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Abstract
We introduce an efficient boundary-adapted spectral method for peridynamic transient
diffusion problems with arbitrary boundary conditions. The spectral approach transforms
the convolution integral in the peridynamic formulation into a multiplication in the
Fourier space, resulting in computations that scale as O(N logN). The limitation of
regular spectral methods to periodic problems is eliminated using the volume penalization
method. We show that arbitrary boundary conditions or volume constraints can be
enforced in this way to achieve high levels of accuracy. To test the performance of our
approach we compare the computational results with analytical solutions of the nonlocal
problem. The performance is tested with convergence studies in terms of nodal
discretization and the size of the penalization parameter in problems with Dirichlet and
Neumann boundary conditions.

Keywords Peridynamics . Nonlocal diffusion . Spectral methods . Volume penalization

1 Introduction

Nonlocal models have been introduced to address certain phenomena which local models fail
to describe satisfactorily. Delayed reaction-diffusion in biology [1], swarm of organisms [2],
pedestrian traffic [3], flocking of birds [4–6], plane waves in solids [7], elasticity of nano-
beams [8], and material damage [9, 10] are some examples of problems where nonlocal
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models are useful. Material damage models in particular are of significant interest, being used
for failure prediction of critical materials and structures. Physical features in damage (evolving
cracks and distributed failure) and small-scale heterogeneities can be naturally modeled using
nonlocal approaches [11, 12], and would be otherwise difficult to describe or prohibitively
expensive to compute with classical local approaches. Peridynamics, as a nonlocal extension
of continuum mechanics [13, 14], has been successful in modeling damage evolution and
material failure [13, 15, 16]. Dynamic brittle fracture [17–19], fatigue and thermally induced
cracking [16, 20], fracture in porous and granular materials [21–23], failure of composites [24,
25], and corrosion damage [26–30] are among some applications of this formulation in
modeling material damage.

In peridynamics (PD), material behavior at each point x depends on the interactions of that
point with all of the points x̂ in its neighborhood [14]. This neighborhood (usually a line
segment in 1D, a disk in 2D, and a sphere in 3D) centered at x is called the “horizon region” of
x and is denoted by Hx. Hx is the subdomain where nonlocal interactions exist for x.

Mathematical models of physical behavior using this approach are in the form of integro-
differential equations, as spatial derivatives in the classical PDEs are replaced by convolution
integrals that integrate the pairwise interactions of x with the points in Hx. Integration has
significantly more relaxed smoothness and continuity requirements compared with differenti-
ation, and hence, it allows for more robust handling of discontinuities, such as cracks. While
nonlocality facilitates describing material degradation and provides certain advantages for
incorporating small-scale features into large-scale models [31, 32], it also adds a significant
computational cost, due to the convolution integral involved, compared with local models.

Two types of numerical methods have been commonly used for the discretization of PD
models. One popular method that offers much flexibility for arbitrary/unguided damage/
fracture evolution is a meshfree method based on the one-point Gaussian quadrature of the
integral operator [33, 34]. If the total number of nodes in the domain is N and the number of
nodes inside the horizon of each point is M, the computational cost at each time step in an

explicit algorithm will be O(NM). Note that in one-dimension, ¼ δ
L N , where L is the length of

the domain and δ is the horizon size (see Fig. 1). Therefore, for a fixed horizon size, M itself
varies as O(N), and the computational cost is O(N2).

Finite element methods (FEM) have also been used to discretize PD models: in some of
such models, each pairwise interaction (bond) is represented as a truss element [35, 36], while
others use continuous or discontinuous Galerkin (DG) discretization methods, for example
[37–39]. In all FEM-based discretizations of PD models, explicit solutions also cost O(N2) per
time step. We note that regular FEM discretizations are not used for modeling of problems in
which discontinuities appear due to the inherent difficulties of the method (see [37]). This is
the main reason that only truss-based or DG methods have been used in PD models of failure/
fracture, in addition to the most successful, meshfree discretization.

Coupling local models (discretized, e.g., with FEM) with PD models (discretized, e.g., with
the meshfree method) has been seen as one way to increase the efficiency of simulations with
PD models [40, 41]. These approaches are only beneficial when the region where nonlocality
is helpful or dominates, covers only a small portion of the system modeled (e.g., small
localized damage or crack growth). The advantage is lost in problems in which, for example,
failure is affecting a large part of the domain [15, 19].

Note that in the methods mentioned above for discretizing nonlocal models, M increases
exponentially with the problem’s number of spatial dimensions. Indeed, assume that the length
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scale of the domain is L and the grid spacing in each direction is Δx. If δ is the radius of the

neighborhood (also called the “horizon size”, or simply “the horizon”), then N = L
Δx

� �d
and

M∝ δ
Δx

� �d
where d is the dimension of the problem. Computational cost per times step can

then be expressed as L
Δx

� �d � δ
Δx

� �dh i
.

In Fourier spectral methods, the solution is transformed to Fourier space (if the solution is
assumed periodic), and the governing equations is reformulated based on the transformed
solution. In the case of classical PDEs, spatial derivatives transform to multiplication operators,
and the PDE reduces to a system of ODEs in Fourier space, which is far easier to solve [42].
For nonlocal models, Fourier transformation disentangles the convolution integral and reduces
it to a multiplication in the spectral space. The only major cost in the spectral method is the
Fourier transform itself, and its inverse. For this, the well-known fast Fourier transform (FFT)
algorithms are available, at a cost of O(N logN) [42–44]. Not only is the cost of the Fourier
spectral method significantly lower than the two other numerical methods used to discretize
PD models, but the FFT is also easily parallelized, further increasing the potential advantages
of this approach.

