming that memory effects have a finite-temporal support. This 
work suggests future studies on using time-fractional derivatives in turbulence models.

The aforementioned developments are practically interesting, mathematically excit-
ing, and algorithmically robust. They enthusiastically encourage the field of research 
in turbulence to gradually open their arms towards a whole new wealth of recent 
mathematical developments in both theory and practice of fractional modeling. Inevi-
tably, further systematic studies and developments of nonlocal turbulence models are 
needed (both numerically and experimentally) in order to achieve the charming blend 
of enhanced accuracy and lowered cost in realistic applications. On this note, we end 
this section by emphasizing that the non-Markovian/non-Fickian nature does not relax 
in compressible flows (i.e., variable density problems). Therefore the idea of developing 
generalized fractional turbulence models for transonic-to-hypersonic flows is a new and 
nourishing venue for research, in which the existing sense of classical thermodynamics 
can become fundamentally non-equilibrium and nonlocal.
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5 � Fractional Constitutive Laws in Material Science

Accurate modeling of evolving material response and failure across multiple time and 
length scales is essential for life cycle prediction and design of new materials. While 
the mechanical behavior of a number of standard engineering materials (e.g., met-
als, polymers, rubbers) is quite well understood, a significant modeling effort still 
needs to be conducted for complex materials, where microstructure heterogeneities, 
randomness and small-scale physical mechanisms (such as collective behavior) lead to 
non-standard and, at times, counter-intuitive responses. Two examples are bio-tissues 
and natural materials (e.g., biopolymers), which are multi-functional products of mil-
lions of years of evolution, locally optimized for their hosts and environment, and 
constrained by a limited set of building blocks and available resources [28, 29]. These 
materials possess unprecedented properties at low densities, especially due to their 
hierarchical and multi-scale structure, leading to a wide spectrum of behaviors, such 
as power-law viscoelasticity, visco-plastic strains under hysteresis loading, damage, 
failure, fatigue, fractal avalanche ruptures and self-healing mechanisms.

The main motivation for fractional materials modeling is the power-law fingerprint 
arising in microstructures undergoing anomalous diffusion, observed in a range of com-
plex materials. Such microstructures often display a fractal nature with subdiffusive 
dynamics, e.g., of entangled polymer chains, and defect interactions such as disloca-
tion avalanches, cracks and voids. Such non-exponential behavior cannot be accurately 
modeled by integer-order, linear viscoelastic models, which require arbitrary arrange-
ments of Hookean/Newtonian elements and introduce a limited number of exponential 
(Debye) relaxation modes that, at most, represent a truncated power-law approximation 
[217]. While these approximations may be satisfactory for short times and engineering 
precision, they often result in high-dimensional parameter spaces and still lack predict-
ability outside the experimental time/length scales, often requiring recalibration. In this 
context, fractional operators become appropriate and natural modeling choices, since 
their integro-differential operators naturally utilize power-law convolution kernels, cod-
ing self-similar microstructural features in a reduced-order mathematical language with 
smaller parameter spaces (similarly to the case of anomalous transport, see Sect.  3). 
This fact allows accurate and predictive modeling, in an efficient manner, of bio-tissues 
[218–224] and polymers [3, 225–227] for multiple time scales.

In this section we review fractional models for materials undergoing power-law behav-
iors, termed anomalous materials, in a range of non-equilibrium and path-dependent 
responses. We start with linear viscoelasticity, introducing the basic modeling building 
block, known as Scott-Blair element that models a single power-law response and can 
be combined to incorporate more complex behaviors. In harmony with the previous Sec-
tions, we will emphasize on potential multi-scale connections, stochastic processes, and 
thermodynamic consistency. After providing evidence of cases where fractional behav-
ior/power-laws appear as intrinsic qualities in a number of systems, we report on the 
state-of-the-art models incorporating multiple physical mechanisms.

Fractional Viscoelasticity: Rheological Building Blocks  We start with the Boltzmann 
superposition integral for linear viscoelasticity, obtained from the linear superposition of 
infinitesimal step strains ��(t) applied to a viscoelastic material [228]:
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where 𝜀̇ and �(t) denote, respectively, the strain rate and stress. The convolution kernel G(t), 
is a relaxation function, directly related to stress relaxation experiments under step strains. 
It is traditionally modeled through combinations of Hookean springs and Newtonian dash-
pots, yielding a multi-exponential relaxation in the form G(t) =

∑N

i=1
Ci exp(−t∕�i) . In 

this particular choice of kernel, Eq. (59) is equivalent to a multi-term ordinary differential 
equation (ODE).

