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Abstract
The existing interpolation and regression methods are highly data-specific, challenge-specific, 
or approach-specific. Peridynamic approach provides a single mathematical framework for 
diverse data-sets and multi-dimensional data manipulation and model order reduction. The 
mathematical framework based on the Peridynamic Differential Operator (PDDO) provides 
a unified approach to transfer information within a set of discrete data, and among data sets 
in multi-dimensional space. The robustness and capability of this approach have been dem-
onstrated by considering various real or fabricated data concerning two- or three-dimensional 
applications. The numerical results concern interpolation of real data in two and three dimen-
sions, interpolation to approximate a three-dimensional function, adaptive data recovery in 
three-dimensional space, recovery of missing pixels in an image, adaptive image compression 
and recovery, and free energy evaluation through model reduction.

Keywords  Peridynamic · Interpolation · Regression · Data · Image · Compression · 
Recovery · Model reduction

1  Introduction

The domain-agnostic mathematical representations and datafication require interpola-
tion and regression of discrete data. Interpolation and regression of data play a signifi-
cant role in many scientific disciplines. A data point, entity, object, etc. interacts with its 
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surrounding media. In real life, data sets are mostly connected with surge of irregulari-
ties, breakages, and discontinuities. It is essential that interpolation and regression methods  
capture such irregularities and scatter within a set of discrete data in a multi-dimensional 
space. Also, they should transfer information among data sets representing multiple scales 
such as fine and coarse models.

Interpolation is an estimation of an unknown variable at output points (locations) by 
employing the known values at surrounding input points. Regression is an estimation of a 
variable at both input and output points by employing the known values at the surround-
ing input locations. Smoothing is an estimation of a variable at only known input points by 
employing the known input values. Smoothing may be necessary if the input data is noisy. 
The estimation of the unknown variable is based on interpolation passing through all the 
known input values. In other words, there is an exact recovery of the known values of the 
input points.

Although the idea of interpolation and regression seems to be rather rudimentary, it has 
a profound impact and forms one of the building blocks in science and engineering. Over 
the years, scientists have tried to elaborate on it through different methods as discussed by 
Franke [1], Mittas and Mitasova [2], and Steffensen [3].

The simplest interpolation method is the polynomial expansion. It requires the determi-
nation of the coefficients of a complete polynomial by using the known input values. The 
coefficients are determined such that the polynomial recovers the known values at the input 
points. Hence, a system of equations is generated to solve for the unknown coefficients. 
Although the polynomial form of interpolation is simple to apply, it is not practical if the 
number of input values is substantially high.

The Lagrangian functions can be employed to eliminate the process of solving a large 
system of equations. This approach generates a unique set of polynomials for each input 
point such that it is equal to the input value at the input point, and zero at all other points. 
Combination of the Lagrangian functions forms the interpolation. However, the input 
points must form a structured grid especially in two-dimensional applications in order gen-
erate a unique set of Lagrangian polynomials. As the number of input points increases, 
both the polynomial and Lagrangian forms of interpolations require high degree of polyno-
mials leading to undesirable oscillations.

An alternative to the polynomial and Lagrangian interpolations is the spline interpola-
tion in which a low-order polynomial passes through the adjacent points. The spline inter-
polation ensures the continuity of the polynomials at the input points. However, it also 
requires a structured grid configuration in two-dimensional applications; thus, it cannot 
be applied to scattered data points. Additional conditions may have to be imposed based 
on the nature of interpolation technique and the character of the data describing the phe-
nomenon. As discussed by Cressie [4], these conditions may be based on geostatistical 
concepts (Kriging), locality (nearest neighbor), smoothness (splines), or functional forms 
(polynomials). These techniques yield satisfactory predictions for smooth variations with-
out scatter.

Liszka and Orkisz [5] and Liszka [6] introduced a method to consider scattered data 
without using high degree of polynomials. The interpolation is achieved by employing the 
Taylor Series Expansion (TSE) about the output points. The TSE is truncated after the sec-
ond order derivative terms. For each output point, a system of equations is established by 
enforcing the function (i.e., TSE) to match the value at the input points. Thus, it leads to a 
set of equations to solve for the unknowns at the output points. However, the values of the 
function at the output points are obtained via least squares minimization because the num-
ber of equations in the resulting system is more than the unknowns at the output points.
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This study introduces a unified approach for interpolation and regression of data with 
irregularities and scatter in a multi-dimensional space based on the non-local Peridynamic 
Differential Operator (PDDO) within a set of discrete data and among data sets represent-
ing multiple scales. Also, the PD interpolation functions between fine- and coarse-level 
grids enable the reduction of number of unknowns in the analysis while retaining the accu-
racy associated with the fine grid.

The most common applications of interpolation and regression analyses with the exist-
ing methods are conducted in one- and two-dimensional spaces. The PDDO is not limited 
by the order of dimension. Also, the present approach is not restricted to any kind of spa-
tial discretization. In addition, it is not limited for interpolating fields with C0 continuity. 
Furthermore, the evaluation of the determinant of very large matrices is not tractable due 
to memory, precision, and computational time requirements. The PD interpolation func-
tions between the unknowns of the fine and coarse grids enable the reduction of the size 
of stiffness matrix and yet retain sufficient accuracy. It is worth noting that the PDDO is 
computationally more expensive than the existing methods when using a single processor; 
however, it is extremely suitable for GPU architecture. The computational speed will be the 
topic of a future study.

Subsequent sections present the PDDO operator and its use for interpolation and regres-
sion within a scale and between fine and coarse scales. The numerical results concern 
interpolation of real data in two and three dimensions, interpolation to approximate a three-
dimensional function, adaptive data recovery in three-dimensional space, recovery of miss-
ing pixels in an image, adaptive image compression and recovery, and accurate evaluation 
of free energy. The model reduction is achieved by employing PD interpolation between 
fine and coarse grids. It is demonstrated by considering the thermal fluctuation of a rod.

2 � Peridynamic Differential Operator

Recently, Madenci et  al. [7] introduced the Peridynamic Differential Operator (PDDO) 
to approximate the non-local representation of a scalar field f = f (�) and its de’rivatives 
at point � by accounting for the effect of its interactions with the other points, �′ , in the 
domain of interaction, as shown in Fig. 1.

The PDDO employs the concept of PD interactions, and the PD functions without per-
forming any differentiation as explained by Madenci et al. [7, 8]. The PDDO requires the 
construction of PD functions. They are determined directly by making them orthogonal to 
each term in the Taylor Series Expansion (TSE). The derivation of the PDDO up to second-
order derivatives of a function with two independent variables is presented in Appendix 1.

The major difference between the PDDO and other existing local and non-local 
numerical differentiation methods is that the PDDO leads to analytical expressions for 
arbitrary order derivatives in integral form for symmetric interaction domains. It pro-
vides accurate estimation of the function and its derivatives in the interior as well as the 
near the boundaries of the domain without any special boundary treatment. Also, the 
PD differentiation serves as a natural filter in the presence of noisy data, as it provides 
their derivatives [7, 8].

Each point has its own family members in the domain of interaction (family), and 
occupies an infinitesimally small entity such as volume, area, or a distance. The points � 
and �′ only interact with the other points in their own families, Hx and Hx

� , respectively. 
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Neither point � nor �′ is necessarily symmetrically located in their interaction domains. 
The initial relative position, � , between the material points � and �′ can be expressed as 
� = �′ − � . This ability permits each point to have its own unique family with an arbi-
trary position. Therefore, the size and shape of each family can be different, and they 
significantly influence the degree of non-locality. The degree of interaction between  
the material points in each family is specified by a non-dimensional weight function, 
w(|�|) which can vary from point to point. The interactions become more local with 
decreasing family size. Thus, the family size and shape are important parameters. In 
general, the family of a point can be non-symmetric due to non-uniform spatial discre-
tization. The PDDO is not restricted to any kind of spatial discretization. The family 
points can be uniformly or arbitrarily spaced. Thus, the number of family members can 
vary depending on the discretization. The family members of point � can be selected by 
simply retaining the neighboring points within a circle or by applying a family search 
method such as KD tree and clustering.