Although the spectral method seems to be a promising candidate for computing
solutions to nonlocal problems, the assumption of periodicity limits its application. Most
real-world problems are not periodic. A few recent studies have introduced Fourier
spectral methods for periodic nonlocal models. For example, this method has been used
for the nonlocal Allen-Cahn equation [45], nonlocal damage models [46], and
peridynamic nonlocal operators for diffusion and wave propagation problems [47–50].
In all these cases, the problems considered were periodic. Spectral methods have also
been used for the fractional-in-space reaction-diffusion equation in rectangular domains,
where sine/cosine transforms were employed to impose homogeneous Dirichlet/

Fig. 1 Nonlocal interactions of
point x with its neighboring points
x̂ (in its horizon regionHx) in a
schematic of a peridynamic body
Ω
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Neumann boundary conditions [51]. Another method, while not spectral, uses the FFT to
diagonalize the stiffness matrixes arising in FE and collocation discretization methods for
nonlocal problems with non-periodic boundary conditions [52, 53]. Although the order
of computation is N log N, the method is restricted to simple domain shapes like a square
in 2D. The method is also dependent to the horizon shape. The authors of [52] state that
the method is not applicable to domains with complex geometry, or to heterogeneous
domains, and is challenging to use in 3D.

While the periodicity of the solution is inherent in Fourier spectral methods, there exist
ways to overcome this limitation and apply them to general problems with complex domains
and arbitrary boundary conditions [54–56]. Volume penalization is one such method.

Penalization methods have been used with the local Navier-Stokes PDE to introduce
solid obstacles/boundaries in fluid flows, without changing the equations and
discretization. A rigorous, simple volume-penalization method based on Brinkman model
for flow in porous media [57] is developed by Angot et al. [58]. In [58], a large viscous
term is added to the equation in the solid region to impose a Dirichlet (no-slip) boundary
condition for the fluid-solid contact. Kevlahan and Ghidaglia [54] used this method with
the Fourier spectral method in fluid dynamics problems. In these methods, the solution
(velocity) is penalized by a substantially higher viscosity in the solid region to enforce a
zero-velocity boundary condition. The method was applied for modeling flow over
stationary or moving solid obstacles with complex geometries, inside periodic or con-
fined fluid domains [59–61]. Volume penalization has also been used to enforce no-flux
(Neumann-type) boundary conditions in advection-diffusion problems solved with the
spectral method [62]. Another example for this efficient method is the 3D simulation of
bumblebee flight in wind flow [63, 64].

In the present study, we introduce a spectral method to obtain efficient solutions to nonlocal
equations of the peridynamic type for transient diffusion with arbitrary, non-periodic boundary
conditions, using the volume-penalization technique. In Section 2, the PD formulation and
boundary conditions implementation in PD problems are briefly discussed. Spectral methods
and volume penalization for PD problems are introduced in Section 3. Stability analysis is
provided in Section 4 and two examples with non-periodic BCs are solved in Section 5.
Convergence studies are provided in Section 6.

2 Peridynamic Nonlocal Formulation

We start our development of spectral methods for peridynamic models with the PD diffusion
equation in 1D. The methods described here are, however, applicable to other PD models, as
well as to any other model with convolution integrals. Equation (1) is the general form of the
PD diffusion equation in 1D [65]:

∂u x; tð Þ
∂t

¼ νLδu x; tð Þ þ f x; tð Þ ð1Þ

where x is the position in the 1D domain Ω, u(x, t) is the unknown (the solution field) at point x
and time t, ν is the diffusivity, Lδ is the PD Laplacian operator (see below), and f is a source
term. For a fixed time t , the PD Laplacian can be expressed as:

Lδu xð Þ ¼ ∫Hxμ x−̂xÞ u x ̂Þ−u xð Þð �dx ̂½ð ð2Þ
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where μ(x) is a non-negative even function, called the kernel function that defines the nonlocal
interactions in neighborhood of spatial points [65–67]. In this work, we take μ to be an
integrable function with compact support. Since μ x̂−xð Þ ¼ μ x−x̂ð Þ, we have:

Lδu xð Þ ¼ ∫Hxμ x−x ̂Þu x ̂Þdx−̂u xð Þ∫Hxμ x−x ̂Þdx ̂ð�� ð3Þ
Assume μ(x) is defined over (−∞, +∞) , with μ = 0 outside of the horizon of x=0. With μ(x)

being a given function, let β ¼ ∫þ∞
−∞ μ xð Þdx. The PD Laplacian becomes [66]:

Lδu ¼ μ*u−βu ð4Þ
where (∗) denotes the convolution integral operation.

2.1 Peridynamic Boundary Conditions

In problems specified by classical local theories, constraints are in the form of boundary
conditions imposed on the surfaces of the 3D domain. In nonlocal problems, constraints are in
the form of specified values on regions outside of the domain, where they have nonlocal
interactions with parts of the domain [68]. Therefore, in the nonlocal problems constrained-
volume and volume-constraints are used instead of boundaries and boundary conditions,
respectively [68]. Such description of course depends on the domain definition. For example,
volume constraints may also be considered to be inside the domain. In this study however, the
domain refers to the space where u(x, t) is not specified and is solved for. Nevertheless, in
many practical applications of peridynamics, imposing local-type boundary conditions is
desired, for practical reasons.

Local boundary conditions can be enforced on a peridynamic body (Ω), for example, via
extending the domain by δ in the normal direction of the surface ∂Ω. Quantities on the
constrained volume, which is the domain extension Γ, are specified such that the local
boundary condition is effectively reproduced on ∂Ω [69–72]. Values on Γ are, in fact, volume
constraints acting to enforce local boundary conditions. Figure 2 schematically shows the
peridynamic body Ω, its boundary ∂Ω, and the constrained-volume Γ.

Fig. 2 Schematic of a peridynamic
domain (Ω), its boundary (∂Ω),
and its constrained volume (Γ)

Journal of Peridynamics and Nonlocal Modeling (2020) 2:85–110 89



One way to impose volume constraints on Γ with minimal or no difference from imposing
local boundary conditions on ∂Ω, is the scheme discussed in [69, 70], known as the “fictitious
nodes method.” The terminology of this scheme refers to Γ as a “fictitious” region since it is
not a part of the domain. Note that in 2D and 3D this method will not be exact except for the
simplest geometries [70]. In this scheme, the volume constraints are implicit and time-
dependent, i.e., values on Γ vary in time and are related to the values in the body Ω at that
time. This type of implicit volume constraint can effectively impose a local BC on Ω. The
enforcement of some local BCs using the fictitious region method for the one-dimensional case
follows.

