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Abstract
The influence function in peridynamic material models has a large effect on the dynamic
behavior of elastic waves and in turn can greatly effect dynamic simulations of fracture
propagation and material failure. Typically, the influence functions that are used in peri-
dynamic models are selected for their numerical properties without regard to physical
considerations. In this work, we present a method of deriving the peridynamic influence
function for a one-dimensional initial/boundary-value problem in a material with peri-
odic microstructure. Starting with the linear local elastodynamic equation of motion in the
microscale, we first use polynomial anzatzes to approximate microstructural displacements
and then derive the homogenized nonlocal dynamic equation of motion for the macro-
scopic displacements, which is easily reformulated as linear peridyamic equation with a
discrete influence function. The shape and localization of the discrete influence function
are completely determined by microstructural mechanical properties and length scales. By
comparison with a highly resolved microstructural finite element model and the standard
linear peridynamic model with a linearly decaying influence function, we demonstrate
that the influence function derived from microstructural considerations is more accurate in
predicting time-dependent displacements and wave dynamics.

Keywords Homogenization · Nonlocality · Influence Function · Composite

1 Introduction

Peridynamics was first proposed as a reformulation of the classical continuum linear
momentum balance law by [10]. This nonlocal model replaces the spatial derivatives in the
classical conservation of momentum equation with an integral functional to determine the
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net internal force density on a material point. The integral formulation has advantages over
the classical theory when solving problems with discontinuities like cracks and material
fragmentation. A generalization of the original formulation, often called state-based peri-
dynamics [14], introduced the concept of an influence function into the constitutive model.
The influence function weights the individual interactions of each pair of material points
in a peridynamic body. The influence function has similarities with the kernel functions,
window functions, or weight functions in convolution, and interpolation techniques on scat-
tered data. When referring to the part of the integrand that weights contributions from the
variable of integration without contribution from material parameters we will use the ter-
minology influence function, and when referring to the kernel of an integral in the standard
sense of convolution, we will use the terminology kernel function. While peridynamics has
been used to model complex material behavior [5, 13, 15], and has shown unique capabil-
ities in numerical simulation of crack propagation [1], crack branching [2, 6] and damage
in composite laminates [7, 18], what has been missing in the peridynamic literature is a
systematic way to determine the peridynamic influence function. This is despite the knowl-
edge that it is key factor contributing to the behavior of peridynamic material models [16],
especially in the presence of fracture [9]. A common question raised by those curious about
peridynamics is, “How do you chose the peridynamic horizon?” As we show in this paper,
a more appropriate question should be, “How does one construct the peridynamic kernel
function?”1

For nonlocal flow in porous media, [3] used the multiscale connectivity of natural
pore networks to explain anomalous diffusive behavior and used pore network mesoscale
computational models to extract nonlocal kernel functions for use in continuum models.
With respect to continuum solid mechanics, there is not always the physical existence of
long-range forces between material points which makes arguments for nonlocality more
challenging. Silling [11] demonstrated that nonlocality in solid materials can arise from the
small-scale heterogeneity that is excluded through an implicit or explicit homogenization
procedure. This suggests that the peridynamic kernel function for solid materials should
be related to the microstructure of the solid. Motivated by this idea, we present a theoreti-
cal way to compute the discrete peridynamic kernel function for one-dimensional elasticity
from a given heterogeneous microstructure.

We focus on a simple one-dimensional initial/boundary-value problem in a material with
periodic heterogeneous microstructure. Polynomial ansatzes are used for microstructure dis-
placements, and the peridynamic kernel function is calculated based on the mechanics of the
microstructure. Then, the nonlocal elastodynamics for the macroscopic (average) displace-
ment is derived and solved. The resulting formulation is more accurate in resolving wave
dynamics for this model problem when compared to standard influence functions used in
peridynamic analysis in the literature.

The rest of the paper is organized as follows: Section 2 presents the setting of the
elastodynamic problem with periodic heterogeneity and the definitions for the multiscale
quantities of interest. Section 3 demonstrates how we bridge macroscopic quantities with
microstructure, and the derivations for the discrete peridynamic kernel function. In Section 4
we outline a higher order approximation for more accurate results. Section 5 presents
numerical simulations using the discrete peridynamic kernel functions and comparisons
with the results generated by a standard peridynamic model and highly resolved classical
finite element methods.

