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Abstract
We construct a fractional nonlocal Newton’s law by extending Suykens’s nonlocal-in-
time kinetic energy approach to its fractional counterpart by using a nonlocal Taylor series
expansion. We derive the corresponding fractional order derivative Euler-Lagrange
equations and we discuss some of their main consequences mainly for the case of a free
particle and the case of an oscillator. Surprisingly, for the case of a time-dependent
oscillator potential, the Bagley-Torvik equation used in viscoelasticity problems is ob-
tained from nonlocal arguments. Some interesting features are obtained and discussed
accordingly.

Keywords Fractional nonlocal-in-time kinetic energy . Fractional Taylor series . Fractional
Newton’s law of motion . Bagley-Torvik equation

Fractional calculus is an old branch of mathematics which has numerous applications in different
branches of sciences and engineering [1]. It is devoted to the calculus and analysis of non-integer
order derivatives. One important implication of fractional calculus concerns the study of noncon-
servative systems in mechanics. This is fruitfully studied by means of the fractional calculus of
variations which is nowadays a subject of strong current research [2]. The validity of Noether’s
principle using the fractional calculus of variations is still obtained yet Noether’s conservation law
ceased to be valid in dissipative systems [3]. One important equation obtained in this new
framework is the fractional Euler-Lagrange equation which usually takes a number of forms
depending on the kind of fractional operators used and on the form of the action functional under
consideration. It was proved in a large number of research studies that this equation has a large
number of applications in physics and is helpful to model nonconservative mechanisms in a natural
way (see [2] and references therein). It is noteworthy that fractional derivatives are nonlocal
operators and describe asymptotic scaling systems and long-term memory effects in space and
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time [4]. The freedom in the definition of fractional derivatives allows us to introduce a large
number of actions functional and therefore obtains a good number of fractional Euler-Lagrange
equations. There are different definitions of fractional derivatives yet all of them are reduced to the
standard derivative in the integer case, e.g., Riemann-Liouville, Caputo, and Erdelyi-Kober. They
allow an ordinary interpolation among partial differential equations of very diverse properties [5].
On the other hand, nowadays, there is a large interest to deal with nonlocal dynamics since
nonlocality may connect classical mechanics to quantum mechanics. In continuum classical
mechanics, nonlocality appears in materials characterized by anisotropic nonlocality, elastic mate-
rials with couple-stress, strain-gradient in linear elasticity, micropolar elasticity, and elastic material
surfaces, among others (see [6] and references therein). However, since nonlocality is one of the
main characteristic aspects of quantum theory, its connection with classical mechanics is an
interesting research topic. One motivating approach was introduced by Feynman in 1948 and
based on the notion of nonlocal-in-time backward-forward coordinates (NTBFC) where the
position differences are shifted with respect to each other. This idea was used in 1966 by Nelson
in his seminal paper [7] which aims to derive the Schrödinger equation from classical mechanics
and more specifically from a primary stochastic process in configuration space. The NTBFC
motivated as well Nottale to construct his scale relativity which aims to combine quantum
mechanics and relativity theory by introducing a nonlocal physical state of the coordinate system
[8]. The NTBFC was also used in different frameworks, e.g., the extended Newtonian mechanics
characterized by a nonlocal-in-time kinetic energy [9], nonconservative dynamical systems [10],
and complexified Lagrangians dynamics [11], among others. In applied mathematics, nonlocal-in-
time (NLT) is used in boundary value problemsmainly in parabolic and hyperbolic equationswhere
a grouping of initial and final values of the solution is taken into account [12–15]. An interesting

class on NLT models is for us the one introduced by Suykens in [9] where the kinetic energy T

¼ mẋ2=2 is replaced by its NLT counterpart T ¼ mẋ=2ð Þ ẋ t þ τð Þ þ ẋ t−τð Þð Þ=2. Here, m is the
mass of the particle and the value of τ is a tiny time parameter relative to the time scale of the model
under study. This approach leads to a particular form of the Lagrangian holding higher-order
derivatives and therefore to a hypothetical Newton’s 2nd law of motion which contains in the
limiting case advanced and retarded terms. These higher-order derivatives (HODS) are generated by
the Taylor series expansions of terms x˙ t � τð Þ.