Relaxation experiments across multiple time- and frequency-scales indicate that anoma-
lous materials exhibit memory effects in time for stress/strain responses, which translates 
into a single power-law scaling in the form G(t) ∝ t−� , with � ∈ (0, 1) . This indicates that, 
contrary to exponential relaxation forms, there is a spectrum of relaxation times arising 
from the material microstructure [6], for which standard ODE models (e.g., generalized 
Maxwell model in creep/relaxation representations) would require a large number of 
parameters.

The fundamental fractional rheological building block element, termed Scott-Blair (SB) 
model, is obtained by substituting the power-law kernel G(t) = Et−�∕Γ(1 − �) into Eq. 
(59), leading to the following form:

which is equivalent to the Riemann-Liouville fractional derivative RL
−∞

�
�
t
�(t) if the func-

tion �(t) is sufficiently well behaved at t → −∞ [53]. While this equivalence is satisfied 
for semi-infinite domains, the choice of Riemann-Liouville and Caputo definitions matter 
when we introduce a causal strain history and switch the lower limit of Eq. (60) from −∞ 
to 0, which leads to two different fractional Cauchy problems. For the Caputo definition, 
we have [228]:

On the other hand, when employing Riemann-Liouville derivatives, we obtain:

where we remark that problem Eq. (61) is more commonly adopted due to the appear-
ance of integer-order ICs, while both aforementioned problems are equivalent in the pres-
ence of homogeneous ICs. The SB element provides a constitutive interpolation between 
a Hookean spring ( � → 0 ) and a Newtonian dashpot ( � → 1 ). The unique parameter pair 
(E [Pa.s�], �) codes snapshots of a dynamic process instead of an equilibrium state of the 
system [6]. Consequently these properties are only associated with equilibrium states in 
the limit cases for the fractional order � . We remark that although the FDE (Eq. 61) uti-
lizing the Caputo definition is widely employed to represent the SB element in the litera-
ture, the pioneering works on anomalous rheology modeling are attributed to Gerasimov 
[229] in 1948, introducing a similar power-law convolution operator as Eq. (60), which 
may be referred in the literature as the Gerasimov-Caputo derivative [230]. We refer the 
reader to [230, 231] for more details on the historical context of fractional derivatives in 
viscoelasticity.

(59)𝜎(t) = ∫
t

−∞

G(t − 𝜏)𝜀̇(𝜏) d𝜏,
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𝛼
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𝛼
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𝜀(t), t > 0, 0 < 𝛼 < 1, 𝜀(0) = 𝜀0.

(62)𝜎(t) = E RL
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Mechanistic and Thermodynamic Interpretations  Apart from the Boltzmann integral rep-
resentation (Eq. 59), characterized by an integro-differential nature, the SB element can also 
be obtained through a continuous arrangement of canonical, Hookean and Newtonian ele-
ments, both from their constitutive and free-energy levels [232, 233], making the notion of 
SB elements intrinsically incorporating an infinite number of relaxation times more evident. 
In [233], a hierarchical ladder-like structure of standard Maxwell viscoelastic elements was 
employed. This structure led to a coupled system of ODEs, which had an infinite continued 
fraction (a recursion of fractions) representation in terms of the Maxwell model constants 
in the Laplace domain. Then, applying an inverse Laplace transform, a fractional stress-
strain relationship was recovered for homonegeous initial conditions, therefore equivalent to 
both forms Eqs. (61) and (62). In [232], an isothermal Helmholtz free-energy density was 
derived for the SB element from the elastic energies of a discrete-to-continuum arrangement 
of standard Maxwell branches, obtaining the following form for the free-energy � as a func-
tion of the strain:

where h(z) denotes the relaxation spectrum. Therefore, Eq. (63) represents the amount of 
available elastic energy to perform work from the SB element in the time domain, which 
cannot be directly inferred from Eqs. (61) and (62). Naturally, the two limit cases for � 
are �(�) → E�2∕2 when � → 0 , and �(�) → 0 when � → 1 . Furthermore, under suitable 
thermodynamic constraints, it is shown that the SB element is thermodynamically admis-
sible and that the Caputo representation of Eq. (62) can be derived from Eq. (63) under 
continuum mechanics arguments.