To enforce the local Dirichlet BC:

u �; tð Þj∂Ω ¼ u δ; tð Þ ¼ ub ð5Þ
with respect to the 1D configuration in Fig. 3, and a given ub, values on Γ should satisfy:

u �; tð ÞjΓ ¼ uΓ x; tð Þ ¼ 2ub−u 2δ−x; tð Þ ð6Þ

In order to apply the local Neumann BC:

∂u
∂x

�; tð Þ
����
∂Ω

¼ ∂u
∂x

δ; tð Þ ¼ qb; ð7Þ

given qb, values in the constrained region are set as:

u �; tð ÞjΓ ¼ uΓ x; tð Þ ¼ −2qb δ−xð Þ þ u 2δ−x; tð Þ ð8Þ
With this approach, similar to the Dirichlet BC, the Neumann BC is imposed by assigning
value of u rather than the values of its derivative. Note that Eq. (8) is new and different from
the approach given in [69] where a source term is added in order to reproduce the Neumann
BC. This specific form of Eq. (8) will show advantages when the spectral method will be used
(see Section 3.2 below).

3 Spectral Method for Peridynamics with Volume Penalization

3.1 Spectral Method

Let u(x,t) be a complex-valued function defined over the periodic domain x ∈ T=[0,2π] with 0
identified with 2π, and evolve in time t > 0. Then u(x, t) can be expressed with the infinite
Fourier series in space:

Fig. 3 Schematic for the fictitious
domain (constrained volume Γ)
and the peridynamic body Ω in
1D. Time-dependent values on Γ
can be set to enforce some pre-
scribed local boundary condition at
x = δ
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where k is integer, ζ ¼ ffiffiffiffiffiffi
−1

p
, and:

are the Fourier coefficients of u for different values of k. Equation (10) is also called the
Fourier transform of u while Eq. (9) is the inverse Fourier transform relation.

Let the source term f(x, t) and the kernel function with the form below, be also complex-
valued functions defined over the periodic domain Τ.

μ xð Þ ¼ even function xj j≤δ
0 xj j > δ

�
ð11Þ

Then, the PD diffusion equation over the periodic domain Τ is:

∂u
∂t

¼ ν μ*Τu−βuð Þ þ f ð12Þ

where (∗Τ) denotes the “circular convolution” integral (aka “cyclic” or “periodic convolution”)
[73, 74]:

μ*Τu ¼ ∫Τμ x−x ̂Þu x ̂; tÞdx ̂ðð ð13Þ
We approximate u(x,t) by the truncated (finite) Fourier series of u:

Based on the finite Fourier series approximation, two similar, but not necessarily identical,
numerical schemes can be used for solving Eq. (12). One method is the Fourier-Galerkin
method [75] in which the following weak form is solved:

∫2π0
∂uN

∂t
−ν μN*ΤuN
� �þ νβuN− f N

� �
e−ζkxdx ¼ 0 for each k ¼ −

N
2
;…;

N
2
−1 ð15Þ

Here μN and fN are the finite Fourier series approximations for μ and f. The integration on each
term in Eq. (15) is the Fourier transform of that term. Equation (15) is then equivalent to:

(9)

(10)

(14)

(16)
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We observe that the circular convolution is transformed into a product operation of Fourier
coefficients. In the Fourier-Galerkin method the ODE in Eq. (16) is solved for the Fourier
coefficients of uN. The solution can be transformed to the physical space with the inverse
relation given by Eq. (14).

Another approach is the Fourier Collocation method [75] which is the one we will use in
the present study. This method focuses on the solution in the physical space. The approximated
solution in Eq. (14) is represented by its values at grid points xi = iΔx, with Δx ¼ 2π

N and

i ∈ {0,…,N − 1 }. In this method, uN(x, t) satisfies the strong form below at the collocation
points xi:

∂uNi
∂t

−ν μN
i *Τu

N
i

� �þ νβuNi − f
N
i ¼ 0 ð17Þ

Since μ and u are approximated by finite Fourier series, the circular convolution can be
evaluated by the inverse transform of the product of Fourier coefficients according to the
convolution theorem [74]:

where F −1 refers to the inverse Fourier transform operation.
For practical applications of this method, a discrete-level operation is required to compute

the Fourier transform and its inverse. The obvious choice is the discrete Fourier transform
(DFT) [75]:

euk tð Þ ¼ 1

N
∑
N−1

i¼0
uN xi; tð Þe−ζkxi ð19Þ

and its inverse relation (iDFT)

uN xi; tð Þ ¼ ∑
N=2−1

k¼−N=2
euk tð Þeζkxi ð20Þ

Note that euk are approximations to the exact Fourier coefficients euk .
Employing DFT, the Fourier Galerkin method yields to:

duek
dt

−ν gμN*ΤuNð Þ þ νβeuk−ef k ¼ 0 ð21Þ

By the convolution theorem for DFT [73] we obtain:

duek
dt

¼ νeμkeukΔx−νβeuk þ ef k ð22Þ

Using DFT and iDFT for transformation, the Fourier Collocation method in Eq. (17) becomes:

∂uNi
∂t

¼ νF−1
D eμkeukΔx
	 


−νβuNi þ f Ni ð23Þ

(18)
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where F−1
D denotes the inverse DFT. Let S denote the arc length of T (in our case S = 2π). If the

periodic domain of computation is not [0, S), i.e., it does not start at the origin at its left end, for
example if it is [− S

2 ;
S
2 ), then the kernel function may need to be shifted depending on the

DFT solver (see Appendix 1).
The dominant computational cost in both methods is computing the DFT and its inverse,

which are O(N logN) operations via FFT algorithms [43, 44]. This is a significant improve-
ment over the O(N2) cost for the meshfree collocation with one-point Gaussian quadrature or
the FE methods used for PD problems. The extension of the spectral method to higher
dimension is straightforward.

The above scheme works only for problems with periodic boundary conditions. We
propose a penalization scheme that will allow us to apply spectral methods to general PD
models with non-periodic boundary conditions in the next section.

3.2 Volume Penalization

We employ the volume penalization (VP) technique developed for local problems in [54, 58],
to impose arbitrary volume constraints in a general PD problem.