In this study, we propose a generalization of Suyken’s approach for the derivation of a
fractional nonlocal 2nd Newton law of motion. In fact, a generalization of Newton’s law by
replacing the classical derivative with Riemann-Liouville fractional derivative was addressed
in [16]. Nevertheless, our approach differs completely since, in [16], a fractional Newton’s law
was obtained by means of the fractional virial theorem which is free from NLT aspect. We will
show that the generalized fractional Newton’s law obtained in this work can be applicable to a
large number of nonlocal dynamical systems and will lead to many interesting fractional
differential equations like the celebrated Bagley-Torvik equation used to model viscoelastic
behavior of geological materials. Although Riemann-Liouville and Caputo fractional deriva-
tive operators are frequently used, in this work, we restrict ourselves to the fractional Taylor
series expansion based on the Jumarie’s modified Riemann-Liouville fractional derivative [17,
18]. In fact, Jumarie’s fractional derivative is interesting for three main reasons: first, the
derivative of a constant is 0 in contrast to the Riemann-Liouville fractional derivative which
results in a time-dependent function; second, the function to be differentiated is not essentially
differentiable in contrast to Caputo’s fractional derivative; and third, a fractional Taylor series
expansion was introduced by means of this novel fractional derivative.
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In Suykens’s approach, the kinetic energy T ¼ mẋ2=2 for a particle of constant mass m and
moving with velocity x˙ tð Þ is replaced by its NLT counterpart
T ¼ mẋ=2ð Þ ẋn t þ τð Þ þ ẋn t−τð Þð Þ=2; n∈N . Performing first Taylor expansions of xn(t ± τ) as
follows [9]:

xn t þ τð Þ≈x tð Þ þ ∑
n

k¼1

τ k

k!
x kð Þ tð Þ≡ ∑

n

k¼0

τ k

k!
x kð Þ tð Þ; ð1Þ

xn t−τð Þ≈x tð Þ þ ∑
n

k¼1

−τð Þk
k!

x kð Þ tð Þ≡ ∑
n

k¼0

−τð Þk
k!

x kð Þ tð Þ; ð2Þ

and deriving both Eqs. (1) and (2) with respect to time, we find:

Since the kinetic energy contains nonlocal terms, the Lagrangian of the system defined by Lτ,

n = Tτ, n −U is nonlocal and accordingly the Euler-Lagrange equations contain higher-order

derivatives, which is the stationary solution to the action functional S ¼ ∫t ft0 Lτ ;ndt under the
assumption that the action functional is subject to given boundary conditions δx(j)(t0) =
δx(j)(tf) = 0, j = 0, 1, 2, ..., N − 1:

∑
nþ1

j¼0
−1ð Þ j d

j

dt j
∂Lτ ;n
∂q jð Þ ¼ 0; ð4Þ

where qi(t) are independent variables such that qi ¼ q˙ i−1; i ¼ 1; 2; :::;N−1, q0 = x, and q = x0.
This gives after some algebra:

mqþ m ∑
n

k¼1

1− −1ð Þkþ1
� �

1þ −1ð Þk
� �

4k!
τ kq kþ2ð Þ ¼ −

∂U
∂q

¼ F; ð5Þ

U is the kinetic potential and F is the force. These are the main points introduced by Suykens
in his nonlocal approach which was proved to be successful to explain a number of quantum
discrete phenomena. In this section, a fractional generalization of this approach will be
addressed. Let us recall first that if f is a continuous function defined on R, the Riemann-
Liouville fractional derivative is defined by [5]:

0D
α
t f tð Þ ¼ 1

Γ n−αð Þ
dn

dtn
∫
t

0

f τð Þ
t−τð Þαþ1−n dτ ; ð6Þ

where 0 ≤ n − 1 ≤α < n, n ∈ℕ∗. Jumarie’s modified Riemann-Liouville fractional derivative is
defined by:

f αð Þ tð Þ≡ dα f tð Þ
dtα

¼ 1

Γ n−αð Þ
dn

dtn
∫
t

0

f τð Þ− f 0ð Þ
t−τð Þαþ1−n dτ : ð7Þ
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Since 0D
α
t t

n ¼ Γ nþ1ð Þ
Γ nþ1−αð Þ t

n−α;α∈ℝþ, then ∀t ∈ℝ∗+:

f αð Þ tð Þ ¼ 0D
α
t f tð Þ− t−α

Γ 1−αð Þ f 0ð Þ: ð8Þ

Given an open interval I ⊂ℝ and x ∈Cn(I), the generalized Taylor series are defined as follows:

xn;α t þ τð Þ ¼ ∑
n

k¼0

τk

k!
x kð Þ tð Þ þ ∑

∞

k¼1

τ k α−nð Þþn

Γ k α−nð Þ þ nþ 1ð Þ x
k α−nð Þþnð Þ tð Þ; ð9Þ

xn;α t−τð Þ ¼ ∑
n

k¼0

−1ð Þkτ k
k!

x kð Þ tð Þ þ ∑
∞

k¼1

−1ð Þk α−nð Þþnτ k α−nð Þþn

Γ k α−nð Þ þ nþ 1ð Þ x k α−nð Þþnð Þ tð Þ; ð10Þ

∀τ ∈ I, t ∈ℝ+. The following fractional Leibniz derivative rule (fg)(α) = f(α)g + fg(α) holds as

well and besides the following integration by parts rule holds: ∫ba f
αð Þ tð Þg tð Þ dtð Þα ¼ α!

f tð Þg tð Þ½ �ba−∫
b
a f tð Þg αð Þ tð Þ dtð Þα where (f, g) are continuous functions on [a, b] and the (dt)α

integral of functions f(t) and f(α)(t) are respectively defined such that ∫t0 f tð Þ dtð Þα ¼ α∫t0
t−τð Þα−1 f tð Þdt and ∫t0 f

αð Þ tð Þ dtð Þα ¼ Γ αþ 1ð Þ f xð Þ− f 0ð Þð Þ [5].
In order to extend fractionally Suyken’s approach based on Jumarie’s modified Riemann-

Liouville fractional derivative, we define the fractional NLT kinetic energy of particle with
constant mass m by:

Tn;α ¼ m
2
x˙
ẋn;α t þ τð Þ þ ẋn;α t−τð Þ

2
; ð11Þ

where:

x˙ n;α t þ τð Þ≈ ∑
n

k¼0

τ k

k!
x kþ1ð Þ tð Þ þ ∑

∞

k¼1

τ k α−nð Þþn

Γ k α−nð Þ þ nþ 1ð Þ x
k α−nð Þþnþ1ð Þ tð Þ; ð12Þ

and:

x˙ n;α t−τð Þ≈ ∑
n

k¼0

−1ð Þkτ k
k!

x kþ1ð Þ tð Þ þ ∑
∞

k¼1

−1ð Þk α−nð Þþnτk α−nð Þþn

Γ k α−nð Þ þ nþ 1ð Þ x k α−nð Þþnþ1ð Þ tð Þ: ð13Þ

The associated fractional NLT kinetic energy is therefore given by:

Tn;α ¼ m
4
x˙ ∑

n

k¼0

1þ −1ð Þk
� �

τ k

k!
x kþ1ð Þ tð Þ þ ∑

∞

k¼1

1þ −1ð Þk α−nð Þþn
� �

τ k α−nð Þþn

Γ k α−nð Þ þ nþ 1ð Þ x k α−nð Þþnþ1ð Þ tð Þ
0
@

1
A:ð14Þ

The proof is obtained directly after replacing Eqs. (12) and (13) into Eq. (11).

Remark 1: For n = 1 and α = 1, Eq. (14) is reduced to:

T1;1 ¼ m
4
x˙ ∑

1

k¼0

1þ −1ð Þk
� �

τ k

k!
x kþ1ð Þ tð Þ ¼ m

2
x˙
2
; ;

which is the standard kinetic energy.
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Remark 2:
The kinetic energy Tn, α contains higher-order fractional derivative terms and therefore the

fractional Lagrangian of the theory Ln, α = Tn, α − V takes the general form:

It is then obvious that for 0 ≤ n − 1 ≤α < n, n ∈ℕ∗, the fractional Lagrangian is the sum of two
parts: the integer part which holds merely integer derivatives and the fractional part which just
holds Jumarie’s Riemann-Liouville fractional derivatives. Since τ is too small, the fractional
Lagrangian of the theory may be approximated by:

L1;α ¼ m
2
x˙ x˙ þ 1þ −1ð Þαð Þτα

2Γ αþ 1ð Þ x αþ1ð Þ
� �

−V : ð15Þ

The Lagrangian of the theory contains therefore classical and fractional derivatives conse-

quently. Let S1;α ¼ ∫baL1;α t; x tð Þ; x˙ tð Þ; x αþ1ð Þ tð Þ� �
dtð Þα be the action functional with 0 ≤α < 1,

x ∈C1[a, b], L1, α ∈C2([a, b] ×ℝ2;ℝ) and subject to the boundary conditions x(a) = xa and
x(b) = xb. If S1, α has an extremum and x (assumed to be admissible) is an extremizer (assumed
to be admissible), then xsatisfies the following fractional Euler-Lagrange equation:

∂L1;α
∂x

−
d
dt

∂L1;α
∂ẋ

� �
−
dαþ1

dtαþ1

∂L1;α
∂x αþ1ð Þ

� �
¼ 0: ð16Þ

For the proof, the readers are referred to [19]. From L1, α, one has:

∂L1;α
∂x

¼ −
∂V
∂x

¼ Fα; ð17Þ

∂L1;α
∂ẋ

¼ mx˙ þ m
2

1þ −1ð Þαð Þτα
2Γ αþ 1ð Þ x αþ1ð Þ; ð18Þ

d
dt

∂L1;α
∂ẋ

� �
¼ mxþ m

2

1þ −1ð Þαð Þτα
2Γ αþ 1ð Þ x αþ2ð Þ; ð19Þ

∂L1;α
∂x αþ1ð Þ ¼

m
2

1þ −1ð Þαð Þτα
2Γ αþ 1ð Þ x˙ ; ð20Þ

dαþ1

dtαþ1

∂L1;α
∂x αþ1ð Þ

� �
¼ m

2

1þ −1ð Þαð Þτα
2Γ αþ 1ð Þ

dαþ1x˙

dtαþ1
≡
m
2

1þ −1ð Þαð Þτα
2Γ αþ 1ð Þ x αþ2ð Þ: ð21Þ

Replacing Eqs. (16)–(21) into Eq. (16), we obtain the fractional Newton’s 2nd law of motion:

Fα ¼ mqþ m
2

1þ −1ð Þαð Þτα
Γ αþ 1ð Þ q αþ2ð Þ: ð22Þ

Remark 3:
For α = 1, Eq. (22) is reduced to the standard Newton’s 2nd law of motion F ¼ mq.

Besides, for n even and α = 1/2, all fractional derivatives in the fractional Newton 2nd law of
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motion cancel and only the integer derivative term remains. In fact for n, even we can rewrite
Eq. (14) as:

Tn;α ¼ m
4
x˙ ∑

n=2

k¼0

1þ −1ð Þ2k
� �

τ2k

2kð Þ! x 2kþ1ð Þ tð Þ þ ∑
∞

k¼1

1þ −1ð Þ2k α−n
2ð Þþn

2

� �
τ2k α−nð Þþn

Γ 2k α−
n
2

� �
þ n

2
þ 1

� � x 2k α−n
2ð Þþn

2þ1ð Þ tð Þ

0
B@

1
CA;

and for τ < < 1, the fractional Lagrangian is approximated:

L1;α ¼ m
2
x˙ x˙ þ

1þ −1ð Þ2α
� �

τ2α

2Γ 2αþ 1ð Þ x 2αþ1ð Þ

0
@

1
A−V :

The action of the theory is S1;α ¼ ∫baL1;α t; q tð Þ; q˙ tð Þ; q 2αþ1ð Þ tð Þ� �
dtð Þα and the resulting

fractional Euler-Lagrange equation is now:

∂L1;α
∂q

−
d
dt

∂L1;α
∂q̇

� �
−
d2αþ1

dt2αþ1

∂L1;α
∂q αþ1ð Þ

� �
¼ 0:

Therefore, after evaluation of the corresponding partial derivatives, we find effortlessly:

F ¼ mqþ m
2

1þ −1ð Þ2α
� �

τ2α

Γ 2αþ 1ð Þ q 2αþ2ð Þ:

For α = 1/2, we observe that all fractional derivatives cancel and only the integer derivative
term remains.