The PDDO for the N-th order derivative of a function f (�) with M dimensions can be 
expressed as

in which pi denotes the order of differentiation with respect to variable xi with i = 1,… ,M , 
and gp1p2⋅⋅⋅pN

N
(�) are the PD functions explained in detail in a recent book by Madenci et al. [8].

(1)
�p1+p2+⋅⋅⋅+pN f (�)

�x
p1
1
�x

p2
2
⋅ ⋅ ⋅ �x

pN
M

= ∫
H�

f (� + �)g
p1p2⋅⋅⋅pN
N

(�)d�1d�2 ⋅ ⋅ ⋅ d�M

Fig. 1   Interaction of peridynamic points, � and �′ , with arbitrary family size and shape
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They can be constructed as

where �q1q2⋅⋅⋅qN
(|�|) is the weight function associated with each term �q1

1
�
q2
2
⋅ ⋅ ⋅ �

qN
M

 in the 
polynomial expansion. The PDDO recovers the local differentiation as the size of family 
H� decreases or the number of terms in the functions gp1p2⋅⋅⋅pN

N
(�) increases.

The coefficients of the PD functions can be determined without any difficulty. Although 
it is not a limitation, the weight functions, �q1q2⋅⋅⋅qN

(|�|) , in Eq.  (2) can be replaced with 
�n(|�|) for simplification based on the order of differentiation. A MATLAB code for per-
forming PD differentiation for the N-th order derivative of a function with M dimensions is 
given by Madenci et al. [8].

3 � Peridynamics for Estimation

This section provides the construction of functions for PD interpolation and regression. 
It is a unique framework for data estimation and data recovery. The PD interpolation esti-
mates the unavailable data from the available data set while passing through all the availa-
ble data. However, the PD regression does not necessarily pass through all the input points. 
The input data referred to as available data points can be uniformly or arbitrarily spaced 
without any restriction to spatial discretization. Therefore, the number of family members 
for each point can be different depending on the nature of the data. The contribution of 
each available data point is distributed to the unknown data points based on an area based 
fraction parameter.

As shown in Fig. 2, there may exist M input points with respect to a Cartesian coordi-
nate system. Each input point 

∼
�j = �k + �kj occupies a volume of Ṽj , and a generic (output) 

point �k occupies a volume of Vk . The PD interaction domain (family) of the generic point 
�k is Hk . While the shape of its interaction domain can be arbitrary, the output point, �k , has 
a horizon size of �k which represents the radius of a sphere encompassing a specified num-
ber of input points as shown in Fig. 2. It defines the family population, Nk , of the output 
point, �k , i.e., number of input points, 

∼
�j , in Hk . The specified weight function, 

�kj = �(
|||�kj

|||) , dictates the influence of the input points on the output points.
The value of the function at the input point, (x̃j, ỹj) , is denoted by f̃j = f̃ (

∼
�j) , for 

j = 1,… ,M . As derived in Appendix 1, the PD approximation of the function (zeroth-
order derivative) at point, �k , can be expressed in discrete form as

In matrix form, it can be rewritten as

where h is the vector of PD estimation and 
∼

�  is the vector of input values associated with 
point �k . They are defined as

(2)g
p1p2⋅⋅⋅pN
N

(�) =

N∑
q1=0

N−q1∑
q2=0

⋅ ⋅ ⋅

N−q1⋅⋅⋅−qN−1∑
qN=0

a
p1p2⋅⋅⋅pN
q1q2⋅⋅⋅qN

�q1q2⋅⋅⋅qN
(|�|)�q1

1
�
q2
2
⋅ ⋅ ⋅ �

qN
M

(3)f (�k) ≅

Nk∑
j=1

f̃ (�k + �kj)g
000
2

(
�kj;𝜔kj, Ṽj

)
Ṽj

(4)f
(
�k
)
= �T

(
�kj

) ∼

�

(∼
�j

)
with j = 1,… ,M
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and

where 𝜉kj = �̃j − �k and the subscript 2 represent the highest order of derivatives retained 
in the TSE. The derivation of the PD function, g000

2

(
𝜉kj;𝜔kj, Ṽj

)
, is described in Appendix 1.

The PD approximation given by Eq.  (3) passes through all input points within the 
horizon of point �k for

Thus, it is referred to as the PD interpolation, and it can be applied to estimate the 
missing (unavailable) data from the existing (available) data set.

The PD approximation given by Eq.  (3) does not necessarily pass through all the 
input points for any other form of a weight function such as

(5)�T
(
�kj

)
=
{
g000
2

(
�kj;𝜔k1, Ṽ1

)
Ṽ1,… , g000

2
(�kNk

;𝜔kNk
, ṼNk

)ṼNk

}

(6)�̃T (x̃j) =
{
f̃1, f̃2,… , f̃Nk

}
.

(7)𝜔kj =

(
𝛿k

𝜉kj

)p

with p > 1.

Fig. 2   Input points within the family of output point, �k
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This PD approximation provides a regression (curve fit) through the input points. 
As demonstrated by Madenci et  al. [7, 8], it can be also used to filter the noise and 
smooth out the irregularities in the data. The major difference between these weights 
is that �kj = e

−4�2
kj
∕�2

k approaches a unit value whereas �kj = �
p

k
/�

p

kj
 approaches infinity as 

|�kj| → 0 . As the number of spacing and the horizon size decreases, the degree of inter-
action becomes stronger, and the PD regression recovers the interpolation.

It is worth pointing out that Eq. (3) is not limited to a three-dimensional space; it is 
expandable to higher dimensional spaces as derived by Madenci et al. [8]. However, the 
literature shows that most common applications of interpolation and regression analyses 
are conducted in one- and two-dimensional spaces.

As shown in Fig. 3, the output point (xk, yk) associated with area, Ak , and the corre-
sponding recovered data f (xk, yk) for k = 1, ..,K are denoted by blue circles.

A set of M input points are arbitrarily positioned on the x − y plane. The two-dimensional 
form of the vector of PD interpolation or regression function becomes

in which �kj denotes the relative position vector between input and output points and Ãj 
represents the area associated with each input point, (x̃j, ỹj) , which are yet unknown. The 
relative position vector, �kj , is defined as

with

As shown in Fig. 4, the area of each output point, Ak , is rectangular in shape. The out-
put points are located at the center of each area defined by Ak = (xk − xk−1)(yk − yk−1) , 
and both the locations of output points and their associated areas, Ak , are known. It must 
be kept in mind that the total area of input points must be identical to that of output 
points. Hence, the total area, A, is defined in terms of the sum of the areas associated 
with the output points as

Similarly, the total area of the domain can be computed from the sum of the areas of 
input points as

There is no unique way to express the unknown areas of input points in terms of 
those of output points. However, the unknown area of each input point Ãj can be esti-
mated by the weighted distribution of the area of an output point, Ak , to all of the areas 

(8)�kj = e
−4�2

kj
∕�2

k

(9)�T (𝜉kj) =
{
g00
2
(𝜉k1;wk1, Ã1)Ã1, .., g

00
2
(𝜉kNk

;wkNk
, ÃNk

)ÃNk

}

(10)𝜉kj =
{
(x̃j − xk), (ỹj − yk)

}T

(11)𝜉kj =

√(
x̃j − xk

)2
+
(
ỹj − yk

)2

(12)A =

K∑
k=1

Ak

(13)A =

M∑
j=1

Ãj
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Fig. 3   Input and output point for two-dimensional: (a) interpolation and (b) regression
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of input points as shown in Fig. 4. To achieve a weighted distribution, a fraction param-
eter �kj is defined as

in which Akj represents the segment of Ak distributed to Ãj . Note that the fraction parameter 

�kj varies between 0 ≤ �kj ≤ 1 and it satisfies the partition of unity, i.e., 
M∑
r=1

�kr = 1 . In 

accordance with this assumption, Ak can be expressed as

Substituting from Eqs. (15) and (12) into Eq. (13) leads to

or

After substituting from Eq. (14), this equation yields the expression for Ãj in the form

(14)�kj =
Akj

Ak

(15)Ak =

M∑
j=1

Akj

(16)
M∑
j=1

Ãj =

K∑
k=1

M∑
j=1

Akj

(17)
M∑
j=1

(
Ãj −

K∑
k=1

Akj

)
= 0

Fig. 4   Distribution of area seg-
ment from an output point to the 
input points
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The fraction parameter, �kj , can be defined as ratio of the weight defined between an 
input and output point, �kj = �

p

k
/�

p

kj
 , to the sum of the weights defined between the same 

input and all output points as

Invoking Eq. (19) into Eq. (18) provides the value of Ãj in terms of Ak as

in which p ≥ 1 . This approximation satisfies the requirement of conservation of area. For 
a uniform spacing among the output points, the area of each output point, Ak , can be set to 
Ak = A/K . Hence, Eq. (20) simplifies to

in which K denotes the number of output points in the region. Also, a small number, 
� = 10−9 , is introduced in order eliminate any possible numerical singularity.