Energy Decoupling in the Frequency Domain  Similar to the aforementioned representa-
tions, power-law structures also appear in viscoelastic dynamic properties and rheological 
experiments in the frequency domain [6], such as the complex shear modulus, defined as 
the ratio between the Fourier transform of stresses and strains:

where � [s−1] denotes the frequency. The term G′ is the storage modulus, and G′′ denotes 
the loss modulus, i.e., the stored and dissipated energy per cycle, respectively. Employing 
definition (64) into Eq. (62), the dynamic modulus of the Scott-Blair element is obtained 
[234]:

which provides a clear storage/loss decomposition, with the value of � determining whether 
the material of interest is predominantly dissipative for certain frequency ranges.

Relationships to Material Microstructure and Stochastic Processes  The mechanistic ori-
gins of macroscopic power-law behaviors in complex materials are due to spatio-temporal 
anomalous subdiffusive processes  in fractal microstructures [57]. We focus on the tempo-
ral case, in which the MSD of microstructural constituents follows a nonlinear scaling in 
the form ⟨Δx⟩2 ∝ t�. Bagley and Torvik [235] provided a relationship between the complex 
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∞
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shear modulus obtained from the Rouse theory of polymer dynamics. They started with the 
result of Rouse’s theory for the shear modulus, i.e.,

where n denotes the number of molecules per unit volume, N is the number of monomers 
in the polymer chain, T represents the absolute temperature, k is Boltzmann’s constant. 
The term �p denotes the relaxation times of the solution, which was approximated as 
�p ≈ �1∕p

2 = 6(�0 − �s)∕(p
2�2nkT) , which is valid when the number of submolecules N 

is large. The terms �0 and �s denote, respectively, the steady-flow viscosities of the solution 
and solvent. They further worked on Rouse’s results, and by assuming the polymer chains 
and ��1 to be sufficiently large, obtained the following power-law form for the dynamic 
shear modulus:

After applying the inverse Fourier transform, the above relationship leads to a Riemann-
Liouville representation between stresses-strains with � = 1∕2 . Similar observations were 
also reported for �(t) utilizing a Zimm model, where the inclusion of hydrodynamic inter-
actions leads to a fractional order � = 2∕3.  Glöckle and Nonnenmacher [236] showed 
that fractional relaxation can be modeled by a special type of CTRW describing a trap-
ping problem due to entanglements of polymer chains, thus slowing down the relaxation 
process. In their work, the random walkers, i.e., the particles, are considered as packages 
of free volume that allow conformational reorientations of chain segments, thus leading 
to relaxation. They obtained a waiting time distribution of such particles through a Fox-
Wright representation in the form:

for which the leading term indicates that the CTRW waiting time corresponding to frac-
tional relaxation exhibits a Lévy-type decay in the form �(t) ∼ t−�−1.

Connecting Dynamic Viscoelasticity Across Scales  A connection between power-laws 
propagating from micro- to macro-rheology was proposed in [237], with the use of a Gen-
eralized Stokes-Einstein Relation (GSER) for spheres undergoing generalized Langevin 
dynamics in a viscoelastic medium:

which is valid for spheres of radius a comparable to the length scale of the embedding 
medium. Here, the dynamic shear modulus G∗(�) is related to a velocity memory func-
tion from Langevin dynamics. Among a variety of representations for the GSER, Eq. (65) 
assumes a power-law structure of the MSD with exponent � , which approaches zero when 
the sphere is confined by elastic structures present in the complex fluid. Such power-law 
representation also reduces errors near the frequency extremes when employing Laplace 
and Fourier transforms.

G�(�) = nkT

N∑

p=1

�2�2
p

1 + �2�2
p

, G��(�) = ��s + nkT

N∑

p=1

��p

1 + �2�2
p

,

G∗(�) = i��s +
[
3

2
(�0 − �s)nkT

]1∕2
(i�)1∕2.

𝜒(t) ∼
A

𝜏

∞∑

k=0

(−1)k

Γ(−𝛽k − 𝛽)

(
𝜏
t

)𝛽k+𝛽+1

,

(65)�G∗(�)� ≈ kT

�a⟨Δr2(1∕�)⟩Γ[1 + �(�)]
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Physical Interpretation of Fractional Orders  Despite existing connections between 
micro- and macro-rheological properties, the physical interpretation of the emerging frac-
tional orders has been elusive. More recently, a connection between the fractional order 
and the fractal dimension of the material microstructure was made by Mashayekhi et al. 
[238], where the authors extended the Zimm theory of polymer dynamics to fractal media 
as a bridge between the meso- and macro-scales. They showed that the fractional order is 
a rate-dependent material property that is strongly correlated with the fractal and spectral 
dimensions in fractal media.