In this method, the one-dimensional domain Ω is extended by δ at both ends as the
constrained volume (Γ) to apply the nonlocal boundary conditions. The idea in the VP scheme
is to consider periodicity for this extended domain, i.e., Τ =Ω ∪Γ, and penalize the solution in
the constrained domain to maintain the desired constraint values (see Fig. 4).

The PD diffusion equation is extended by adding a penalization term, which is zero on Ω,
but takes large values on Γ:

∂uε x; tð Þ
∂t

¼ νLδuε x; tð Þ þ f x; tð Þ− χ x; tð Þ
ε

uε x; tð Þ−uΓ x; tð Þ½ � ð24Þ

In this equation ε is a small number called here the penalization factor, uε is the solution to the
penalized PD diffusion equation, uΓ(x, t) is the volume constraint value at point x ∈Γ and time
t, and χ(x, t) is the following mask function:

χ x; tð Þ ¼ 1 x∈Γ
0 x∈Ω

�
ð25Þ

For sufficiently small ε, the penalization term dominates on Γ:

νLδuε x; tð Þ þ f x; tð Þ≪ 1

ε
uε x; tð Þ−uΓ x; tð Þ½ �; ð26Þ

leading to:

∂uε x; tð Þ
∂t

≅−
1

ε
uε x; tð Þ−uΓ x; tð Þ½ � on x∈Γ: ð27Þ

Accordingly, this penalization term enforces an exponential decay for uε to uΓ over the
constrained domain. This effectively enforces the desired local boundary condition on ∂Ω if
uΓ(x, t) is assigned via the scheme described in Section 2. Discussion on convergence of uε to u
as ε goes to zero is provided in Section 6.

To apply the spectral method, uε is approximated with the finite Fourier series uNε on the
periodic domain (Τ). To avoid complexity in notation, let y ¼ uNε . The spatially discretized
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version of Eq. (24) in 1D for using the boundary-adapted spectral method (BASM) is:

∂yni
∂t

¼ νF−1
D eμkeynkΔx
	 


−νβyni þ f ni −
χi

ε
yni −y

n
Γ;i

	 

ð28Þ

where the superscript n refers to nth time step. A convergence study with respect to the spatial
discretization size is provided in Section 6.

Any applicable temporal integration scheme may be used to now solve the first-order ODE
in Eq. (29), and update the solution at each time step. With the Forward Euler method, for
example, we have:

ynþ1
i ≈yni þΔt

dyni
dt

ð29Þ

whereΔt is the time step. The stability restriction on the time step size for this explicit method
is derived in the next section.

Note that although in this study the penalized region is taken to be identical to the
constrained volume (Γ), it is possible to consider decoupling of the δ-thick volume constraint
and the penalization domain, where Γ is a subdomain of the penalized region. Indeed, this
would be necessary in the case of non-rectangular domains in higher dimensions. The
decoupling seems also relevant if one wishes to study the behavior of solutions when δ
approaches zero in the limit, or to study the influence of the size of the penalized region.
However, for the sake of simplicity, we take the horizon size and penalization thickness to be
identical in the present work.

4 Stability Analysis

Here we follow the stability analysis in [33] to find the restriction on time steps for the BASM
with VP using the explicit Euler time integration scheme. It can be shown that Eq. (29) in the
physical space is algebraically equivalent to:

dyni
dt

¼ ν ∑
N−1

j¼0
μi− jy

n
jΔx−νβy

n
i þ f ni −

χi

ε
yni −y

n
Γ;i

	 

ð30Þ

where μi − j = μ(xi − xj). Note that the term in the summation above is zero for all xj ∉ [xi − δ,
xi + δ]. Although similar, the discretized volume integral in Eq. (30) is not identical to one-
point Gaussian quadrature used in the meshfree method. Functions are approximated with the
truncated Fourier series, which is not the case in the conventional meshfree method.

Fig. 4 Extension of 1D peridynamic non-periodic domain (Ω ∪Γ) to the periodic domain Τ used in spectral
method with volume penalization
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With Forward Euler (first-order explicit) temporal integration, Eq. (30) becomes:

ynþ1
i −yni
Δt

¼ ν∑
j
μi− jy

n
jΔx−νβy

n
i þ f ni −

χi

ε
yni −y

n
Γ;i

	 

ð31Þ

Take:

yni ¼ λneζkxi ð32Þ
where λ is a complex number. Substituting Eq. (32) to Eq. (31), results in:

λnþ1−λn

Δt
eζkxi ¼ ν∑

j
μi− jλ

neζkx jΔx−νβλneζkxi þ f ni −
χi

ε
λneζkxi−unΓ;i
	 


ð33Þ

For simplicity, let unΓ;i ¼ 0, f ni ¼ 0, and ρ ¼ λnþ1

λn for every i and n, then:

ρ−1
Δt

¼ ν∑
j
μi− je

ζk x j−xið ÞΔx−νβ−χi

ε
ð34Þ

Since μi − j = μj − i, let p = j − i, and xp = xj − xi, we obtain:

ρ−1
Δt

¼ ν∑
p
μpe

ζkxpΔx−νβ−
χi

ε
ð35Þ

If m ¼ δ
Δx is integer, then, since μp = μ−p and x−p = − xp:

∑
þm

p¼−m
μpe

ζkxpΔx ¼ ∑
m

p¼1
μpe

ζkxpΔxþ μ−pe
ζkx−pΔx

	 

þ μ0Δx ¼ 2 ∑

m

p¼0
μpcos kxp

� �
Δx

¼ ∑
m

p¼−m
μpcos kxp

� �
Δx ð36Þ

Substituting Eq. (39) into Eq. (38) results in:

ρ−1
Δt

¼ ν ∑
m

p¼−m
μpcos kxp

� �
Δx−β

 !
−
χi

ε
ð37Þ

Define M:

M ¼ ν ∑
m

p¼−m
μpcos kxp

� �
Δx−β

 !
ð38Þ

Then:

ρ ¼ M−
χi

ε

	 

Δt þ 1 ð39Þ

To maintain stability, we seek Δt such that |ρ| ≤ 1. Therefore:

M−
χi

ε

	 

Δt þ 1

��� ���≤1 ð40Þ
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or,

−1≤ M−
χi

ε

	 

Δt þ 1≤1 ð41Þ

or equivalently:

0≤
χi

ε
−M

	 

Δt≤2 ð42Þ

In order to satisfy the left inequality in Eq. (42), since χi is either 0 or 1, and that ε and Δt are
positive quantities, we needM ≤ 0. According to Eq. (38), this imposes the following condition
on μ(x):

∑
m

p¼−m
μpcos kxp

� �
Δx≤β ¼ ∫δ−δμ xð Þdx ð43Þ

This condition holds for sufficiently small Δx, since:

∫δ−δμ xð Þcos kxð Þdx≤∫δ−δμ xð Þdx ð44Þ
Most kernel functions in use satisfy the requirement in Eq. (48).