4 � Peridynamic Regression for Data Compression and Recovery

The PD regression can be applied to data compression and recovery by employing a selec-
tive set of data with known values as input points, referred to as picked data, from the 
original data set. By employing Eq. (4), the unknown data points can be estimated based on 
the known (or picked) data by

This equation enables the recovery of data points by using only a portion of the data 
with Np points from the original data set with N points. It can be rewritten as

(18)Ãj =

K∑
k=1

𝜌kjAk

(19)
�kj =

�kj

M∑
r=1

�kr

=
1/�

p

kj

M∑
r=1

1/�
p

kr

(20)Ãj =

K�
k=1

⎛
⎜⎜⎜⎜⎝

1/𝜉
p

kj

M∑
r=1

1/𝜉
p

kr

⎞
⎟⎟⎟⎟⎠
Ak for j = 1,M

(21)Ãj =
A

K

K�
k=1

⎛
⎜⎜⎜⎜⎝

1/𝜉
p

kj

M∑
r=1

1/𝜉
p

kr
+ 𝜀

⎞
⎟⎟⎟⎟⎠
for j = 1,M

(22)f (�k) = �T (𝜉kj)�̃ (�̃j)

(23)f
(
�k
)
=

Np∑
j=1

H
(
𝛿 − 𝜉kj

)
𝜔kjg

00
2

(
𝜉kj
)
f̃
(
�̃j
)
Ãj (k = 1,… ,Nu)
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where Np and Nu indicate the number of picked and unpicked points, H(� − �kj) is the 
Heaviside step function, and weight function �kj is defined as

Note that the total of the number of picked and unpicked points are equal to the total 
number of points in the original data set, i.e., N = Np + Nu.

The complete data set with N sample points can be stored in a vector, �∗ , as

The iterative for procedure adaptive data compression and recovery involves the fol-
lowing steps:

1.	 Start by randomly picking 1% of the N data points of the original data and store them 
in the vector, 

∼

�  , as

where pk with (k = 1,… ,Np) represents the index IDs of the picked data and Np is the 
number of picked data points. The remaining unpicked data points are unknown and 
they are contained in vector, f, as

where uk with (k = 1,… ,Nu) denotes the index ID numbers of the unknown data 
points with Nu representing the number of unknown data points.

2.	 Use Eq. (23) along with Eq. (21) to predict the unknown data in vector, f.
3.	 Compute the difference between the original and the predicted data values of the 

unpicked data points as

4.	 Sort the difference values, Δfuk , in descending order and store them in a new array, Δ� , 
defined as

where the indices nk with (k = 1,… ,Nu) are ordered such that

5.	 Calculate the error, e , due to Δfnk defined in the form

where || f ∗max
|| is the maximum absolute value of �∗ among N data points and it is defined 

as

(24)�kj = e
−4�2

kj
∕�2

k

(25)�∗ =
{
f ∗
1
, f ∗
2
,… , f ∗

N

}T

(26)
∼

�
T

= { f ∗
p1
, f ∗
p2
,… , f ∗

pNp
}

(27)�T = { fu1 , fu2),… , fuNu
}

(28)Δfuk =
||| f

∗
uk
− fuk

|||(k = 1,… ,Nu)

(29)Δ�T =
{
Δfn1 ,Δfn2 ,… ,ΔfnNu

}

(30)Δfn1 > Δfn2 > ⋯ > ΔfnNu

(31)e =
1

|| f ∗max
||

√√√√ 1

N

Nu∑
j=1

(
Δfnj

)2
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6.	 If e < 0.1 , convergence is achieved; print the converged results for unpicked data points 
along with the known data points and stop the analysis. Otherwise, continue with step 7.

7.	 Pick additional M points from the original data set, �∗ , and append them to the vector 
of picked data set, f̃  , as

	   Limit the size of M not more than 5% of the total number of data points, N. The 
indices for these additional data points are chosen from the first M indices of vector Δ� 
in Eq. (29) for faster convergence. Subsequently, remove the data points with indices n1 
through nM from the vector of unpicked data points, in Eq. (27), to balance the total of 
picked and unpicked data points, in the form

	   Also, update the number of picked and unpicked data points as Np = Np +M and 
Nu = Nu −M.

8.	 Continue performing steps 2 through 8 until convergence is reached in step 6.

5 � Peridynamic Regression for Image Compression and Recovery

The PD regression can be applied to image compression and recovery by employing a 
selective set of pixels with known values as input points, referred to as picked pixels, from 
the original image.

An image is described by a set of pixels each of which includes three basic color tones, 
known as the RGB which stands for Red, Green, and Blue. These colors usually vary 
between 0 and 255. Combination of varying color tones of red, green, and blue provide the 
true color of the pixel. For example, pure white color is achieved by RGB = (255, 255, 255) 
and pure black color by RGB = (0, 0, 0) . As shown in Fig. 5, H and W denote the height 
and width of the image, respectively. The coordinates of a pixel with an unknown value, 
Pk , on the image are defined by xk and yk . Its unknown RGB values are defined by 
rk(xk, yk), gk(xk, yk) and bk(xk, yk) , respectively. Similarly, the coordinates of a pixel with 
a known value, P̃j , on the image are defined by x̃j and ỹj . Its known (available) RGB pixel 
values are defined by r̃j(x̃j, ỹj), g̃j(x̃j, ỹj) and b̃j(x̃j, ỹj).

By employing Eq. (4), the unknown RGB values at pixel Pk can be estimated based on 
the known (or picked) pixels by

in which the subscripts c = r, g , or b represent red, green, and blue, respectively. This equa-
tion enables the recovery of an image by using only a portion of the image with Np pixels 
from the original image with N pixels. It can be rewritten as

(32)|| f ∗max
|| = Max

{|| f ∗1 ||, || f ∗2 ||,… ,
||| f

∗
N

|||
}

(33)�̃T =
{
f ∗
p1
, f ∗
p2
,… , f ∗

pNp
, f ∗
n1
, f ∗
n2
,… , f ∗

nM

}

(34)�T =
{
f(nM+1)

, f(nM+2)
,… , f(nNu )

}

(35)fc(�k) = �T
c
(𝜉kj)�̃c(�̃j)
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where Np and Nu indicate the number of picked and unpicked pixels, H(� − �kj) is the 
Heaviside step function, and weight function �kj is defined as

Note that the total of the number of picked and unpicked pixels are equal to the total num-
ber of pixels of the original image, i.e., N = Np + Nu.