5.1 � Evidence of Fractional Behavior

We provide a few examples of fractional/power-law behaviors in viscoelasticity and micro/
macro-scale plasticity. We start with two examples in viscoelasticity of solid-like and fluid-
like natures in which fractional modeling is more appropriate, both with better fits and a 
reduced number of model parameters.

Viscoelastic Rheology  Jaishankar and McKinley [6] calibrated classical and fractional 
Maxwell models to the four orders-of-magnitude relaxation data for highly anomalous 
butyl rubber data from Blair et al. [239] (Fig. 16a), and observed that the three-parameter 
fractional Maxwell model provided an excellent fit to the experimental data, while a multi-
exponential, integer-order Maxwell model required six parameters to provide a satisfac-
tory fit. Moreover, using the calibrated fractional relaxation parameters they obtained an 
accurate prediction of the creep compliance for the same material, especially for long-time 
behavior. The second experiment from [6] concerns the dynamic properties of acacia gum, 
a commonly used food preservative. In this case, they compared a four-parameter fractional 
Maxwell model with a single mode (three-parameter) standard Maxwell model (Fig. 16b) 
and demonstrated that while the fractional Maxwell model captures a complex Cole-Cole 
behavior, its integer-order counterpart is unable to even estimate the qualitative response. 
We note that other factors, such as material heterogeneity can introduce multiple power-
law relaxation regimes.

Fig. 16   Comparison between standard and fractional-order models. (a) Relaxation behavior of Butyl rubber 
using experimental data from Scott-Blair. (b) Cole-Cole plot ( G′ versus G′′ ) for the dynamic properties of 
acacia gum. Source: [6]
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In [34] Stamenović measured the complex shear modulus G∗(�) of cultured human air-
way smooth muscle and observed two distinct power-law regimes separated by an interme-
diate plateau. Kapnistos et al. [240] found an unexpected tempered power-law relaxation 
response of entangled polystyrene ring polymers, compared to the usual relaxation plateau 
of linear chain polymers. Such behavior was interpreted through self-similar conformations 
of double-folded loops of ring polymers, instead of the reptation observed in linear chains.

Power‑Law Plasticity  The creep behavior of human embryonic stem cells (ESCs) under 
differentiation was studied by Pajerowski et al. [241] through micro-aspiration experiments 
at different pressures. The cell nucleus demonstrated distinguished visco-elasto-plastic 
power-law scalings, with � = 0.2 for the plastic regime, independent of the applied pres-
sure. It is discussed that such low power-law exponent arises due to the fractal arrangement 
of chromatin inside the cell nucleus (Fig. 17).

Studies on force-induced mechanical plasticity of mouse embryonic fibroblasts were 
performed by  Bonadkar et  al. [30]. It was found that the viscoelastic relaxation and the 
permanent deformations followed a stochastic, normally distributed, power-law scaling 
�(�) , with values ranging from � ≈ 0 to � ≈ 0.6 . The microstructural mechanism of plas-
tic deformation in the cytoskeleton is due to the combination of permanent stretching and 
buckling of actin fibers.

As for evidence of power-laws in failure of crystalline materials, Richeton et  al. [33] 
investigated the emergence of intermittency and dislocation avalanches in polycrystalline 
plasticity through acoustic emission experiments on ice under creep compression. Their 
findings demonstrate that different from the scale-free, close-to-critical dislocation dynam-
ics of single crystals [242], the introduction of average grain sizes ⟨d⟩ from the polycrys-
tal microstructure led to a tempered power-law distribution of avalanche sizes. While the 
exponential tempering cutoff changes with ⟨d⟩ , the authors observed a constant power-law 
scaling for all samples.