1As the kernel function can be localized at any length scale, the first question is embedded in the second.
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2 One-dimensional Elastodynamic Composite Problem

Here, we consider the one-dimensional elastic composite problem inspired by [4], a com-
posite rod composed of a periodic array of two linearly elastic, homogeneous, and isotropic
constituents with perfect interfaces as shown in Fig. 1. The composite is fixed at one end
and subjected to an axial time-dependent displacement boundary condition ubc(t) at the
other. It has a macroscopic coordinate x that originates at the fixed end. The total length of
the composite rod is L and each point at macroscopic coordinates x has a microscopic unit
cell where y denotes its microscopic coordinate. The dark block represents the stiffer con-
stituent with elastic modulus Es and density ρs while the white block represents the more
compliant constituent with elastic modulus Ec and density ρc. In order to keep the sym-
metry of the microscopic unit cell, we define the compliant constituent be in the middle of
the unit cell with length βl, while the stiff constituents are at each end of the unit cell with
length αl. The consistency of microscopic geometry requires

2α + β = 1.

The displacement of every point in the microstructure of the composite can be expressed
using both its macroscopic coordinate x and microscopic coordinate y as u(x, y). It is
reasonable to define the macroscopic displacement u(x) as the average microstructural
displacement inside the unit cell which the macroscopic coordinate x is in,

u(x) = 1

l

∫ l

0
u(x, y)dy. (1)

Therefore, our macroscopic coordinates x will be continuous throughout the domain and
the macroscopic displacement u(x) will be the same inside each unit cell. Conservation of
linear momentum at the microscopic scale is

ρ(y)ü(x, y, t) = σ(x, y, t),y, (2a)

with

σ(x, y, t) = E(y)u(x, y, t),y, (2b)

where u(x, y, t) and σ(x, y, t) are the axial displacement and stress at the microscopic
scale, respectively. The double dot above u indicates two time derivatives and the subscripts
following the comma indicate spatial differentiation with respect to the subscripted variable
following standard mathematical notation conventions. ρ(y) and E(y) are the density and
elastic modulus in the microscopic unit cell, which in this case are

Fig. 1 a One-dimensional periodic composite. b Unit cell with heterogeneity
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ρ(y) =
{

ρs 0 ≤ y < αl, (α + β)l < y ≤ l,

ρc αl ≤ y ≤ (α + β)l,
(3)

E(y) =
{

Es 0 ≤ y < αl, (α + β)l < y ≤ l,

Ec αl ≤ y ≤ (α + β)l,
(4)

We combine (1) and (2) to write the acceleration of macroscopic displacement ü(x, t)

ü(x, t) = 1

l

∫ l

0
ü(x, y, t)dy,

= 1

l

∫ l

0

(E(y)u(x, y, t),y),y

ρ(y)
dy. (5)

3 Multiscale Analysis

As shown in Fig. 1, there are three interfaces inside a unit cell given its periodicity. There-
fore, the continuity of displacement and stress across these three interface requires the
following conditions

u(x, αl−) = u(x, αl+) (6a)

Esu(x, αl−),y = Ecu(x, αl+),y (6b)

u(x, αl + βl−) = u(x, αl + βl+) (6c)

Ecu(x, αl + βl−),y = Esu(x, αl + βl+),y (6d)

u(x + l, 0, t) = u(x, l, t) (6e)

Esu(x + l, 0, t),y = Esu(x, l, t),y (6f)

where the +/− superscripts represent the right side of the interface and the left side of the
interface, respectively.