The total area of the image, A, can expressed as

where Aj and Ak denote the areas of each pixels in the picked and unpicked portions of the 
image. Also, the total area of the image is distributed to the unknown lumped areas of each 
picked pixels, Ãj , as

(36)fc(�k) =

Np∑
j=1

H
(
𝛿 − 𝜉kj

)
𝜔kjg

00
2

(
𝜉kj
)
f̃c
(
�̃j
)
Ãj (k = 1,… ,Nu) for c = r, g, b

(37)�kj = e
−4�2

kj
∕�2

k

(38)A =

Np∑
j=1

Aj +

Nu∑
k=1

Ak

Fig. 5   Input and output points for PD image recovery
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Equating these expressions for the total area of the image leads

By using Eqs. (14) and (15), the area of each unpicked pixel, Ak , can be expressed as

Substituting from Eq. (41) into Eq. (40) yields

or

Hence, the unknown lumped areas, Ãj , associated with the picked pixels are deter-
mined as

Noting that Ak and Aj are identical with Aj = ΔA and Ak = ΔA with ΔA being the area 
of each pixel in the original image, this equation can be rewritten as

Furthermore, the area of each pixel in the original image can be set to 1 for conveni-
ence, thus leading to

with

(39)A =

Np∑
j=1

Ãj

(40)
Np∑
j=1

Ãj =

Np∑
j=1

Aj +

Nu∑
k=1

Ak

(41)Ak =

Np∑
m=1

Akm =

Np∑
m=1

�kmAk

(42)
Np�
j=1

Ãj =

Np�
j=1

Aj +

Nu�
k=1

⎛⎜⎜⎝

Np�
m=1

𝜌km

⎞⎟⎟⎠
Ak

(43)
Np∑
j=1

[
Ãj −

(
Aj +

Nu∑
k=1

𝜌kjAk

)]
= 0

(44)Ãj = Aj +

Nu∑
k=1

𝜌kjAk

(45)Ãj =

(
1 +

Nu∑
k=1

𝜌kj

)
ΔA

(46)Ãj = 1 +

Nu∑
k=1

𝜌kj for (j = 1,… ,Np)

(47)
�kj =

1/�2
kj

Np∑
m=1

1/�2
km
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The recovered pixel values at the unpicked points are compared against the true 
image by comparing the predicted image colors to the original image colors. The con-
vergence is reached if more than 90% of the original image is recovered. Otherwise, the 
analysis is repeated by picking more pixels from the original image.

The original image with N pixels for each color, c = r, g , or b, can be stored in a vec-
tor, �∗

c
 , as

The iterative procedure adaptive image compression and recovery involves the fol-
lowing steps:

1.	 Start by picking a uniformly distributed pixels of about 1% of the total of N pixels from 
the original image and store them into the array of picked pixels, 

∼

� c , as

where pk with (k = 1,… ,Np) represents the index IDs of the picked pixels and Np is 
the number of picked pixels, which is initially close to Np ≈ 0.01N . The initial grid 
points are picked based on a coarse structured grid with uniform spacing because it 
covers the entire domain. Also, the unpicked pixels with unknown values are stored in 
vector, �c , containing

where uk with (k = 1,… ,Nu) denotes the index ID numbers of the unpicked pixels 
with Nu being the number of unpicked pixels.

2.	 Use Eq. (36) along with Eq. (46) to predict the colors of unpicked pixels. Note that 
each color code has integer values and varies between 0 and 255. For this reason, the 
computed values of the unpicked pixels must be converted to the nearest integer between 
0 and 255, i.e., fc(uk) = Round(fc(uk)) , fc(uk) = 0 if Round(fc(uk)) < 0 and fc(uk) = 255 if 
Round(fc(uk)) > 255 for k = 1,… ,Nu;

3.	 Compute the difference between the color values of the original image and the unpicked 
pixels, whose values are predicted by Eq. (36) and rounded to integers in step 2 as

4.	 Sort the difference values, Δfc(uk) , in descending order and store them in an array, Δfc , 
defined as

where the indices nk with (k = 1,… ,Nu) are such that

in which Max(Δfc(nk)) is defined as

(48)�∗
c
=
{
f ∗
c(1)

, f ∗
c(2)

,… , f ∗
c(N)

}T

(49)�̃T
c
= {f ∗

c(p1)
, f ∗
c(p2)

,… , f ∗
c(pNp )

} for c = r, g, b

(50)�T
c
= {fc(u1), fc(u2),… , fc(uNu )

} for c = r, g, b

(51)Δfc(uk) =
|||f

∗
c(uk)

− fc(uk)
||| (k = 1,… ,Nu)

(52)Δ�T
c
=
{
Δfc(n1),Δfc(n2),… ,Δfc(nNu )

}
for c = r, g, b

(53)Max(Δfc(n1)) > Max(Δfc(n2)) > ⋯ > Max(Δfc(nNu )
)

(54)Max(Δfc(nk)) = Max
{
Δfr(nk),Δfb(nk),Δfg(nk)

}
(k = 1,… ,Nu)
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5.	 Calculate the error, e , due to Δfc(nk) defined in the form

6.	 If e < 0.01 , convergence is achieved; print the converged image and stop the analysis. 
Otherwise, continue with step 7.

7.	 Pick additional M pixels with indices n1 through nM from the original image and append 
them to the vector of picked pixels, 

∼

� c , in Eq. (49) as

	   Limit the size of M not more than 5% of the total number of pixels, N. The indices 
for these additional pixels are chosen from the first M indices of vector Δ�c in Eq. (52) 
for faster convergence. Subsequently, remove the pixels with indices n1 through nM from 
the vector of unpicked pixels, in Eq. (50), to balance the total of picked and unpicked 
pixels, in the form

	   Also, update the number of picked and unpicked pixels as Np = Np +M and 
Nu = Nu −M.

8.	 Continue performing steps 2 through 8 until convergence is reached in step 6.

6 � Peridynamic Regression for Model Order Reduction

The PD regression can be employed to link two levels of discretization as shown in Fig. 6. 
The level-1 discretization is coarse and it enables reduction in the number of unknowns 
in the expression. The level-2 discretization is fine and controls the accuracy of evalua-
tions. In the coarse grid shown in Fig. 6, the spacing between the green points is defined 
by Δx1 = L/(m − 1) where m represents the number of points in x− and y− directions. It 
results in M = m × m points in the discretization of the domain. The position vector, the 
functional value, and the volume of j-th point in level-1 grid are designated as �j , wj , and 
Aj , respectively.

In level-2 grid, the spacing between the blue points is defined by Δx2 = L/n where 
N = n × n represents the number of PD points. In this fine grid, the position vector, the 
functional value, and the area of k-th point are denoted by x̂k , ŵk , and Âk , respectively. As 
shown in Fig. 6, the horizon (radius) of the k-th PD point in level-2 grid is denoted by 𝛿k . 
The distance between k - th PD point of level-1 grid and any other PD point in the level-2 
grid is represented by 𝜉kj = xj − x̂k.

Using the PDDO introduced by Madenci et al. [8], the functional values of the points in the 
fine grid, ŵ(k) , as well as their derivatives can be expressed in terms of the unknown functional 
values of the points in the coarse grid w(j) provided that the total area of the points in both 
grids is preserved as

(55)
e =

Nu∑
k=1

�
Δfr(nk) + Δfb(nk) + Δfg(nk)

�

3 × N × 255

(56)
∼

�
T

c
=
{
f ∗
c(p1)

, f ∗
c(p2)

,… , f ∗
c(pNp )

, f ∗
c(n1)

, f ∗
c(n2)

,… , f ∗
c(nM )

}
for c = r, g, b

(57)�T
c
=
{
fc(nM+1)

, fc(nM+2)
,… , fc(nNu )

}
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As shown in Fig. 6, the area of each PD point in the coarse grid, Aj , and fine grid, Âk , can 
be calculated as

and

Using the concept of PD regression, the functional value and its derivatives at each point in 
the fine grid can be expressed as

(58)
M∑
j=1

Aj =

N∑
k=1

Âk.

(59)Aj = LW/M j = 1,… ,M

(60)Âk = LW/N k = 1,… ,N.

(61)ŵ
(
�̂k
)
=

Nk∑
j=1

wjg
00
2

(
𝜉kj;𝜔kj

)
Aj,

(62)ŵ,x

(
�̂k
)
=

Nk∑
j=1

wjg
10
2

(
𝜉kj;𝜔kj

)
Aj,

Fig. 6   Discretization of domain with level-1 (coarse) and level-2 (refined) grids
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and

In these equations, Nk represents the number of level-1 points within the horizon of level-2 
point,�̂(k) . In matrix form, Eqs. (61)–(66) can be rewritten as

and

where the coefficient vectors, �(�̂k) , �,x(�̂k) , �,y(�̂k),�,xx(�̂k) , and �,yy(�̂k) , and the unknown 
vector, �̂k , are defined as