Fig. 17   (a) Scale-free creep of ESCs nuclei under aspiration. Low applied stresses ΔP yield a single power-
law creep scaling. For large stresses, a plastic transition is observed at �plastic ≈ 8 − 10 [s] , with a creep 
exponent � ≈ 0.2 , independent of stress values. (b) Different stages of nucleus aspiration, showing a viscoe-
lastic recovery (ii)–(iii), followed by irreversible plastic deformation (iv). Source: [241]
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Connections to Stochastic Processes  Although the subdiffusive MSD coefficient 0 < 𝛼 < 1 
is observed in a variety of studies for complex materials and fluids, there exist different inter-
pretations on the underlying stochastic processes linked to the subdiffusive physics, e.g., 
crowding or caging effects in cells and polymers. Szymanski and Weiss [243] utilized fluo-
rescence correlation spectroscopy (FCS) of proteins immersed in crowded dextran solutions 
and reported a distribution of MSD coefficients with average ⟨�⟩ ≈ 0.82 , and compared this 
experimental finding with recovered distributions of MSD coefficients for simulated fractional 
Brownian motion (fBm), obstructed diffusion (OD), and CTRWs. Their findings indicated that 
the recovered distributions for fBm and OD matched the experiments, while the recovered 
distributions for CTRW-induced diffusion, with average ⟨�⟩ ≈ 0.59 did not agree well with the 
data due to ergodicity breaking. Weber et al. [244] studied the subdiffusion of bacterial chro-
mosomal loci in viscoelastic cytoplasm and further concluded that fractional Langevin motion 
to be more likely than CTRW and OD, due to the presence of ergodicity and a negative veloc-
ity auto correlation function. Regarding polymers, Wong et al. [5] studied the thermal motion 
of colloidal tracer particles in entangled actin filament (F-actin) networks, under different con-
centrations and network mesh sizes. They observed a subdiffusive behavior when the tracer 
particles radius were comparable to the network mesh size, and suggested that such anomalous 
behavior happens due intermittent caging behavior, followed by sudden infrequent jumps with 
a power-law distribution of caging times �c in the form P(�c) = �−1.33

c
.

5.2 � State of the Art: Anomalous Materials Modeling

As observed in Sect.  5.1, experimental evidence suggests that complex material behav-
ior may possess more than a single power-law scaling in the viscoelastic regime, particu-
larly in multi-fractal structures, which are characteristic of cells [34] and biological tissues 
[245], due to their complex, hierarchical and heterogeneous microstructure. For such cases, 
a single SB element is not sufficient to capture the observed behavior, even if linear viscoe-
lasticity holds. Furthermore, material nonlinearity due to large strains and additional phys-
ics such as plasticity, damage and failure require more advanced rheological models, which 
could have full or partial fractional nature. In this section we refer to a class of fractional 
models in the literature, classified by rheology type and nature of the corresponding FDEs. 
We acknowledge that rheology is a vast field with a large number of different types of 
material behavior, and here we limit our review to visco-elasto-plasticity, damage mechan-
ics and failure.

5.2.1 � Viscoelasticity

Linear Viscoelasticity  We start by introducing two natural extensions of the SB viscoelas-
tic model through serial and parallel combinations. The first one is the fractional Kelvin-
Voigt (FKV) model, which is given by a parallel combination of SB elements, and relates 
the stresses �(t) and strains �(t) in the following additive form [233]:

where the fractional orders are such that 0 < 𝛼1, 𝛼2 < 1 , and E1 [Pa.s
�1 ] , E2 [Pa.s

�2 ] are the 
associated pseudo-constants. The corresponding relaxation function also assumes additive 
form of two SB elements:

(66)𝜎(t) = E1
C
0
�

𝛼1
t 𝜀(t) + E2

C
0
�

𝛼2
t 𝜀(t), t > 0, 𝜀(0) = 0,
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where contrary to the scale-free relaxation behavior of a single SB element, since we 
assume 𝛼2 > 𝛼1 , the FKV model possesses two time scale-dependent power-law regimes, 
given by GFKV ∼ t−�2 as t → 0 and GFKV ∼ t−�1 as t → ∞ , which characterizes a transition 
from faster to slower relaxation regimes. We note that this quality allows the FKV model to 
describe materials that reach an equilibrium behavior for large times when �1 → 0 , which 
is intuitive from the mechanistic standpoint as one of the SB elements becomes a Hookean 
spring.