1 Illustrations

1-(Complexified Fractional Differential Equations) As a first illustration, we consider the
case of a free particle, i.e., Fα = 0 and we set α = 1/2. Equation (22) is accordingly reduced to
the fractional differential equation:

xþ 1þ ið Þ
ffiffiffiffi
τ
π

r
x˙
5=2ð Þ ¼ 0: ð23Þ

Assuming the initial conditions x(0) = 1, x˙ 0ð Þ ¼ 0, and x 0ð Þ ¼ 0, the solution is given by [20]:

x tð Þ ¼ E7=2

ffiffiffiffi
π
τ

r
i−1
2

t7=2
� �

; ð24Þ

where Eα atαð Þ ¼ 1þ a
Γ 1þαð Þ t

α þ a2
Γ 1þ2αð Þ t

2α þ ::: is the 1-parameter Mittag-Leffler function

[21].
This solution is complexified and this is expected since the Lagrangian for 0 ≤α < 1 is

complexified. Equation (18) differs from the standard solution which gives x(t) = t and from
Suykens’s approach which gives x(t) = c1t + c2 +∑la1, l cos(ωlt) +∑la2, l sin(ωlt) where c1, c2, a1,

l, a2, l are real coefficients.
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It is notable that complexified dynamical systems and complexified classical mechanics
which are characterized by a phase space spanned by complex canonical variables are
discussed intensely in literature and the generation of complexified differential equations in
general is somewhat motivating due to their important contributions in non-Hermitian quan-
tum mechanical systems, and complexified Hamiltonian systems, among others [22]. It is
therefore interesting to obtain fractional complexified classical mechanics since fractional
classical mechanics was introduced in literature as a classical counterpart of fractional quantum
mechanics. This is an open problem that deserves a future study.

2-(Bagley-Torvik Equation) As a second illustration, we consider the case Fα = − kx + f(t),
k ∈ Rwhere f(t) is a time-dependent function and we set again α = 1/2. In the standard case, this
equation describes an oscillator with a time-dependent potential. In fact, the study of oscillators
with a time-dependent potential has attracted much interest in literature mainly in nonlinear
optics and quantum mechanics [23]. Equation (22) results into the following fractional
differential equation (after setting k/m = 1 for convenience):

xþ 1þ ið Þ
ffiffiffiffi
τ
π

r
x˙
3=2ð Þ þ x ¼ f tð Þ: ð25Þ

Surprisingly, Eq. (19) is the celebrated Bagley-Torvik equation used in the analysis of
viscoelastically damped structures [24]. In most of literatures devoted to study and analyze this
equation, the Riemann-Liouville or Caputo fractional derivatives were used and not the Jumarie’s
modified Riemann-Liouville fractional derivatives. The main differences are related to the values of
the initial conditions used, i.e., the value q(0) = 0 leads to a Bagley-Torvik equation which
traditionally is formulated with Riemann-Liouville fractional derivative rather than Caputo’s frac-
tional derivative, and besides in our argument, the fractional damping term is complexified.
However, the complexified terms may be omitted if we replace the real nonlocal time term τ by
an imaginary time, e.g., τ→ − 2iτwhich reduces Eq. (19) to the fractional Bagley-Torvik equation:
xþ 2

ffiffiffiffiffiffiffiffi
τ=π

p
x˙ 3=2ð Þ þ x ¼ f tð Þ which is characterized usually by initial conditions x(0) = 0,

ẋ 0ð Þ ¼ 0, and 0 ≤ t ≤ T. The use of imaginary time is well-known in literature and is known as
the imaginary time propagation method which is viewed as the power method used in numerical
linear algebra [25]. It is notable that for x(0) = 0 and x˙ 0ð Þ ¼ 0, the solution of Bagley-Torvik
equation coincides for both the Riemann-Liouville fractional derivative and Caputo’s fractional
derivative. The solution of this equation was given in a large number of literatures using different
computational and analyticalmethods [26–28]. Nevertheless, the substitution of fractional Riemann-
Liouville or Caputo fractional derivatives by Jumarie’s fractional derivative will not change the

solution considerably. The analysis of xþ 2
ffiffiffiffiffiffiffiffi
τ=π

p
ẋ 3=2ð Þ þ x ¼ f tð Þ with Jumarie’s fractional

derivative is motivating and it deserves to be explored in a future work. For f(t) = 0, the solution
of Eq. (19) for x(0) = 1 is approximated by [29]:

x tð Þ≈1− 4

3
ffiffiffi
π

p þ 2
ffiffiffi
τ

p
π

1þ ið Þ þ ∑
∞

n¼0

−1ð Þn
n!