(63)ŵ,y

(
�̂k
)
=

Nk∑
j=1

wjg
01
2

(
𝜉kj;𝜔kj

)
Aj,

(64)ŵ,xx

(
�̂k
)
=

Nk∑
j=1

wjg
20
2

(
𝜉kj;𝜔kj

)
Aj,

(65)ŵ,xy

(
�̂k
)
=

Nk∑
j=1

wjg
11
2

(
𝜉kj;𝜔kj

)
Aj,

(66)ŵ,yy(�̂k) =

Nk∑
j=1

wjg
02
2
(𝜉kj;𝜔kj)Aj

(67)ŵ
(
�̂k
)
= �T

(
�̂k
)
�̂k,

(68)ŵ,x

(
�̂k
)
= �T

,x

(
�̂k
)
�̂k,

(69)ŵ,y

(
�̂k
)
= �T

,y

(
�̂k
)
�̂k,

(70)ŵ,xx

(
�̂k
)
= �T

,xx

(
�̂k
)
�̂k,

(71)ŵ,xy

(
�̂k
)
= �T

,xy

(
�̂k
)
�̂k,

(72)ŵ,yy(�̂k) = �T
,yy
(�̂k)�̂k

(73)�T
(
�̂k
)
=
{
g00
2

(
𝜉k1;𝜔k1

)
A1, .., g

00
2

(
𝜉kNk

;𝜔kNk

)
ANk

}
,

(74)�T
,x

(
�̂k
)
=
{
g10
2

(
𝜉k1;𝜔k1

)
A1, .., g

10
2

(
𝜉kNk

;𝜔kNk

)
ANk

}
,

(75)�T
,y

(
�̂k
)
=
{
g01
2

(
𝜉k1;𝜔k1

)
A1, .., g

01
2

(
𝜉kNk

;𝜔kNk

)
ANk

}
,

(76)�T
,xx

(
�̂k
)
=
{
g20
2

(
𝜉k1;𝜔k1

)
A1, .., g

20
2

(
𝜉kNk

;𝜔kNk

)
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}
,
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and

The major implication of Eq. (67) is that the zeroth-order PDDO can be used for inter-
polation. Hence, the PD regression for model order reduction can be used to approximate 
the field variables such as the displacements of a point in the material based on the princi-
ple of minimum potential energy. The present approach can readily be used in the solution 
of structural problems where the equilibrium equations are derived based on energy princi-
ples as demonstrated by Madenci et al. [9, 10].

7 � Numerical Results

The numerical results concern interpolation of real data in two and three dimensions, 
interpolation to approximate a three-dimensional function, adaptive data recovery in 
three-dimensional space, recovery of missing pixels in an image, adaptive image compres-
sion and recovery, and free energy function of a thermally fluctuating rod through model 
reduction.

7.1 � Interpolation of Temperature Data

The data consists of the maximum temperature readings across 121 weather stations with 
the corresponding latitude, longitude, and elevation of each weather station. This weather 
data on January 4, 2020 in Arizona is obtained from NOAA [11]. The exact locations and 
temperature readings are given in Appendix 3. In order to demonstrate the capability of 
the present approach, 10 data points shown in Fig. 7 as red crosses are removed at random 
from the original 121 data points. The remaining 111 data points serve as input points. The 
locations and temperature readings of the randomly removed stations are shown in Table 1. 
Figure 8 shows the PD interpolation grid overlayed on the Arizona map. The family popu-
lation, Nk , of each output point, �k , is defined by including input points within its horizon, 
� . Therefore, the number of family members may be different for each output point. The 
family member selection is achieved using a k-d tree nearest neighbor algorithm [4].

The temperature is estimated at each output point on the grid. The values at the output 
points are estimated while recovering the original 111 data points for both two- and three-
dimensional interpolation. The PD interpolation is performed through Eq. (23) along with 
Eq. (20) for p = 2 , and the PD functions are constructed by truncating the TSE after the 
first-order derivatives. The PD temperature predictions at the output points closest to the 
red circles are compared with their original readings in order to measure the error.

In the case of a two-dimensional data interpolation, temperature, T, varies over x 
and y representing the longitude and latitude, respectively. The number of output points 
is 40 × 40 , and they are equally spaced in the region of −115◦ ≤ x ≤ −109.1◦ and 
−31◦ ≤ y ≤ 37.5◦ . The grid spacing is defined by Δx = 0.1475◦ and Δy = 0.1525◦ in the 

(77)�T
,xy

(
�̂k
)
=
{
g11
2

(
𝜉k1;𝜔k1

)
A1, .., g

11
2

(
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;𝜔kNk

)
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}
,

(78)�T
,yy
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{
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2
(𝜉k1;𝜔k1)A1, .., g
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2
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}

(79)�̂T
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.

Journal of Peridynamics and Nonlocal Modeling (2022) 4:159–200 177



1 3

longitudinal and latitude directions, respectively. The family population of each output 
point, Nk , is defined by including input points within a radius of 3◦ . The horizon, �k , is 
determined by the furthest input point from �k.

Fig. 7   Location of input and output (red) points given in Table 1

Table 1   Locations and values of data points removed from the original data set

Weather station Elevation (m) Latitude Longitude Temp. (°F)

Williams 2105.9 35.2413 −112.1929 56
Tohono Chul 770.2 32.3391 −110.9808 63
Nixon Flats 1981.2 36.39 −113.1522 54
Buckskin Mountain 1950.7 36.9306 −112.1997 48
Dry Lake 2264.1 33.3597 −109.8331 60
Petrified Forest 1659.9 34.7994 −109.885 49
Goodwin Mesa 1280.2 34.75 −113.3 63
Kitt Peak 2069.6 31.9602 −111.5979 60
Kingman Airport 1042.4 35.2577 −113.933 63
Tempe ASU 355.7 33.4258 −111.9216 71
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Figure 9 shows the PD interpolation values at the output points. The values with closest 
coordinates to the red circles are shown in Table 2. These PD estimates are compared with 
their original values and the predictions based on Ordinary Kriging method [4]. The Kriging 
algorithm described in Appendix 2 is implemented using the PyKrige python software pack-
age. The error, e , between the readings and predictions is calculated as 4.54 and 5.01 for PD 
and Kriging estimations, respectively.

In order to demonstrate the performance of PD interpolation in a three-dimensional 
space, the elevation is also included in the input data. In the case of a three-dimensional 
data, temperature, T varies over x, y, and z representing the longitude, latitude, and eleva-
tion, respectively. The number of output points is 25 × 25 × 30 , and they are equally spaced 
in the region of (−115◦ ≤ x ≤ −109.1◦) , (−31◦ ≤ y ≤ 37.5◦), and (0 ≤ z ≤ 3000 m) . The 
grid spacing is defined by Δx = 0.236◦ , Δy = 0.244◦ , and Δz = 100 m in the longitudinal, 
latitude, and elevation directions, respectively. The family population of each unknown 
point, Nk , is defined by including input data points within a cylindrical interaction domain. 
Its radius is defined as � = 1.9◦ with a height of 3000 m. As shown in Fig. 10, the horizon, 
�k , is determined by the furthest input point from the output point, �k.

The PD interpolation values at the output points with closest coordinates to the red cir-
cles are shown in Table 3. These PD estimates are compared with their original values and  
the predictions based on the Ordinary Kriging method [4]. The error is calculated as 5.14 

Fig. 8   PD grid of output points overlayed on the Arizona map and the horizon of point �k
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and 6.72 for PD and Kriging estimations, respectively. The 3D interpolation is not as robust 
as the 2D interpolation due to the sparsity of the data. Introducing another dimension with-
out increasing the number of data points suffers from the curse of dimensionality.