Through a serial combination of SB elements, we obtain the fractional Maxwell (FM) 
model [6], given by:

with 0 < 𝛼1 < 𝛼2 < 1 , and two sets of initial conditions for strains �(0) = 0 , and stresses 
�(0) = 0 . We note that in the case of non-homogeneous initial conditions, there needs to 
be compatibility conditions [228] between stresses and strains at t = 0 . The corresponding 
relaxation function for this building block model assumes the more complex Miller-Ross 
form [6]:

where Ea,b(z) denotes the two-parameter Mittag-Leffler function, defined as [228]:

Interestingly, the presence of a Mittag-Leffler function in () produces a stretched exponen-
tial relaxation for smaller time scales and a power-law behavior for larger time scales. The 
asymptotic behaviors are given by GFM ∼ t−�1 as t → 0 and GFM ∼ t−�2 as t → ∞ , indicating 
that, contrary to the FKV model, the FM model has a constitutive transition from slower-
to-faster relaxation. We refer the reader to [32, 246] for a number of applications of the 
aforementioned models. Additionally, we notice that both FKV and FM models are able to 
recover the SB element with a convenient set of pseudo-constants, or naturally reveal the 
necessity of standard rheological elements according to available data. Furthermore, we 
also outline more complex building block models that produce more flexible responses, 
including three to four fractional orders, such as the fractional Kelvin-Zener (FKZ), frac-
tional Poynting-Thomson (FPT), and fractional Burgers (FB) models. We refer the reader 
to [32, 233] for more details on such models.

Numerical Discretization  A well-known numerical scheme to discretize the time-fractional 
Caputo derivatives of order 0 < 𝛼 < 1 in Eqs. (66) and (67) is the implicit L1-difference 
scheme by Lin and Xu [247]. Let points on a uniform time-grid be defined as tn = nΔt with 
n = 0, 1, … , N time steps of size Δt . The discrete time-fractional Caputo derivative of a 
function u(t) evaluated at t = tn+1 is given by:
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where rn+1
Δt

≤ CuΔt
2−� with the constant Cu only depending on u(t), and the convolution 

weights dj ∶= (j + 1)1−� − j1−� , j = 0, 1,… , n . The above expression can be rewritten and 
approximated as:

where the so-called history term H�u is given by:

We note that although the above discretization is of practical and simple implementation, 
there exist many sophisticated numerical methods for fractional Cauchy equations that 
employ faster schemes, and also address non-smooth, nonlinear and stiff problems. We also 
emphasize that employing the kernel G(t) into the Boltzmann representation for the afore-
mentioned models may be impractical, since one would need other specialized numeri-
cal methods that are model-dependent, and would require evaluations of Mittag-Leffler 
functions.

Nonlinear Viscoelasticity  Fractional linear viscoelastic models are suitable candidates 
to describe the anomalous dynamics of a number of materials undergoing small strains. 
However, under large strains, material nonlinearities induce stress/strain dependencies on 
the relaxation behavior. One alternative to incorporate such nonlinearity is through quasi-
linear viscoelasticity (QLV) [248], which replaces G(t) by a multiplicative decomposition 
between a reduced relaxation function g(t) and an instantaneous, nonlinear elastic tangent 
response:

with �e(�) and g(0+) = 1 . Fractional approaches to QLV were developed by Doehring et al. 
[249] for arterial valve cusp and by Craiem et al. [218] for arterial wall viscoelasticity. In 
the latter, a reduced, fractional Kelvin-Voigt-type relaxation function g(t) = C + Dt−� was 
employed, with pseudo-constant D [s�] , and nonlinear exponential form �e(�) = A

(
eB� − 1

)
 , 

with constant A [Pa] . Therefore, the fractional QLV formulation is able to capture not only  
linear/nonlinear instantaneous stress response, due to the rearrangement and alignment of fib-
ers with the load direction, but also the anomalous power-law relaxation of the fractal micro-
structure. We also mention nonlinear models that take into account the Mittag-Leffler-type  
relaxation dynamics, such as the fractional QLV model in [249] and the fractional K-BKZ 
model introduced by Jaishankar and McKinley [7].
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5.2.2 � Visco‑elasto‑plasticity

Several works employed fractional calculus to account for the visco-plastic regimes of sev-
eral classes of materials. We outline three of them: time-fractional, space-fractional and 
stress-fractional.