For the purposes of demonstration, we adopt the following anzatzes for the microstruc-
tural displacement, for the stiff constituent inside the unit cell we assume a quadratic
displacement field and for the compliant constituent we assume the displacement is cubic.
We will generalize the theory to arbitrary order polynomials for more accuracy in the sequel.
Here, we use polynomials to approximate the displacement inside a constituent simply
for the convenience it will bring for the symbolic calculations we perform. Therefore, the
microstructural displacement at the macroscopic coordinate x according to our assumptions
can be written as

u(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m(x)y2 + a(x)y + b(x) 0 ≤ y < αl,

r(x)(y − αl)3 + c(x)(y − αl)2

+d(x)(y − αl) + e(x) αl < y < (α + β)l,

n(x)(y − αl − βl)2

+f (x)(y − αl − βl) + g(x) (α + β)l < y ≤ l,

(7)

where a(x), b(x), c(x), d(x), e(x), f (x), g(x), m(x), n(x) and r(x) are coefficients that
are only dependent on the macroscopic coordinate x. Determining these coefficients will
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allow us to use (5) to define the elastodynamic problem in terms of the macroscopic
displacement.

In order to determine the coefficients, we will require one additional order of continuity
at the interfaces. To demonstrate, consider the interface at y = αl, we’ll require

ü(x, αl−) = ü(x, αl+),

and using (2) we have

E(αl−)

ρ(αl−)
u(x, αl−),yy = E(αl+)

ρ(αl+)
u(x, αl+),yy . (8a)

Following this assumption, we then have two more equations of continuity inside a unit cell

Ec

ρc

u(x, αl + βl−),yy = Es

ρs

u(x, αl + βl+),yy, (8b)

Es

ρs

u(x + l, 0),yy = Es

ρs

u(x, l),yy . (8c)

Substituting (7) into. (1) and integrating along with the interface continuity equations (6)
and (8) gives

lu(x) = α3l3(m(x) + n(x))

3
+ α2l2(a(x) + f (x))

2
+ αl(b(x) + g(x))

+c(x)β3l3

3
+ d(x)β2l2

2
+ e(x)βl + r(x)β4l4

4
,

b(x + l) = n(x)α2l2 + f (x)αl + g(x),

a(x + l) = f (x) + 2n(x)αl,

m(x + l) = n(x),

e(x) = m(x)α2l2 + a(x)αl + b(x),

Ecd(x) = Es(2m(x)αl + a(x)),

Ec

ρc

c(x) = Es

ρs

m(x),

g(x) = r(x)β3l3 + c(x)β2l2 + d(x)βl + e(x),

Esf (x) = Ec(3r(x)β2l2 + 2c(x)βl + d(x)),

Es

ρs

n(x) = Ec

ρc

(3r(x)βl + c(x))
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Fourier transforming each of the equations gives

lU(ξ) = α3l3(M(ξ) + N(ξ))

3
+ α2l2(A(ξ) + F(ξ))

2
+ αl(B(ξ) + G(ξ))

+C(ξ)β3l3

3
+ D(ξ)β2l2

2
+ E(x)βl + R(x)β4l4

4
,

ei2πlξB(ξ) = N(ξ)α2l2 + F(ξ)αl + G(ξ),

ei2πlξA(ξ) = F(ξ) + 2N(ξ)αl,

ei2πlξM(ξ) = N(ξ),

E(ξ) = M(ξ)α2l2 + A(ξ)αl + B(ξ),

EcD(ξ) = Es(2M(ξ)αl + A(ξ)),

Ec

ρc

C(ξ) = Es

ρs

M(ξ);
G(ξ) = R(ξ)β3l3 + C(ξ)β2l2 + D(ξ)βl + E(ξ),

EsF (ξ) = Ec(3R(ξ)β2l2 + 2C(ξ)βl + D(ξ)),

Es

ρs

N(ξ) = Ec

ρc

(3R(ξ)βl + C(ξ)),

where the uppercase function symbols are used to represent the Fourier transform of the
corresponding lowercase symbols. Now solve for A(ξ)

A(ξ) = 12(ei2πlξ − 1)(2α ρs

ρc
+ β)U(ξ)

l2(a0 + a1ei2πlξ + a2ei4πlξ )
, (9)

where a0, a1, a2 are dimensionless coefficients determined by material properties

a0 = 4
Es

Ec

αβ2 + Es

Ec

β3 + 4α3 ρs

ρc

+ 6α2β, (10a)

a1 = 48
Es

Ec

α2β
ρs

ρc

+ 24
Es

Ec

αβ2 ρs

ρc

+ 16
Es

Ec

αβ2 + 10
Es

Ec

β3

+88α3 ρs

ρc

+ 48α2β
ρs

ρc

+ 36α2β + 24αβ2, (10b)

a2 = 4
Es

Ec

αβ2 + Es

Ec

β3 + 4α3 ρs

ρc

+ 6α2β = a0. (10c)