Fig. 9   PD interpolation values on the Arizona map

Table 2   PD and Kriging 
estimates of the temperature 
based on the 2D coordinates of 
weather stations

Weather station Original temp PD interpolation Kriging

Williams 56 55.2064 54.1327
Tohono Chul 63 62.155 61.1788
Nixon Flats 54 50.6628 51.1145
Buckskin Mountain 48 47.2551 46.7098
Dry Lake 60 55.7386 54.9305
Petrified Forest 49 51.1166 50.6425
Goodwin Mesa 63 59.0222 60.1946
Kitt Peak 60 65.6535 67.4892
Kingman Airport 63 58.3842 59.3514
Tempe ASU 71 67.6238 66.6457
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7.2 � Interpolation to Approximate a Function

The input data shown in Fig. 11 is generated randomly at 270 points within a unit cube 
(0 ≤ x, y, z ≤ 1) by evaluating the following function:

The number of output points is 30 × 30 × 30 , and they are equally spaced with grid 
spacing by Δx = Δy = Δz = 1∕30 . The randomly generated input data constitutes 1% of 
the PD grid points. The PD interpolation is performed at the 27,000 output points through 

(80)f (x, y, z) = [1 − sin(�x)]y3ez

Fig. 10   Family members and horizon of point �k encompassing the input points in a cylindrical interaction 
domain

Table 3   PD and Kriging 
estimates of the temperature 
based on the 3D coordinates of 
weather stations

Weather station Original temp PD interpolation Kriging

Williams 56 56.3091 51.5217
Tohono Chul 63 57.6099 61.6683
Nixon Flats 54 50.5367 49.499
Buckskin Mountain 48 45.1787 50.5259
Dry Lake 60 53.3049 50.871
Petrified Forest 49 52.3342 53.2365
Goodwin Mesa 63 59.135 59.7036
Kitt Peak 60 63.864 51.177
Kingman Airport 63 61.7043 64.434
Tempe ASU 71 67.5256 67.2911
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Eq. (23) along with Eq. (21) for p = 3 . The family population of each unknown point, Nk , 
is defined by the closest 50 PD points. Also, the PD functions are constructed by truncat-
ing the TSE after the third-order derivatives, i.e., N = 3 . The PD estimates of the function 
value at the output points are shown in Fig. 12. The error measure, e , between the func-
tional value and the estimates is 0.2943%.

Fig. 11   Randomly generated input data

Fig. 12   Functional variation at the output points: (a) actual data and (b) PD recovery
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The PD recovery of data is compared against the actual data along the line specified by 
x = y = z in Figs. 13 and 14. Also, these figures show the number of picked input data points 
along this line.

7.3 � Adaptive Data Recovery

In order to demonstrate data recovery, the data is fabricated by using the following 
function:

The data is generated for a grid spacing of 40 × 40 × 40 in the 3-D space. The PD 
regression at each unknown point is performed through Eq. (23) along with Eq. (21) for 
p = 3 . The family population of each unknown point, Nk , is defined by a minimum of 50 
pixels encompassed by a circle. As explained in Sect. 4, the initial data is 1% of the com-
plete data and randomly picked, and subsequently the data is increased adaptively in 5% 
increments.

As shown in Fig. 15, the recovered data with the randomly picked initial data has an 
overall error of 3.745%. Although this error is high, the recovered data provides crucial 
information about the location of high gradients for the selection of additional 5% data 
points for the next iteration. Figure  16a shows the picked data points for the second 

(81)f ∗(x, y, z) =
2xyz

x2 + y2 + z2
for − 1 ≤ x, y, z ≤ 1 − 1 ≤ x, y, z ≤ 1

Fig. 13   Comparison of the actual data with PD recovery along the line (x = y = z)
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iteration. The recovered data with only 6% of the total data points has overall error of 
2% as shown in Fig. 16b. Finally, the adaptive selection of data points after the third 
iteration with only 11% of the total data points, shown in Fig. 17a, results in the desired 
error less than 1% against the original data set as shown in Fig. 17b. The PD regression 
successfully estimates the unknown functional values.

Fig. 14   Comparison of the actual data with PD recovery along the line (x, y = 0.55, z = 0.55)

Fig. 15   Randomly picked 1% of the data population and recovered data with percentage error of 3.745
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7.4 � Image Recovery

The image shown in Fig. 18 is constructed by 512 × 512 number of pixels specifying its 
resolution. The blue spots in Fig. 19a are randomly distributed and indicate the pixels of 
unknown values. The areas of known pixels are determined by using Eq. (46) for p = 3 , 
and the PD regression at each unknown pixel is performed through Eq. (36). The family 
population of each unknown point, Nk , is defined by a minimum of 50 pixels encom-
passed by a circle.

The image with recovered pixels is shown in Fig. 19b. The PD interpolation success-
fully estimates the missing pixel values. The small spots of missing pixels have continu-
ous color variations. The blue spots on the eyes are successfully recovered. However, 
the large spots of missing locations have some smeared color discontinuity. The overall 
error measured against the original image is 0.0256%.

Fig. 16   Adaptively picked 6% of the data population and recovered data with percentage error of 2.0

Fig. 17   Adaptively picked 11% of the data population and recovered data with percentage error of 0.847
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7.5 � Adaptive Image Compression

The adaptive data compression is applied to the image shown in Fig.  18. The areas of 
known pixels are determined by using Eq. (46) for p = 3 , and the PD regression at each 
unknown pixel is performed through Eq.  (36). The family population of each unknown 
point, Nk , is defined by a minimum of 50 pixels encompassed by a circle.

Since the critical pixels in the image are not known a priori, the initial set of 572 pix-
els (0.195313% of total pixels 262,144) are selected uniformly as shown in Fig. 20a. The 

Fig. 18   Image with complete 
pixels of 512 × 512 = 262144 
[12]

Fig. 19   Image with (a) missing pixels (blue spots) and (b) recovered pixels (error of 0.0256%)
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image with recovered pixels is shown in Fig.  20b. Although the recovered image looks 
poor, it is obtained by using only 0.195313% of the total pixels of 262,144. The overall 
error is 9.067%. However, this image provides crucial information about the high gradients 
of color changes.

The new set of picked pixels is used in the next iteration with a 5% increase in pixel 
numbers. Figures 21, 22, 23, 24, 25, 26, 27, 28 and 29 show the adaptively picked pixels 
and recovered images for the next 9 iterations. As the number of picked pixels increases, 
the recovered image looks much improved, and the overall error reduces to 4.69422% 
with 15.21568% of total pixels at iteration 4 as shown in Fig.  23. The error reduces to 

Fig. 20   Iteration 1 — images with (a) 572 picked pixels indicated with white (0.195313% of total pixels) 
and (b) recovered pixels (error of 9.067%)

Fig. 21   Iteration 2 — images with (a) 13,677 picked pixels indicated with white (5.217361% of total pixels) 
and (b) recovered pixels (error of 13.3117%)
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1.70792% with 30.21355% of total pixels as shown in Fig. 25 at iteration 6. Finally, the 
adaptive selection with 45.21103% of total pixels, shown in Fig. 29, results in a desired 
error (0.88737%) less than 1% against the original image as shown in Fig. 18. The original 
and the recovered images are shown in Fig. 30.

7.6 � Model Reduction for Thermal Fluctuation of a Rod

The free energy function, G, can be expressed in terms of the partition function as

(82)G = −kBTlnZ

Fig. 22   Iteration 3 — images with (a) 26,782 picked pixels indicated with white (10.21652% of total pixels) 
and (b) recovered pixels (error of 6.85677%)

Fig. 23   Iteration 4 — images with (a) 39,887 picked pixels indicated with white (15.21568% of total pixels) 
and (b) recovered pixels (error of 4.69422%)
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in which kB = 1.38(pN)(nm)◦K−1 is the Boltzmann constant, T is the temperature in ◦K , 
and Z is the partition function. It can be expressed in the form of a multi-dimensional 
Gaussian integration as [13]

This integration can be carried out for the stored energy of a quadratic form as [14, 15]

(83)Z = ∫ e−U(w)/kBTd�.

Fig. 24   Iteration 5 — images with (a) 52,992 picked pixels indicated with white (20.21484% of total pixels) 
and (b) recovered pixels (error of 3.23066%)

Fig. 25   Iteration 6 — images with (a) 66,098 picked pixels indicated with white (25.21439% of total pixels) 
and (b) recovered pixels (error of 2.33139%)
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where M is the number of unknowns in the vector of w which represents the possible defor-
mation states. It fluctuates about the lowest elastic energy state Umin for T > 0 . The sym-
metric and positive definite matrix, K of size (M ×M) , represents the stiffness of the struc-
ture. Substituting for the partition function, Z, and expanding the terms, the free energy 
function can be evaluated as

(84)Z = ∫ e−U(w)/kBTd� = e
−

Umin
kBT

√(
�kBT

)M
det�

Fig. 26   Iteration 7 — images with (a) 79,203 picked pixels indicated with white (30.21355% of total pixels) 
and (b) recovered pixels (error of 1.70792%)

Fig. 27   Iteration 8 — images with (a) 92,308 picked pixels indicated with white (35.21271% of total pixels) 
and (b) recovered pixels (error of 1.3637%)
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For a flat configuration with Umin = 0 , the free energy simplifies to

where Di ( i = 1,… ,M ) are the diagonal entries of the diagonal matrix D appearing in the 
decomposition as

(85)G = Umin −
kBMT

2
ln(�kBT) +

kBT

2
[ln(det�)]

(86)G = −
kBTM

2
ln(�kBT) +

kBT

2

[
lnD1 + lnD2 +⋯ + lnDM

]

Fig. 28   Iteration 9 — images with (a) 105,413 picked pixels indicated with white (40.21187% of total pix-
els) and (b) recovered pixels (error of 1.08388%)

Fig. 29   Iteration 10 — images with (a) 118,518 picked pixels indicated with white (45.21103% of total pix-
els) and (b) recovered pixels (error of 0.88737%)
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where L is a lower triangular matrix whose diagonals are equal to unity with det � = 1 and 
D has positive entries.