Time-fractional approaches focus on introducing memory effects into internal variables 
[250, 251], and consequently modeling power-laws in both viscoelastic and visco-plastic 
regimes. This is of interest for polymers, cells, and tissues. In this context, fractional visco-
elasto-plastic models provide a constitutive interpolation between rate-independent plasticity 
and Perzyna’s visco-plasticity by introducing a SB model acting the plastic regime [250], and 
utilizes a rate-dependent yield function of the form

where �Y and q denote, respectively, the yield stress and the accumulated plastic strain, 
with pseudo-constant K [Pa.s�K ] and Hookean constant H. The above form for the yield 
function was later proved to be thermodynamically consistent in a further extension of the 
model to account for continuum damage mechanics [252].

A three-dimensional space-fractional approach to elastoplasticity was also developed 
by Sumelka [253] to account for spatial nonlocalities. The model is based on rate-independent 
elastoplasticity, and nonlocal effects are accounted for through a fractional continuum mechan-
ics approach, where the strains are defined by a space-fractional Riesz-Caputo derivative of 
displacements u(x) in the form

for left- and right-sided fractional Caputo derivatives [253] with n = ⌈�⌉.
Finally, stress-fractional models for plasticity have found applicability in soil mechanics 

and geomaterials that follow non-associated plastic flow [254, 255], i.e., the yield surface 
expansion in the stress space does not follow the usual normality rule, and may be non-
convex. The work by Sumelka [254] proposed a three-dimensional fractional visco-plastic 
model, where a fractional flow rule with order 0 < 𝛼 < 1 in the stress domain naturally mod-
els non-associative plasticity. Interestingly, this model recovers the classical Perzyna visco-
plasticity as � → 1 , and the effect of the fractional flow rule can be a compact descriptor of 
microstructure anisotropy. Recently, a similar stress-fractional model was developed [255], 
and successfully applied to soils under compression. We refer the reader to the detailed 
review work by Sun et al. [256] for a review of uses of fractional calculus in plasticity.

5.2.3 � Damage Mechanics, Aging and Failure

There have also been recent efforts to include damage, aging and failure effects into fractional 
calculus frameworks. Existing formulations are focused on either adding classical failure 
frameworks into existing fractional constitutive laws, or by developing fractional failure mech-
anisms. Here, we mostly focus on the latter and start with the work by Caputo and Fabrizio 
[257], that developed a variable-order viscoelastic model in the form:

f (𝜎, q) ∶= |𝜎| −
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where g(�(x, t)) ∶= (�C − �(x, t))2∕4 denotes a material degradation function with criti-
cal damage �C , A(x) represents a space-dependent pseudo-property, and 0 < 𝛼(x, t) < 𝛼C 
is the variable fractional order, also interpreted here as damage. The variable-order Caputo 
derivative is defined in Eq. (36). Interestingly, this mixed interpretation for �(x, t) makes it 
a multi-physics descriptor for anomalous damage, viscosity, and material aging. The evolu-
tion of �(x, t) is described by an integer-order phase-field equation, and the resulting model 
is proved to be thermodynamically admissible.

A key aspect to develop failure models relies on consistent forms of damage energy 
release rates, i.e., on obtaining the compatible operator for the loss of elastic energy, 
which is a nontrivial task even for the simplest fractional constitutive law (Eq. 61). This 
has been achieved by employing the concept of fractional free-energy densities [232, 
258, 259]. Alfano and Musto [258] developed a cohesive zone, damaged fractional vis-
coelastic Kelvin-Zener model, and studied the influence of integer and fractional dam-
age energy release rates on damage evolution. In this case, integer-order energy loss 
considers Hookean-type rheology to compute the damage energy release rates, which 
may be justified when Hookean elements are present in the viscoelastic constitutive law, 
but incompatible for fully fractional cases (an arrangement of Scott-Blair elements). 
The corresponding free-energy for the SB element is given by:

with 0 < 𝛼 < 1 , which clearly carries a power-law behavior over time. Among their findings, 
the authors obtained a rate-dependence of the fracture energy in terms of the fractional-order  
� , opening interesting directions towards failure of anomalous viscoelastic media such as 
polymers. In [252] this idea was extended to plasticity, and a fractional visco-elasto-plastic 
model with memory-dependent damage was developed, with isotropic damage evolution 
0 ≤ D(t) < 1 given by Lemaitre’s approach [260]:

with material damage parameters s, S ∈ ℝ
+ , plastic slip 𝛾̇ and damage energy release rate 