The inequality in Eq. (44) also requires:

Δt≤
2

χi

ε
−M

ð45Þ

From Eqs. (38) and (48):

−M ≤2νβ ð46Þ
According to Eqs. (45) and (46), and that χi is either 0 or 1, the following restriction onΔt for
stable solution is suggested:

Δt≤
2

1

ε
þ 2νβ

: ð47Þ

Even if the restriction above is obtained assuming zero values for uΓ and f, we find that it is
also sufficient for obtaining stable results for the examples shown in Section 5, with nonzero
uΓ and f.

From Eq. (47), we see that penalization puts a stronger restriction on the time step
compared with the condition found with the conventional meshfree method [69]. However,
the cost due to the increased number of time steps is likely to be overcome by the gains in the
complexity order (in terms of node number) when computing the convolution integral with
FFT. Note that the increased number time steps does affect the complexity order, since
according to Eq. (47), the time step size does not depend on N.

We also note that, even though our method is purely explicit, we do not have the
standard CFL stability constraint that appears in local problems; namely, Δtmax ∝ (Δx2/
ν). Indeed, Δtmax depends on the size of the horizon size (implicitly through β), but
does not depend at all on Δx (see also [33]). While this may seem surprising at first,
as it allows for extremely high spatial resolutions to be stable with relatively low
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temporal resolutions (in contrast to local problems), in fact it is expected due to the
convolution structure of the nonlocal equation. Namely, at a given spatial location x,
the convolution integral incorporates all information within a ball of δ, which is then
propagated forward in time. Thus, the expected CFL constraint for nonlocal problems
depends on δ, which is essentially what we see in Eq. (47).

5 Example Problems and Discussion

We now compare the performance of the PD spectral method with the regular integration (one-
point Gaussian quadrature) of the convolution integral in the PD Laplacian. Then, we analyze
two one-dimensional nonlocal diffusion problems to demonstrate the capability of the BASM
introduced. The first problem has local Dirichlet boundary conditions at both ends, while the
second has local Neumann boundary conditions at both ends.

For these examples we need to select a kernel function μ(x). According to [76], one
possible choice for the kernel function is of the form:

μ xð Þ ¼ 4−αð Þ 3−αð Þ
δ 3−αð Þ 1−

xj j
δ

� �
1

xj jα ð48Þ

where α can take values 0, 1, and 2, for example (for details see [76]). For the case α = 0, we
have:

μ xð Þ ¼ 12

δ3
1−

xj j
δ

� �
ð49Þ

Chen and Bobaru [76] showed that a constructive approach to a peridynamic kernel leads to
the choice of α = 2. Here, however, we choose α = 0 for simplicity and to avoid the singularity

when calculating β ¼ ∫H0μ xð Þdx. For the case α = 0, this integral is 12
δ2
. For the other values of

α, β can be calculated using the Cauchy principal value [77].

5.1 Efficiency of the Peridynamic Spectral Method

Here we compute Lδu for u = sin(πx) with δ = 0.2 in x ∈ [−1, 1] via two methods: the direct
numerical integration using one-point Gaussian quadrature:

Lδuð Þi ¼ ∑
iþround δ=Δxð Þ

j¼i−round δ=Δxð Þ
μi− ju jΔx−β ð50Þ

and the spectral method:

Lδuð Þi ¼ F−1
D eμkeukΔx
	 


−β ð51Þ

The kernel function μ is the one defined by Eq. (49), and therefore β ¼ 12
δ2
.

Lδu is computed using both methods for several discretization sizes, with N varying
between 28 to 220. Computations are performed using MATLAB 2018a on a Dell-Precision
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T7810 workstation PC, with twenty logical Intel(R) Xeon(R) CPU E5-2687W v3@3.10 GHz
processors, and 64 GB of installed memory. The computational times for each method to
calculate Lδu for various discretization sizes are provided in Table 1.

As observed, the time for one-point Gaussian quadrature is O(N2), while the spectral
method performs even more efficient than O(N logN). The reason for the over-performance
of the spectral method may be due to the efficient FFT solver in MATLAB, which uses
optimized algorithms with respect to data size and structure.

5.2 Transient Diffusion with Dirichlet Boundary Conditions

We now solve an example of PD transient diffusion problem with local Dirichlet BCs
(inhomogeneous), using the BASM, and compare the numerical solution with the analytical
solution. Consider, for example:

u x; tð Þ ¼ 2x
L

þ e−νtsin
2πx
L

� �
ð52Þ

The function in Eq. (52) is the exact solution to the following nonlocal diffusion problem over

the domain Ω ¼ − L
2 ;

L
2

 �
:

∂u x; tð Þ
∂t

¼ νLδu x; tð Þ þ f x; tð Þ; ð53Þ

with

f x; tð Þ ¼ ν
6L2

δ4π2
cos

2πδ
L

� �
−1

� �
þ 12

δ2
−1

� �
e−νtsin

2πx
L

� �
ð54Þ

the initial condition:

u x; 0ð Þ ¼ 2x
L

þ sin
2πx
L

� �
ð55Þ

and the local Dirichlet boundary conditions:

u −
L
2
; t

� �
¼ −1 ð56Þ

u
L
2
; t

� �
¼ 1 ð57Þ

Table 1 Comparison of run-times between the one-point Gaussian quadrature and the spectral method in
calculating the peridynamic Laplacian

N (number of nodes) Gaussian quadrature time (s) Spectral method time (s)

28 = 256 1.79e−4 2.11e−5
212 = 4096 5.03e−2 1.63e−4
216 = 65,536 1.07e+1 5.04e−3
220 = 1,048,576 3.00e+3 (50 min) 6.73e−2 (67 ms)
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The manufactured solution u(x, t) in Eq. (52) has a special property: with the fictitious nodes
scheme described in Section 2, the values of u in − L

2 −δ; − L
2

 �
and L

2 ;
L
2 þ δ

� �
, satisfy the

volume constraint relationship in Eq. (6). This property then makes it easier to find the f(x, t)
above. Without this property, one can still find f(x, t) analytically, but as a relatively more
complex piecewise function.