Returning to the macroscale equation of motion (5), we integrate and substitute (7)

u(x),tt = 1

l

∫ l

0

(E(y)u(x, y),y),y

ρ(y)
dy,

= 1

l(2αρs + βρc)
(E(y)u(x, y),y)

∣∣∣y=l

y=0
,

= 1

l(2αρs + βρc)
Es(u(x + l, 0),y − u(x, 0),y),

= 1

l(2αρs + βρc)
Es(a(x + l) − a(x)). (11)
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Now substitute (9) and (10) into (11) and utilize the definition of an inverse Fourier
transform to give

u(x0),tt = 1

l(2αρs + βρc)
Es(a(x0 + l) − a(x0)),

= Es

l(2αρs + βρc)

∫ +∞

−∞
(ei2πlξ − 1)A(ξ)ei2πξx0dξ

= Es

l(2αρs + βρc)

∫ +∞

−∞

12(ei2πlξ − 1)2(2α ρs

ρc
+ β)U(ξ)ei2πξx0

l2(a0 + a1ei2πlξ + a2ei4πlξ )
dξ

= Es

ρc

∫ +∞

−∞
12(ei2πlξ − 1)2ei2πξx0U(ξ)

l2(a0 + a1ei2πlξ + a2ei4πlξ )
dξ . (12)

The Fourier transform of u(x) is

U(ξ) =
∫ +∞

−∞
u(x)e−i2πξxdx. (13)

Substituting (13) into (12) gives

u(x0),tt = Es

ρc

∫ +∞

−∞

∫ +∞

−∞
12(ei2πlξ − 1)2u(x)ei2πξ(x0−x)

l2
(
a0 + a1ei2πlξ + a2ei4πlξ

) dxdξ,

= Es

ρc

∫ +∞

−∞

(∫ +∞

−∞
12(ei2πlξ − 1)2ei2πξ(x0−x)

l2(a0 + a1ei2πlξ + a2ei4πlξ )
dξ

)
u(x)dx,

= Es

ρc

∫ +∞

−∞
ω(x0 − x)u(x)dx. (14)

where Es

ρc
ω(x0 − x) will be the kernel function of the model and the influence function

ω(x0 − x) is defined as

ω(x0 − x) =
∫ +∞

−∞
12(ei2πlξ − 1)2ei2πξ(x0−x)

l2(a0 + a1ei2πlξ + a2ei4πlξ )
dξ, (15)

which is the inverse Fourier transform of

	(ξ) = 12(ei2πlξ − 1)2

l2(a0 + a1ei2πlξ + a2ei4πlξ )
.

Notice that	(ξ) is a periodic function with period 1/l, therefore it can be written as Fourier
series

	(ξ) =
+∞∑

n=−∞
cne

i2nπlξ , (16)

where

cn = l

∫ 1
l

0
	(ξ)e−i2nπlξdξ . (17)
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Substituting (16) into (15) gives

ω(x0 − x) =
∫ +∞

−∞
	(ξ)ei2πξ(x0−x)dξ,

=
+∞∑

n=−∞
cn

∫ +∞

−∞
ei2πξ(x0+nl−x)dξ,

=
+∞∑

n=−∞
cnδ(x0 + nl − x). (18)

where δ is the Dirac delta function. The kernel ω(x0 − x) turns out to be a discrete kernel
and the discretization length scale is l coinciding with the microscopic length scale. This
makes sense because the macroscopic displacement (1) is defined by taking the average
displacement of every l interval. We can further simplify (14) using the notation of Fourier
transform (F ) and the convolution operator (∗)

u(x0),tt = Es

ρc

∫ +∞

−∞
ω(x0 − x)u(x)dx,

= Es

ρc

((F−1	) ∗ u)(x0), (19)

where F−1 is the inverse Fourier transform operator. Performing Fourier transform on both
sides of (19) gives

F(u(x0),tt )(ξ) = Es

ρc

F(F−1	)(ξ) · Fu(ξ),

= Es

ρc

	(ξ)Fu(ξ). (20)