The evaluation of the free energy requires the computation of the determinant of K. How-
ever, computing the determinant of an extremely large stiffness matrix poses computational 
challenges. Accurate evaluation of the determinant of the stiffness matrix is a key step in the 
calculation of the partition function. The simultaneous use of fine and coarse grids along with 
PD interpolation eliminates the computational challenges.

Su and Purohit [12] modeled the thermal fluctuation of a rod by considering its total 
energy, U, in the form

where w is the out-of-plane deflection and F represents the force. Its bending modulus, KB , 
can be measured experimentally. The length of the rod is L. They derived the analytical 
expression for the reduction in length of a fluctuating rod as

By using Eq. (59), the reduction in length can be also expressed as

The energy of each point �̂(k) in the fine grid can be expressed in the form

(87)� = ���T

(88)U =
1

2∫
L

KBw
2
,xx
dx +

1

2∫
L

Fw2
,x
dx.

(89)ΔL =
1

4
kBT

�
L√
KBF

coth
FL√
KBF

−
1

F

�

(90)ΔL =
�G
�F

=
kBT

2

d

dF
ln(det�)

(91)U(k) =
1

2
KB

(
ŵ(k),xx

)2
�̂(k) +

1

2
F
(
ŵ2

(k),x

)
�̂(k)

Fig. 30   Images with (a) original and (b) recovered pixels with 45.21103% of total pixels
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with �̂(k) = L/N representing the length of each point. After expanding this equation and 
substituting for the derivatives of ŵ(k) from Eqs. (68) and (70), the strain energy at point �̂(k) 
is expressed in matrix form as

where the stiffness matrix, �(k) , is defined as

The total energy in the rod can be expressed in the form

The symmetric and positive definite matrix, K, of size ( M ×M ) can be determined 
as

The PD model of a rod is subjected to a force, F, varying from 200 to 2000 pN at 
a specified temperature of T = 300 ◦K . The contour length of the rod is L = 2.5 nm , 
and its flexural rigidity is specified as KB = 2.5kBT nm . Its persistence length, 
p = KB/(kBT) , is the same as the contour length.

The determinant of the rod stiffness matrix is computed for three different level-1 
grid sizes specified by m = 51 , m = 101 , and m = 201 points. The corresponding level-2 
grid division is achieved by n = 4(m − 1) points. The horizon of point, �̂(k) , in the 
refined grid is specified as 𝛿(k) = 5Δx1.

The PD evaluation of reduction in length, ΔL , is evaluated for specified force values 
of F − ΔF , F, and F + ΔF with ΔF representing the incremental values for numerical 
differentiation based on central difference approximation as

The extension in length defined as (L − ΔL) is computed for each discretization at 
T = 300 ◦K.

As shown in Fig.  31, the PD prediction provides sufficiently accurate results with 
51 unknowns and converges to the analytical formula (the worm-like-chain relation 
for force extension), Eq. (96) with 201 unknowns. Su and Purohit [12] performed their 
analysis with 500 elements and recovered the analytical solution with 50,000 elements. 
The simultaneous use of fine and coarse grids along with PD interpolations reduces 
the number of unknowns and yet provides very accurate results. This reduction in 
degrees of freedom is an essential gain in capability especially for the computation of 
the determinant of stiffness matrix. It was also successfully applied in the evaluation of 
the partition function for a lipid membrane with inclusions [14].

(92)U(k) =
1

2
�̂T

(k)
�(k)�̂(k)

(93)�(k) =
[
KB

(
�(k),xx�

T
(k),xx

)
+ F

(
�(k),x�

T
(k),x

)]
�̂(k)

(94)U =

M∑
j=1

U(j) =
1

2

M∑
j=1

�̂T
(j)
�(j)�̂(j) = �T��

(95)� = Assemble
[
�(1),�(2),⋯ ,�(M)

]
,

(96)ΔL(F, T) =
kBT

4ΔF
ln
(det�(F + ΔF, T))

(det�(F − ΔF, T))
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8 � Conclusions

The study presents a unified approach for interpolation and regression of data with irregu-
larities and scatter in a multi-dimensional space. It provides a single mathematical framework 
for diverse datasets and multi-dimensional data manipulation and model order reduction. The 
mathematical framework is based on the Peridynamic Differential Operator (PDDO) to trans-
fer information within a set of discrete data, and among data sets representing multiple scales. 
The robustness and capability of this approach have been demonstrated by considering vari-
ous real or fabricated data concerning two- or three-dimensional applications. The numerical 
results concern interpolation, regression, and recovery/compression of non-uniform data and 
model reduction.

Appendix 1 Peridynamic differential operator

According to the 2-order TSE in a 2-dimensional space, the following expression holds

where R is the small remainder term. Multiplying each term with PD functions, gp1p2
2

(�) , 
and integrating over the domain of interaction (family), H� , results in

(97)

f (� + �) = f (�) + �1
�f (�)

�x1
+ �2

�f (�)

�x2
+

1

2!
�2
1

�2f (�)

�x2
1

+
1

2!
�2
2

�2f (�)

�x2
2

+ �1�2
�2f (�)

�x1�x2
+ R

Fig. 31   Force-extension relations in a rod under thermal fluctuation at T = 300◦K
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in which the point x is not necessarily symmetrically located in the domain of interaction. 
The initial relative position, � , between the material points x and �′ can be expressed as 
� = � − �� . This ability permits each point to have its own unique family with an arbitrary 
position. Therefore, the size and shape of each family can be different, and they signifi-
cantly influence the degree of non-locality. The degree of the interaction between the mate-
rial points in each family is specified by a non-dimensional weight function, w(|�|) , which 
can vary from point to point. The interactions become more local with a decreasing family 
size. Thus, the family size and shape are important parameters. In general, the family of a 
point can be non-symmetric due to non-uniform spatial discretization. Each point has its 
own family members in the domain of interaction (family), and occupies an infinitesimally 
small entity such as volume, area, or a distance.

The PD functions are constructed such that they are orthogonal to each term in the TS 
expansion as

with (n1, n2, p, q = 0, 1, 2) and �nipi is a Kronecker symbol.
Enforcing the orthogonality conditions in the TSE leads to the non-local PD representa-

tion of the function itself and its derivatives as

The PD functions can be constructed as a linear combination of polynomial basis 
functions:

(98)
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where ap1p2
q1q2

 are the unknown coefficients, wq1q2
(|�|) are the influence functions, and �1 and 

�2 are the components of the vector � . Assuming wp1p2
(|�|) = w(|�|) and submitting the PD 

functions into the orthogonality equation lead to a system of algebraic equations for the 
determination of the coefficients as

in which

and

After determining the coefficients ap1p2q1q2
 via � = �−1� , then the PD functions gp1p2

2
(�) can 

be constructed. The detailed derivations and the associated computer programs can be found 
in [8].

Appendix 2 Ordinary Kriging

As described by Cressie [4], the observed (known) data at spatial locations, s1, ....., sn , are 
modeled as a random process denoted by Z(s) in ordinary Kriging. It is assumed that the ran-
dom process satisfies the decomposition

where � is the expected value or mean of Z(s) and �(s) is the correlated error process. The 
mean, � , is unknown; however, it is assumed to be a constant. The predictor is defined as
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subject to the constraint of

The parameter, B, is defined as a block of spatial area whose location and geometry are 
known. The optimal predictor is obtained by minimizing the mean-squared prediction error 
defined as

with respect to the coefficients �i with i = 1, ..., n.