To solve this problem with the proposed method, we select L = 2, ν = 0.2, δ = 0.2, and the
total diffusion time tmax = 15. The computational domain is then extended to
Τ ¼ Ω∪Γ : − L

2 −δ;
L
2 þ δ

 � ¼ −2:2; 2:2½ Þ, with [−2.2, −2) and (2, 2.2) being the constrained

domains Γ1 and Γ2 respectively. Note that the computational domain interval does not include
x = 2.2 due to the periodicity of the spectral method that mandates x = 2.2 be identical to x = −
2.2. Choosing the number of spatial nodes to be a power of two (N = 2P) has certain benefits in
parallelization of FFT algorithms [44]. The extended domain [−2.2, 2.2) is discretized with
N = 29 nodes. The time step and penalization factor are selected asΔt = 5 × 10−4 and =5 × 10−4,
respectively. The algorithm for the implementation of the proposed method is provided in the
Appendix 1, and the corresponding MATLAB code is provided in Online Resource 1.
According to the fictitious nodes scheme described in Section 2, volume constraint values
on Γ are calculated explicitly from Eqs. (58) and (59), using the solution on Ω at the previous
time step. For x∈Γ1 : − L

2 −δ;−
L
2

 �
:

yΓ1 xi; tnþ1
� � ¼ 2ub1−y 2δ−xi; tnð Þ; ð58Þ

where ub1 is the Dirichlet BC value given in Eq. (56), and y is uNε : the numerical solution using

the BAS method with VP. For x∈Γ2 : L
2 ;

L
2 þ δ

� �
, the equation below applies the boundary

condition:

yΓ2 xi; tnþ1
� � ¼ 2ub2−y 2Lþ 2δ−xi; tnð Þ; ð59Þ

where ub2 is the BC value given in Eq. (57). Note that the volume constraints can be applied
implicitly as well by replacing tn with tn + 1 in Eqs. (58) and (59), where one need to iterate until
ynþ1
Γ converges.
Figure 5 shows the time snapshots of the nonlocal diffusion process. We observe the

excellent match with the analytical nonlocal solution for this non-periodic problem.
The absolute error distribution, normalized by the infinity norm of the initial data function

(
u−uNεj j
u0k k∞ ) is plotted in Fig. 6. We observe the rise and decay of the error in time, in the interior

Fig. 5 Comparison between the analytical solution of a nonlocal 1D diffusion process, with non-periodic
(Dirichlet) boundary conditions, and the solution obtained by the peridynamic spectral method with volume
penalization
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region of the domain Ω, while the error near the boundaries rises and approaches to permanent
amount (see Video 1).

The maximum relative error (
u−uNεk k∞
u0k k∞ ) is plotted versus diffusion time in Fig. 7. The slope

discontinuity in this plot can be understood by observing the behavior in Video 1: the location
of the maximum relative error switches to the boundaries, as time progresses.

This plot suggests that the observed error time-evolution consists of two periods: at first, the
error in the domain interior dominates, while later the error near the boundaries becomes more
important. Our parametric studies in Appendix 2 show that the decaying error on the interior
originates from the spatial discretization and is reduced with grid refinement. The error near
the boundaries, however, depends of the penalization factor and is reduced by selecting a
smaller ε. Convergence studies for the total error in terms of discretization size and penaliza-
tion parameter are given in Section 6.

While the main benefit of the BASM for PD is its low complexity compared with the
alternative discretization methods of the nonlocal equations (the meshfree method or the FEM),
wide availability of commercial multithreaded or GPU-enhanced FFT solvers allows us to

Fig. 6 Time snapshots of the relative error in 1D nonlocal diffusion with non-periodic (Dirichlet) boundary
conditions using the peridynamic spectral method with volume penalization. a t = 5; b t = 15

Fig. 7 Variation of the maximum
relative error in time for the 1D
nonlocal diffusion example with
non-periodic (Dirichlet) boundary
conditions, using the peridynamic
spectral method with volume
penalization
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further increase computational efficiency minimal additional coding effort. For example, with
minimal modification of the code (see the Online Resource 1), we used MATLAB built-in FFT
solver on a NVIDIA Quadro K2200 GPU to further accelerate computations for the problem
described in this section, when the problem size is large. In Table 2 we show the computational
time of the BASM with and without GPU, and also the time for the meshfree method.

Note that due to the stricter stability criterion caused by the penalization, the BASM used
3 × 104 time steps to simulate the 15 s of diffusion in the example above, while the meshfree
method used only 900 steps. Nevertheless, the BAS method shows orders of magnitude gains
in efficiency compared with the one-point Gaussian quadrature.

For N = 216 or coarser spatial discretizations, GPU-based computations do not
improve the run-time compared with the CPU-only case, which is expected due to
the time consumed by data transfer onto the GPU. When the problem size is larger,
however, minimal changes to a few lines of code lead to significant speed-up (see
Table 2). Note also that MATLAB’s built-in fft function is multithreaded in 2D or
higher dimensions, but not in 1D.

5.3 Transient diffusion with Neumann Boundary Conditions

To demonstrate the capability of the proposed method in solving PD problems with
arbitrary boundary conditions, we now discuss an example with Neumann BCs.
Consider the function:

u x; tð Þ ¼ 2x
L

þ e−νtcos
2πx
L

� �
; ð60Þ

the exact solution for the nonlocal diffusion equation in Eq. (53) on the interval
– L

2 ;
L
2

 �
, with

f x; tð Þ ¼ ν
6L2

δ4π2
cos

2πδ
L

� �
−1

� �
þ 12

δ2
−1

� �
e−νtcos

2πx
L

� �
; ð61Þ

initial condition

u x; 0ð Þ ¼ 2x
L

þ cos
2πx
L

� �
; ð62Þ

and local Neumann BCs:

∂u
∂x

−
L
2
; t

� �
¼ 1 ð63Þ

∂u
∂x

L
2
; t

� �
¼ 1: ð64Þ

Similar to the previous example for Dirichlet BC, the manufactured solution in Eq. (60)
satisfies the volume constraint relationship in Eq. (8) when x ∈ Γ1 or Γ2.