If we allow the length of unit cell l → 0 then 	(ξ) will converge as shown

lim
l→0

	(ξ) = lim
l→0

12(ei2πlξ − 1)2

l2(a0 + a1ei2πlξ + a2ei4πlξ )
,

= 12(−4π2ξ2)

a0 + a1 + a2
. (21)

Substitute (10) into (21) and simplify the equation with 2α + β = 1, we have

lim
l→0

	(ξ) = −4π2ξ2

(β Es

Ec
+ 2α)(2α ρs

ρc
+ β)

. (22)
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Therefore, with (19) and (22) we can evaluate the limit of u(x0),tt with a Fourier transform

lim
l→0

F(u(x0),tt )(ξ) = lim
l→0

Es

ρc

	(ξ)Fu(ξ),

= Es

ρc

−4π2ξ2

(β Es

Ec
+ 2α)(2α ρs

ρc
+ β)

Fu(ξ),

= −4π2ξ2(
2α
Es

+ β
Ec

)
(2αρs + βρc)

Fu(ξ),

= 1(
2α
Es

+ β
Ec

)
(2αρs + βρc)

u(x0),xx, (23)

and because the Fourier transform operator is continuous, we can conclude that

lim
l→0

u(x0),tt = Eave

ρave
u(x0),xx, (24)

where Eave and ρave are the homogenized elastic modulus and density

Eave = 1
2α
Es

+ β
Ec

, ρave = 2αρs + βρc,

which demonstrates consistency of our nonlocal model and the classical homogenization
theory [8].

Now we will make a few remarks about important properties of the discrete influence
function cn.

Remark 3.1 cn is real and cn = c−n for all n ∈ Z.
Notice that (10) shows that a0 = a2, so cn can be written as

cn =
∫ 1

l

0
	(ξ)e−i2nπlξdξ,

=
∫ 1

l

0

12(ei2πlξ − 1)2

l(a0 + a1ei2πlξ + a2ei4πlξ )
e−i2nπlξdξ,

= 12

l

∫ 1
l

0

ei2πlξ − 2 + e−i2πlξ

a0e−i2πlξ + a1 + a2ei2πlξ
e−i2nπlξdξ,

= 12

l

∫ 1
l

0

2 cos(2πlξ) − 2

2a0 cos(2πlξ) + a1
e−i2nπlξdξ . (25)

Since 2 cos(2πlξ)−2
2a0 cos(2πlξ)+a1

is symmetric for ξ ∈ [0, 1
l
], it is straightforward to verify that cn ∈ R

and cn = c−n for ∀n ∈ Z.

Remark 3.2 |cn| is decaying exponentially.
Define complex function F(z) as

F(z) = 12(z − 1)2

l(a0 + a1z + a2z2)
, 	(ξ) = F

(
ei2πlξ

)
.
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If there exist ε > 0 and F(z) is analytical on 1− ε ≤ |z| ≤ 1+ ε, then consider the Fourier
coefficients of G(ξ) := F

(
(1 + ε)ei2πlξ

)
∫ 1

l

0
G(ξ)e−i2nπlξdξ =

∫ 1
l

0
F((1 + ε)ei2πlξ )e−i2nπlξdξ,

= (1 + ε)n
∮

|z|=1+ε

F (z)z−n dz

i2πlz
,

= (1 + ε)ncn, (26)

where the Cauchy integral theorem has been used in the last step leading to (26). The
Riemann-Lebesgue lemma requires that Fourier coefficients vanish at infinity, so we have
(1 + ε)ncn → 0 as n → ∞. Restated, |cn| is decaying exponentially, which means we can
accurately evaluate the summation (18) by truncation at a finite n.

Remark 3.3
∑+∞

n=−∞ cn = 0.
Let ξ = 0 in (15), then

+∞∑
−∞

cn = 	(0) = 0. (27)

Therefore, after we substitute (18) into (14), we can express the equation for macroscopic
displacement as

u(x0),tt = Es

ρc

∫ +∞

−∞

+∞∑
n=−∞

cnδ(x0 + nl − x)u(x)dx,

= Es

ρc

+∞∑
n=−∞

cnu(x0 + nl),

= Es

ρc

+∞∑
n=−∞

cn (u(x0 + nl) − u(x0)) , (28)

which is consistent with the Riemann discretization of the peridynamic intergral with cn

being the discrete peridynamic influence function and Es

ρc
cn being the discrete peridynamic

kernel function.