t2n1Ψ1 j
nþ 1; 1ð Þ
2nþ 1;

1

2

� � j− 1þ ið Þ
ffiffiffiffi
τ
π

r
t
1
2

2
4

3
5

− 1þ ið Þ
ffiffiffiffi
τ
π

r
∑
∞

n¼0

−1ð Þn
n!

t2nþ
1
2
1Ψ1 j

nþ 1; 1ð Þ
2nþ 3

2
;
1

2

� � j− 1þ ið Þ
ffiffiffiffi
τ
π

r
t
1
2

2
4

3
5;
ð26Þ
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where:

Ψ1 j
nþ 1; 1ð Þ
2nþ 1;

1

2

� � j− 1þ ið Þ
ffiffiffiffi
τ
π

r
t
1
2

2
4

3
5 ¼ ∑

∞

j¼0

Γ nþ jþ 1ð Þ
Γ 2nþ 1þ 3þ j

2

� �
j!

− 1þ ið Þ
ffiffiffiffi
τ
π

r
t
1
2

� � j

;ð27Þ

and:

Ψ1 j
nþ 1; 1ð Þ
2nþ 3

2
;
1

2

� � j− 1þ ið Þ
ffiffiffiffi
τ
π

r
t
3
2

2
4

3
5 ¼ ∑

∞

j¼0

Γ nþ jþ 1ð Þ
Γ 2nþ 3þ j

2

� �
j!

− 1þ ið Þ
ffiffiffiffi
τ
π

r
t
1
2

� � j

; ð28Þ

Ψ1[⋅] being theWright function. Yet, a numerical package is required to give an accurate solution;
nevertheless, the lesson we learn to this stage is that fractional formulation of Suyken’s NLT
kinetic energy approach is motivating since the celebrated Bagley-Torvik equation may be
obtained from a totally different argument used in the seminal paper [7]. Besides, the use of
imaginary time is attractive since it can be helpful at the classical level. It is noteworthy that
Nelson used as well the imaginary time in his construction of quantum fields fromMarkov fields
[30]. Even in the complexified case, Eq. (19) is motivating since the extension of Noether’s
theorem in the complex domain was developed for the case of second-order differential equation
[31–34]. It is therefore interesting to investigate about solutions of Eq. (19) in the future.

To conclude, we have developed a fractional version of Suyken’s nonlocal kinetic energy
approach based on Jumarie’s fractional derivative which is a modified version of the Riemann-
Liouville fractional derivative since the fractional Taylor series may be used safely.We restricted our
analysis for α= 1/2 and to τα-order.We have derived the fractional Newton’s 2nd law of motion Fα,
andwe have discussed two independent cases:Fα= 0 andFα= − kx+ f(t). For the first case,we have
obtained a complexified fractional differential equation where the solution depends on the 1-
parameter Mittag-Leffler function. Such a complexified solution is motivating since differential
equations of integer orders in the complex domain are attractive and may have interesting conse-
quences in classical mechanics, e.g., the dynamics of the complexified simple pendulum. One
therefore expects that complexified fractional differential equations may also have interesting
features that deserve to be deciphered. For the second case, surprisingly, a complexified version of
the celebrated Bagley-Torvik equation is obtained. The complex damping term may be removed if
the real-time parameter τ is replaced by an imaginary time term, a technique largely used in quantum
theory and numerical linear algebra. Different values of αmay be chosen and a number of fractional
differential equations may be obtained and analyzed accordingly. We hypothesize that the fractional
model constructed here which is based on Suyken’s nonlocal kinetic energy approach is motivating
and deserves future considerations. A number of points are required in the future, e.g., the fractional
Hamiltonian of the theory, the study of Bagley-Torvik equation based on Jumarie’s fractional
derivatives, and the analysis of complexified fractional differential equations, among others.
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