For this problem, L, δ, ν, and tmax, are the same as in the previous example in Section 5.1.
We use the explicit implementation of the fictitious nodes scheme for applying the volume
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constraints corresponding to Neumann BC (see Eq. (8)). For x∈Γ1 : − L
2 −δ;−

L
2

 �
we get:

yΓ1 xi; tnþ1
� � ¼ −2qb1 δ−xið Þ þ y 2δ−xi; tnð Þ; ð65Þ

while for x∈Γ2 : L
2 ;

L
2 þ δ

� �
, we have:

yΓ2 xi; tnþ1
� � ¼ −2qb2 þ y 2Lþ 2δ−xi; tnð Þ ð66Þ

Values for both qb1and qb2 are 1 according to Eqs. (63) and (64). For the numerical solution, N,
Δt, and ε are the same as in the previous example.

Figure 8 shows the evolution in time of the numerical solution y in comparison with the
exact nonlocal solution u. The results support the fact that the BAS method is capable of
solving peridynamic problems with arbitrary boundary conditions.

As mentioned in the introduction section, volume penalization is only one way to use
Fourier spectral methods on irregular domains with arbitrary boundary conditions. Alternative
BAS methods for peridynamics can be constructed, if one employs other boundary adapting
schemes such as the smoothed boundary method [55, 56].

6 Convergence

In this section we first provide a brief background on error estimates for the volume
penalization method, and then present convergence studies with respect to the penalization
and spatial discretization for the example problem shown in Section 5.2.

Angot et al. [58] proved that the solution of Navier-Stokes equation with the volume
penalization in a periodic domain converges to the solution of Navier-Stokes equation with the

Table 2 Comparison of run-times for the transient diffusion problem between the BASM (with and without
GPU), and the meshfree method with Gaussian quadrature (GQ)

N (number of nodes) Meshfree with GQ BASM on CPU BASM on CPU+GPU

216 = 65,536 92 min 81.2 s 126 s
220 = 1,048,576 17 days 28 min 12 min
224 = 16,777,216 12 years (estimated) 9.5 h 3.2 h

Fig. 8 Comparison between the analytical solution of a nonlocal 1D diffusion process, with non-periodic
Neumann boundary conditions, and the solution obtained by the peridynamic spectral method with volume
penalization
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proper exact boundary conditions, as ε goes to zero. The error in the main domain for that case
is shown to be at most of the O(ε3/4). In the case of the classical diffusion equation, Kevlahan
and Ghidaglia [54] showed for a specific problem that the error between the penalized periodic
solution and the exact solution to the diffusion equation with non-periodic boundary condi-
tions is at most O(ε1/2). They observed that the computed error is O(ε).

While a rigorous mathematical convergence analysis and error estimate for nonlocal
diffusion equation with penalization and spectral method would be ideal, in this study we
only provide some numerical results. The complete theoretical analysis is left for the future.
We perform convergence studies on the example with two Dirichlet BCs discussed in
Section 5.2.

First we study the convergence of the penalized periodic solution uNε (the solution
to Eq. (24)), to the exact solution (Eq. (52)) of the un-penalized diffusion equation
with Dirichlet BC. To this aim, we need to choose a relatively large N, and relatively
small time step and keep them fixed while decreasing ε in each test. This makes the
discretization and temporal integration errors minor compared with the penalization
error which we want to investigate. We need to also choose a time span to approach
the steady state where according to the observations in Figs. 6 and 7 permanent
penalization error is dominated and remains relatively constant. The selected param-
eters for this convergence study are N = 215, Δt = 1.97 × 10−4, and tmax = 30, while ε−1

value varies for each test. Δt satisfies Eq. (47) restriction with the smallest penaliza-
tion factor used in this convergence study (ε = 1 × 10−4). Figure 9 shows the relative
error versus ε−1 for each test.

The results show that the penalization error varies with O(ε), which is consistent with
observations for the penalized classical diffusion equation [59].

To observe the convergence behavior with respect to spatial discretization size, we
compare the maximum error in the whole time span for various N values, while
keeping constant the relatively small values of Δt and ε. To this aim, we obtained the

error max
0< t< tmax

u−uNε
�� ��

∞
u0k k∞

, with respect to different N values in five tests with ε = 5 ×

10−6, and Δt = 9.99 × 10−6. Again, Δt satisfies the stability condition given in Eq.
(47). Results are plotted in Fig. 10.

Fig. 9 Convergence study in terms
of penalization factor for the
peridynamic spectral method with
volume penalization on the
problem with Dirichlet boundary
conditions shown in Section 5.2
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As observed, the spatial convergence rate of peridynamic BASM is O(Δx2) for this
example problem. This is similar to meshfree-collocation method with one-point Gaussian
quadrature [33].

Note that the all the comparisons of the solutions with exact solution for obtaining errors are
considered within the domain of interest Ω = T\Γ which disregards the solution values on the
penalized region Γ.

The general error of the peridynamic BASM is bounded by the summation of the penal-
ization error, spatial discretization errors (finite Fourier series approximation and DFT), and
the explicit time integration error which for Forward Euler is known to be O(Δt).

For the presented example with two Dirichlet BCs, the error of the introduced method
appears to be bounded by O(ε) +O(Δx2) +O(Δt).