4 Higher Order Models

The highest order of displacement continuity at interfaces used in the derivation of the last
section (8) is in the form

E(y−)

ρ(y−)
u(x, y−),yy = E(y+)

ρ(y+)
u(x, y+),yy (29)

so we call the nonlocal kernel derived in the previous section the second-order nonlocal
kernel. Any higher order continuity equation at interface can be used to derive the governing
(2); therefore, we use higher order polynomials to approximate the displacement inside the
unit cell and derive a fourth-order nonlocal kernel.
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In addition to the continuity (6) we add third- and fourth-order continuity equations. The
third-order equations are

E(y−)u(x, y−),y = E(y+)u(x, y+),y,

(E(y−)u(x, y−),y),tt = (E(y+)u(x, y+),y),tt ,

E(y−)u(x, y−),tty = E(y+)u(x, y+),tty ,

E(y−)

(
E(y−)

ρ(y−)
u(x, y−)yy

)
,y

= E(y+)

(
E(y+)

ρ(y+)
u(x, y+)yy

)
,y

,

E(y−)

(
E(y−)

ρ(y−)

)
u(x, y−),yyy = E(y+)

(
E(y+)

ρ(y+)

)
u(x, y+),yyy,

and the fourth-order equations are

u(x, y−),tt t t = u(x, y+),tt t t ,(
E(y−)

ρ(y−)
u(x, y−),yy

)
,t t

=
(

E(y+)

ρ(y+)
u(x, y+),yy

)
,t t

,

E(y−)

ρ(y−)
u(x, y−),ttyy = E(y+)

ρ(y+)
u(x, y+),ttyy,

E(y−)

ρ(y−)

(
E(y−)

ρ(y−)
u(x, y−),yy

)
,yy

= E(y+)

ρ(y+)

(
E(y+)

ρ(y+)
u(x, y+),yy

)
,yy

,

(
E(y−)

ρ(y−)

)2

u(x, y−),yyyy =
(

E(y+)

ρ(y+)

)2

u(x, y+),yyyy,

Following arguments leading to (8) there will be six more equations inside the unit cell.
Therefore, we can use fourth- and fifth-order polynomial anzatzes to approximate the
displacement

u(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b4(x)y4 + b3(x)y3 + b2(x)y2

+b1(x)y + b0(x) 0 < y < αl,

f5(x)(y − αl)5 + f4(x)(y − αl)4

+f3(x)(y − αl)3 + f2(x)(y − αl)2

+f1(x)(y − αl) + f0(x) αl < y < (α + β)l,

d4(x)(y − αl − βl)4 + d3(x)(y − αl − βl)3

+d2(x)(y − αl − βl)2

+d1(x)(y − αl − βl) + d0(x) (α + β)l < y < (2α + β)l.

We then proceed with the rest of the analysis following exactly as in the previous section
using computer symbolic algebraic manipulation. In the interest of brevity, we will not show
the rather lengthy final form of the equations; however, we will demonstrate the accuracy
of the theory with numerical experiments in the next section.

5 Numerical Example

In this section, we will conduct several numerical experiments on the problem described in
Section 2 to demonstrate the accuracy of the derived nonlocal kernels in numerical simula-
tion. The geometric values used in our numerical experiments are as follows:L = 1 m, cross
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Table 1 2nd-order discrete influence function

n 1 2 3 4 ≥ 5

cn 161.3418 − 11.4752 0.8162 − 0.058 |cn| < 0.01

section are A = 10−4 m2, l = 0.02 m. The material properties values are: Es = 200 GPa,
Ec = 5 GPa; ρs = ρc = 8000 kg/m3. The bar is subjected to a time-dependent displace-
ment boundary condition ubc(t) = u0a0t

6(t−T )6[1−H(t−T )], where u0 = −5×10−5 m,
a0 is a scaling factor, H is the Heaviside function and T = 0.157 ms. Substituting these
parameters into (18) for the second-order nonlocal influence function, we get the results of
discrete influence function values shown in Table 1.