Appendix 3 Temperature Data from Weather Stations in Arizona

Weather station name Elevation (m) Latitude Longitude Temp. (°F)

Robson Ranch 455.7 32.8118 −111.6313 65
Tacna 3 NE 98.8 32.7225 −113.9191 68
Fry 2194.6 35.07 −111.84 52
Gunsight 1609.3 36.7044 −112.5833 50
Williams 2105.9 35.2413 −112.1929 56
Guthrie 1097.3 32.8819 −109.3092 53
Rincon 2511.6 32.2056 −110.5481 60
Frazier Wells 2063.5 35.8456 −113.055 52
Bisbee 1 WNW 1694.7 31.4475 −109.9288 61
Tempe ASU 355.7 33.4258 −111.9216 71
Wittmann 1 SE 513 33.7776 −112.523 71
Painted Desert National Park 1755.6 35.068 −109.7688 50
Union Pass 1072.9 35.2247 −114.3747 62
Humbug Creek 1600.2 34.1164 −112.3006 60
Hurricane 1659.6 36.6992 −113.2072 47
Saguaro National Park 938.8 32.1794 −110.7363 57
Willcox 1271 32.2553 −109.8369 58
Oak Creek 1500.8 34.9417 −111.7517 56
Greer 2499.4 34.06 −109.45 57
Safford Agricultural Center 900.4 32.815 −109.6808 63
Betatakin 2220.8 36.6778 −110.5411 44
Tohono Chul 770.2 32.3391 −110.9808 63
Empire 1417.3 31.7806 −110.6347 69
Four Springs 1999.5 36.7939 −112.0422 41
Teec Nos Pos 1612.4 36.9233 −109.09 42
Patagonia Paton Center 1232.6 31.53923 −110.76028 72

(109)p(Z;B) =

n∑
i=1

�iZ(si)

(110)
n∑
i=1

�i = 1

(111)�2
e
≡ E(Z(B) − p(Z;B))2
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Weather station name Elevation (m) Latitude Longitude Temp. (°F)

Payson 1516.4 34.2431 −111.3028 61
Chiricahua 1645.9 32 −109.35 62
Paria Point 2205.2 36.7278 −111.8219 49
Cherry 1554.5 34.5964 −112.0481 58
Sanders 1784 35.2239 −109.3222 52
San Carlos Reservoir 771.8 33.1819 −110.5261 46
Goodwin Mesa 1280.2 34.75 −113.3 63
Sunset Crater National Monument 2127.5 35.3694 −111.5436 42
Sunrise Mountain 2856 33.9733 −109.563 42
Flagstaff 2133.6 35.145 −111.675 56
Hopi 1885.5 35.8103 −110.2069 53
Selles 721.2 31.91 −111.8975 69
Iron Springs 1804.4 34.5853 −112.5019 61
Hopkins 2170.2 31.6753 −110.88 66
Tucson International Airport 776.9 32.1313 −110.9552 70
Mormon Mountain 2286 34.94 −111.52 53
Catalina State Park 825.1 32.4177 −110.9302 61
Sunset Point 902.2 34.1953 −112.1417 64
Tweeds Point 1585 36.5819 −113.7319 51
Douglas Bisbee Inter. Airport 1251.2 31.4583 −109.6061 66
St. Johns Industrial Air Park 1747.4 34.51833 −109.37917 52
Nixon Flats 1981.2 36.39 −113.1522 54
Black Rock 2158 36.7944 −113.7567 45
Tusayan 2042.2 35.99 −112.12 55
Stray Horse 2139.7 33.5406 −109.3169 56
Snowslide Canyon 2965.7 35.34 −111.65 47
Stanton 1097.3 34.1667 −112.7333 64
Olaf Knolls 883.9 36.5072 −113.8161 60
Kingman Airport 1042.4 35.2577 −113.933 63
Douglas 1231.4 31.345 −109.5394 66
Nogales 6 N 1054.9 31.4554 −110.968 73
Truxton Canyon 1630.7 35.7825 −113.7942 56
Lindbergh Hill 2682.2 36.2858 −112.0794 48
Bagdad 1199.4 34.5975 −113.1745 57
White Horse Lake 2188.5 35.14 −112.15 56
Alamo Dam 393.2 34.228 −113.5777 65
Walnut Creek 1551.4 34.9281 −112.8097 62
Walnut Canyon National Monument 2040.6 35.1721 −111.5097 43
Dry Lake 2264.1 33.3597 −109.8331 60
Casa Grande 426.7 32.8875 −111.7147 67
Duncan 1115.6 32.748 −109.1213 57
Dry Park 2653.6 36.45 −112.24 49
Heber Black Mesa Ranger Station 2008.6 34.3925 −110.558 56
Alpine 2447.8 33.8417 −109.1222 57
Prescott Love Field 1536.8 34.65167 −112.42083 62
Phoenix Airport 337.4 33.4277 −112.0038 68
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Weather station name Elevation (m) Latitude Longitude Temp. (°F)

Benson 6 SE 1124.7 31.8805 −110.2403 58
Yuma Proving Ground 98.8 32.8356 −114.3942 68
Winslow Airport 1489.3 35.0281 −110.7208 51
Fort Valley 2240.3 35.27 −111.74 56
Happy Jack Ranger Station 2279.9 34.7433 −111.4139 47
Bellemont Weather Forecast Office 2179.9 35.2302 −111.8221 50
Beaver Dam 588.6 36.9139 −113.9423 60
Sasabe 1094.2 31.483 −111.5436 75
Show Low Airport 1954.1 34.2639 −110.0075 50
Window Rock Airport 2054 35.6575 −109.06139 52
Moss Basin 1804.4 35.0336 −113.8925 58
Picacho 8 SE 603.8 32.6463 −111.4017 63
Jerome 1508.8 34.7522 −112.1114 49
Quartzsite 266.7 33.665 −114.2272 69
Page Municipal Airport 1313.7 36.92611 −111.44778 43
Warm Springs Canyon 2441.4 36.7 −112.23 51
Kitt Peak 2069.6 31.96018 −111.59787 60
Workman Creek 2103.1 33.81 −110.92 55
Yellow John Mountain 1877.6 36.1542 −113.5417 54
Carefree 771.1 33.8161 −111.9019 67
Grand Canyon National Park Airport 2013.5 35.94611 −112.15472 49
Montezuma Castle Nat.Monument 969.3 34.6105 −111.838 59
Scottsdale Municipal Airport 449 33.62278 −111.91056 68
Havasu 144.8 34.7872 −114.5617 69
Limestone Canyon 2072.6 34.1789 −110.2736 51
Kartchner Caverns 1429.5 31.8352 −110.3552 53
Buckskin Mountain 1950.7 36.9306 −112.1997 48
Mount Lemmon Willow Canyon 2141.8 32.3859 −110.69799 47
Apache Junction 5 NE 630.9 33.4625 −111.4813 66
Anvil Ranch 840.9 31.9793 −111.3837 63
Canyon de Chelly 1709.9 36.1533 −109.5394 47
Green Valley 883.9 31.893 −110.9977 59
Bright Angel Ranger Station 2438.4 36.2147 −112.0619 41
Organ Pipe Cactus Nat. Monument 511.5 31.9555 −112.8002 73
Fort Huachuca Pioneer Airfield 1453.3 31.60722 −110.42806 66
Globe 1112.5 33.3503 −110.6519 56
San Simon 1091.2 32.29329 −109.22691 61
Phantom Ranch 771.1 36.1066 −112.0947 58
Petrified Forest National Park 1659.9 34.7994 −109.885 49
Saint Johns 1764.8 34.5172 −109.4028 49
Meteor Crater 1687.1 35.0364 −111.0231 47
Music Mountain 1652 35.6147 −113.7939 56
Muleshoe Ranch 1272.5 32.4 −110.2708 67
Tombstone 1420.1 31.7119 −110.0686 56
Sierra Vista 1403.9 31.53699 −110.28073 53
Hilltop 1743.5 33.6183 −110.42 61
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Weather station name Elevation (m) Latitude Longitude Temp. (°F)

Elgin 5 S 1466.4 31.5907 −110.5087 67
Ajo 533.7 32.3698 −112.8599 66
Smith Peak 762 34.1158 −113.3472 65
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