7 Conclusions

In this study, we introduced a boundary-adapted spectral method (BASM) for
peridynamic (PD) transient diffusion problems with arbitrary boundary conditions.
The spectral approach transforms the convolution integral into a multiplication in
the Fourier space, resulting in computations that scale as O(N log N). We demonstrated
the efficiency of this method by comparing it with the commonly used one-point
Gaussian quadrature method for spatial integration in a peridynamic model. In 1D, a
transient diffusion problem with roughly sixteen million nodes is solved in a few
hours with the spectral method whereas the one-point Gaussian quadrature approach
would require over 12 years (!) to complete. We also showed that using MATLAB’s
built-in FFT solver on GPU (by performing minimal changes to the code) produces
significant speed-ups for the larger scale problems. The source code for this example
was provided in Online Resource 1.

A stability analysis for the peridynamic BASM (with the volume-penalization
approach) with Forward-Euler time integration for peridynamic transient diffusion

Fig. 10 Convergence study with
respect to the spatial discretization
size for the spectral method with
volume penalization on the
problem with Dirichlet boundary
conditions shown in Section 5.2
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problems suggested that the restriction on the time-step varies linearly with the
penalization factor, for a sufficiently large one. We examined the performance of
the method introduced for arbitrary boundary conditions with two examples of
peridynamic transient diffusion using local Dirichlet and Neumann boundary condi-
tions. We compared our numerical results against exact nonlocal solutions, constructed
using the method of manufactured solutions. Our convergence studies show that the
error scales linearly with the penalization factor and quadratically with the
discretization size. The method can be easily extended to other peridynamic/nonlocal
models, in 1D and in higher dimensions.
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Appendix 1. Boundary-adapted spectral method implementation for PD
diffusion in MATLAB

Here the MATLAB implantation for boundary-adapted spectral method with volume
penalization (BASM-VP) is provided. First, note that Eq. (23) can be directly used
when the periodic domain of computation is [0, S), meaning the origin locates on the
left end of the domain. If the domain of choice is [b, b + S), then the following
modified form of Eq. (23) should be used:

duNi
dt

¼ νF−1
D

eμs
keukΔx

	 

−νβuNi þ f Ni ð67Þ

where eμs
k is the DFT of the shifted kernel function:

μs xð Þ ¼ μ x−bð Þ ð68Þ
The reason is that the DFT definitions that govern the FFT solvers are based on [0, S) domain.
If b = 0, then the kernel function does not shift and Eq. (67) becomes identical to Eq. (23).

A MATLAB implementation of the peridynamic BASM with VP for the transient diffusion
example in Section 5.2 is as follows:

& Inputs:
& Physical parameters: ν, δ, f(x, t), μ(x), L, tmax

& Initial and boundary conditions: u(x, 0), u − L
2 ; 0

� � ¼ ub1, u L
2 ; 0
� � ¼ ub2

& BASM with VP parameters: N, ε
& Initialization:
& Calculate grid size: Δx ¼ Lþ2δ

N (length of the extended domain divided by N)
& Calculate time step: Δt from Eq. (47) with ν, ε, and μ(x)
& Discretize the extended domain: xi ¼ − L

2 −δ þ i−1ð ÞΔx and i = 1, 2, …, N
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& Shift the kernel function based on left-end of the extended domain and discretize:
μs
i ¼ μ xi þ L

2 þ δ
� �

& Discretize the initial condition and the Source term: y0i ¼ u xi; 0ð Þ; f 0i ¼ f xi; 0ð Þ;
& Fast Fourier transform μs

i and y0i : eμs
k ¼ FFT μs

i

� �
and ey0k ¼ FFT y0i

� �
& Define constrained regions: Γ1 ¼ xi∈ − L

2 −δ;−
L
2

 �
and Γ2 ¼ xi∈ L

2 ;
L
2 þ δ

� �
& Define the main domain: Ω ¼ xi∈ − L

2 ;
L
2

 �
& Discretize the mask function: χi =χ(xi) from Eq. (25).
& Calculate volume constraints on Γ1 and Γ2 from Eq. (58) and (59): uΓ1( Γ1, 0), uΓ2( Γ2, 0)

Define y0Γi ¼

Eq: 58ð Þ xi∈ −
L
2
−δ;−

L
2

� �
0 xi∈ −

L
2
;
L
2

� �
Eq: 59ð Þ xi∈

L
2
;
L
2
þ δ

� �

8>>>>>><>>>>>>:
& Initialize step counter: n = 0
& Initialize time: tn = 0
& Solve the transient diffusion: while tn < tmax

& Update time: tn + 1 = tn + Δt

& Update solution: ynþ1
i ¼ yni þΔt νFFT−1 eμs

k eynkΔx
� �

−νβyni þ f ni −
χi
ε yni −ynΓ;i
	 
h i

& Update the source term: f nþ1
i ¼ f i xi; t

nþ1ð Þ

& Update volume constraints: ynþ1
Γi ¼

Eq: 58ð Þ xi∈ −
L
2
−δ;−

L
2

� �
0 xi∈ −

L
2
;
L
2

� �
Eq: 59ð Þ xi∈

L
2
;
L
2
þ δ

� �

8>>>>>><>>>>>>:
& Fast Fourier transform ynþ1

i : gynþ1
k ¼ FFT ynþ1

i

� �
& Update step counter: n = n + 1

The algorithm above is for the example with Dirichlet BCs. The corresponding MATLAB
code is provided in Online Resource 1. In the case of Neumann BCs Eqs. (58) and (59) are
replaced with Eqs. (65) and (66).

Appendix 2. Discretization error versus penalization error in BASM-VP

To obtain a better understanding of error distribution on the domain for the example in
Section 5.2, and the evolution of maximum error during the diffusion process (see Figs. 6
and 7), we conducted two more simulations: one simulation with a much smaller ε compared
with the test Section 5.2, but the same N, and one simulation with a much larger N compared
with that test, but the same ε. The first simulation reveals the error behavior with respect to the
discretization, while the second one is focused on the penalization error.

Results for the first simulation with ε = 5 × 10−6, N = 29 are given in Fig. 11.
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The second simulation is performed with ε = 5 × 10−4 and N = 215. Results are given in
Fig. 12.

The discretization error rapidly grows and then decays, while the penalization error
grows near the boundaries and approaches a constant value in time. Comparing Figs.
11 and 12 with Figs. 6 and 7 in Section 5.2 (see also video 1) helps us to clearly
identify the “mixture” of the penalization and discretization errors in the example
corresponding to Figs. 6 and 7.
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