As indicated, the discrete influence function decreases rapidly with increasing n. There-
fore, we truncate the summation in (18) and only use the terms of |n| ≤ 6, which is the
equivalent to setting the horizon to be ε = 6l. In this regard, the horizon size of the non-
local kernel as well as the discrete node spacing is completely determined by material’s
microstructure and the multiscale model. We computed fourth-order and sixth-order kernels
as well and they are shown graphically in Fig. 2.

For comparison we also use a standard peridynamic kernel to solve the displacement of
the bar using the local homogenized material properties

Eave = 1
2α
Es

+ β
Ec

, ρave = 2αρs + βρc. (30)

To be specific, we use the peridynamic equation [12]

ü(x) =
∫ +ε

−ε

ωp(|ξ |)Eave

ρave
(u(x + ξ) − u(x)) dξ,

ωp(|ξ |) = 2

ε2|ξ | , (31)

where ε is the peridynamic horizon and ωp(|ξ |)Eave
ρave

is the corresponding kernel function.

Fig. 2 cn for various polynomial ansatzes
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With no guidance as to how to choose ε and the discretization node spacing in the stan-
dard model, we resort to trial-and-error to achieve the best results when comparing with
a reference solution of a highly resolved microstructural finite element model (FEM) that
accurately captures the wave dynamics of the bar. After many attempts, the peridynamic
node spacing is set to be lp = 0.005 m and horizon size is ε = 4lp . Perhaps we could
achieve better results by using an optimization framework to select the parameters, but no
choice in our trials gave near-accurate results. Of course, there are infinite choices of ωp

we could have investigated as well; our choice here reflects the one of the most common
choices found in the literature. We present midpoint displacements for the standard peri-
dynamics kernel and our microstructural derived kernels when compared with the FEM
reference solution in Fig. 3.

It is shown that the microstructural derived kernels are more accurate than the standard
peridynamics kernel. Additionally, the accuracy improves with increasing order of the poly-
nomial anatz; however, the difference between the forth-order and the sixth-order derived
kernels appears to be negligible.

Regarding the computation complexity, the nonlocal kernel methods only assign one
peridynamic node to each unit cell, while the classical FEM needs several elements per
each constituent inside unit cell in order to capture the wave dynamics accurately. Nor-
mally, a nonlocal method is computationally slower that a local method with an equivalent
discretization length scale due to the need to integrate the nonlocal interactions; how-
ever, in this case, the dispersive nature of the nonlocal model along with the derived
kernel gives good results at a lower computational cost than the fully resolved local
model.

Fig. 3 Midpoint displacement comparison of the derived nonlocal kernels and a standard peridynamics kernel
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6 Conclusions and FutureWork

The purpose of this paper is to show that nonlocal properties of solid materials and the
peridynamic kernel function should be determined by the microstructural properties if accu-
rate wave dynamics are desired. Because wave propagation plays such an important role
in dynamic fracture, this is something that should be considered carefully by the peri-
dynamics community when simulating pervasive fracture and fragmentation. Our model
problem is a one-dimensional initial/boundary-value problem with periodic microstruc-
ture. We have laid out a multiscale analysis that results in a discrete peridynamic kernel
that is used to define the macroscopic displacement. The resulting discrete peridynamic
kernel turns out to be of a sign-changing type kernel which has also been utilized by
Wildman [17] to reduce wave dispersion in linearized peridynamic models. Wildman
points out that the negative kernel values result in unstable solutions in fracture prob-
lems, something we did not consider here. Numerical experiments were conducted using
both the kernel we derive and a standard peridynamic kernel that has been used widely.
The numerical results show that our peridynamic kernel achieves better accuracy and that
increasing the order of the polynomial anzatz increases the accuracy further. Addition-
ally, our model is consistent with local homogenization theory in the limit of vanishing
horizon.

Future work should include extension of the theory presented here to higher dimensions.
However, this could prove intractable, especially for nonperiodic microstructures. Perhaps,
machine learning techniques could be used to learn the most accurate kernel function, with
respect to desired quantities of interest, e.g., dispersion relations, fracture properties, etc.,
for a given microstructure.
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