Yve(t) = −�SB(t) . We note that although (71) is a nonlinear ODE, the memory is intro-
duced through the power-law form of Yve (70). In this formulation, the viscoelastic and 
visco-plastic fractional orders introduce a competition between rate-dependent hardening 
and damage-induced softening, which could open interesting directions for modeling local-
ized hardening in failing anomalous media. Sumelka et al. in [261] also developed the idea 
of memory-dependent damage for soft materials through a stress-driven time-fractional 
hyperelastic damage model, with evolution equation in the following fractional nonlinear 
Cauchy form:

where Φ represents an overstress function in terms of a stress intensity ID , threshold stress 
�D for damage evolution, and a ramp function in Macaulay notation ⟨⋅⟩M . The memory 
length is driven by a time scale lt , which was taken as a fraction of the total time T. This 
model was applied with an Ogden hyperelastic law to patient-specific three-dimensional 
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E
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t

0 ∫
t

0
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abdominal aortic aneurysm (AA) for critical zone identification, with obtained fractional 
order � = 0.75.

Additional work on variable-order models in the context of fractional damage, aging and 
failure includes the following contributions. In Beltempo et al. [262] a variable-order viscoe-
lastic creep model was developed, where the evolution of the fractional order �(t) dictates the 
process of concrete aging. The variable-order viscoelastic model developed in  Meng et  al. 
[263] employed a piecewise constant order followed by two linear decreasing functions for 
�(t) successfully described the initial viscoelasticity, softening and hardening of amorphous 
glassy polymers under compression. Finally, variable-order operators also proved to be useful 
mathematical tools to determine the onset of fracture. Patnaik and Semperlotti [10] employed 
a variable fractional-order activation function for damage, where the sharp power-law acti-
vation threshold induced by the fractional operator was successfully employed to determine 
crack propagation and branching of brittle materials. We refer the reader to the recent review 
works on the use of variable-order [11] and distributed-order [264] fractional models in vis-
coelasticity and structural mechanics. In the distributed-order case, fractional derivatives are 
integrated with respect to a distribution of fractional orders within a certain range of values.

5.3 � Future Directions in Modeling Anomalous Materials

Although there exists a large spectrum of fractional models in the context of materials science, 
solid mechanics and rheology, these models are mostly characterized by constant-order frac-
tional operators, for which a significant number of fast time-integration schemes is available. 
Yet, there is still a need for efficient numerical methods for variable- and distributed-order 
operators. In fact, although fractional models lead to a compact physical description with 
reduced number of material parameters, the computational cost is still high when calibrating 
the models with large experimental data sets. Furthermore, although there exist an increasing 
number of distributed-order operators in the context of viscoelasticity, structural mechanics, 
and anomalous diffusion [264], further validation against experimental data is needed.

We point out interesting research directions that could involve the use of variable- and distributed-
order differential equations in the multi-scale modeling of materials. Recently, nano-scale simulation 
studies on trapping of nano-particles in hydrogel networks indicated a time-temperature dependency 
of the MSD in the evolution of anomalous diffusion regimes, where a subdiffusion regime has been 
found to be of transitional nature at intermediate time scales, with ballistic/normal diffusion dynam-
ics for short/long-time scales [265]. This motivates the study of variable-order models in time to 
compactly describe the macroscopic rheological evolution of such polymer networks. Furthermore, 
the observation of distributions of power-law scaling parameters in micro-rheology creep experi-
ments on cells [30, 266] indicate the presence of microstructure-induced randomness in rheologi-
cal response. In this sense, distributed-order models may arise as interesting approaches to naturally 
incorporate the stochastic parametric data into the differential operator [267].

6 � Conclusion

In this work we reviewed fundamental concepts of anomalous transport processes and 
provided the mathematical and statistical background for understanding them. We then 
selected three applications where the use of fractional models has experienced dramatic 
growth and improvement. This set of applications was chosen at our discretion and is, by 
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no means, complete. In fact, several other scientific and engineering fields are currently 
benefiting from fractional modeling (see, e.g., image processing, finance, machine learn-
ing algorithms and many others). However, based on the amount of literature, significance 
of the applications, and variety of fractional models for their descriptions, we believe that 
subsurface transport, turbulence, and anomalous materials allowed us to provide insights 
into the several uses and benefits of fractional modeling. Furthermore, these applications 
are still the subject of very active fractional research. Finally, given the recent advances in 
high-performance computing and machine learning, we believe it is now the best time to 
promote and increase the usability of fractional and nonlocal models for those applications 
that cannot be adequately described by the classical PDE models.
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