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Abstract
In small arterial vessels, fluid mechanics involving linear viscous fluid does not reproduce experimental results that
correspond to non-parabolic profiles of velocity across the vessel diameter. In this paper, an alternative approach is pursued
introducing long-range interactions that describe the interactions of non-adjacent fluid volume elements due to the presence
of red blood cells and other dispersed cells in plasma. These non-local forces are defined as linearly dependent on the
product of the volumes of the considered elements and on their relative velocity. Moreover, as the distance between two
volume elements increases, the non-local forces decay with a material distance-decaying function. Assuming that decaying
function belongs to a power-law functional class of real order, a fractional operator of the relative velocity appears in the
resulting governing equation. It is shown that the mesoscale approach involving Hagen-Poiseuille law is able to reproduce
experimentally measured profiles of velocity with a great accuracy. Additionally as the dimension of the vessel increases,
non-local forces become negligible and the proposed model reverts to the classical Hagen-Poiseuille model.

Keywords Blood flow · Non-local model · Mesoscale approach · Fractional calculus · Non-local fluid

1 Introduction

The rheological behavior of blood has been investigated
from the nineteenth century and it is still an open debate.
Indeed, the characteristic of blood flow inside vessels
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strongly affects stresses that are transmitted to the vessels
wall, thus affecting the prediction of the wall shear
stress related to the insurgence of arterial wall diseases
as aneurysms and stenosis. For these reasons, analytical
models capable to accurately predict the main features of
blood flow inside human arteries are essential in order to
better understand mechanism of appearance of aneurysms
and consequence in blood supply downstream the aneurysm
or stenosis. The first model for blood flow inside arterial
vessels is the well-known Hagen-Poiseuille (HP) law [1],
that is used for large arterial vessels [2], derived assuming
Newtonian fluid and providing parabolic profile of velocity
along the diameter of a circular vessel. For capillary arterial
vessels, experimentally measured profiles of velocity are
not parabolic [3]; hence, the HP model is not suitable for
this kind of problems. In case of capillary vessels, the
Casson model is certainly more reliable of the HP [2]; since
this law considers a non-linear relationship between shear
stress and shear rate, it leads to a non-linear governing
equation and piece-wise profile of velocity across the
vessel diameter. In a such a way, it has been shown
that the results are in good agreement with experimental
observations, to the price to deal with a non-linear model.
In the context of recent advanced mechanical modelling, the
presence of apparent non-linearity among state variables is
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considered among the constitutive relations in the cause-
effect relations. However, in several problems involving
inherent material heterogeneity with length scale similar
to the geometry of the considered problem, the use of
mesoscale approaches in linear context, yields satisfactory
prediction of experimental data [4]. In this context, the non-
local mechanics, defined in terms of gradients [5–7] or
integrals [8, 9] of the state variables of the problem, provides
interesting forecast of wave dispersion and shear bands as
well as strain localization in mechanical interfaces [10, 11].
Non-local approaches result into mesoscale applications of
continuum mechanics theory involving non-homogeneous
media introducing the non-local terms to account for the
heterogeneity of the representative volume elements of the
considered problem. Non-local theories in fluid mechanics
context have been proposed to represent the motion of
fluids in microvessels [12–17]. These approaches are used
in order to capture non-local contributions by means of
additional state variables (such as relative displacements) in
the transport equations of the problems but without specific
physical representation.

This approach has been recently overcome by some of
the authors introducing a mechanically based model of
material long-range interactions [18] that generalizes the
peridynamics approach presented at the beginning of the
century [19], in the sense that it involves both local and
non-local interactions. Several studies of the mechanically
based non-local mechanics have been presented in recent
scientific literature [20–24] also involving fractional-order
calculus, that is a generalization of the well-known classical
differential calculus in terms of real (or complex) order of
differintegration [25, 26].

For the abovementioned reasons, in this paper, an
alternative mesoscale approach is proposed. The model
is based on the HP law that is enriched with non-local
forces mutually exerted by non-adjacent fluid elements,
that are elements that contain all the phases of the fluid
and then may be considered representative of the whole
fluid domain. These forces are transmitted to relatively long
distance by relatively large cells, mainly Red Blood Cells
(RBC). These long-range interactions are constructed as
volume viscous forces scaled by an attenuation function
that decreases the forces mutually exerted by two non-
adjacent volume elements as the distance between them
increases; the approach is analogous of that successfully
used in various micro/nanomechanics problems [20–24]. It
is shown that if the attenuation function is chosen as a
power law of the distance between two volume elements, the
integral representing non-local forces reverts to a fractional
derivative operator. The advantage of this formulation is that
the governing equation remains linear and comparison with
experimentally observed velocity profiles along capillary
vessels diameter shows very good agreement, with lower

root mean square error in comparison with Casson model.
Finally, as the diameter of the vessel increases, non-local
term becomes negligible and the proposed model reverts to
the classical HP model. The paper is organized as follows:
in Section 2, the problem of Poiseuille flow is introduced;
Section 3 introduces the proposed model and best fitting
of mechanical parameters is presented; in Section 4, some
conclusions are outlined.

2 The Non-local Approaches
toMicrostructured Fluid Flow

In this section, we discuss the governing equation of the
1D axial symmetric flow in stationary conditions. First,
the Poiseuille flow for Newtonian fluid is discussed, then
in Section 2.1, the Casson model is used for deriving the
flow pattern in small capillary vessels and in Section 2.2,
non-local approaches for blood flow are briefly discussed.

Let us consider a cylindrical volume V = AL where
L and A are the length and the cross-sectional area,
respectively, of the cylinder. Volume V is referred to a
cylindrical coordinate system (r, θ, z) as reported in Fig. 1
and let us assume that a pressure drop of �p = p(r, θ, 0) −
p(r, θ, L) is applied at the two sides of the cylinder. In such
circumstances, the fluid flow in the considered cylinder is
axi-symmetric and linear momentum balance on a volume
element Fig. 1b along the flux direction reads

[
tzz(r, θ, z + �z) − tzz(r, θ, z)

]
r�θ�r

+ [
tθz(r, θ + �θ, z) − tθz(r, θ, z)

]
�r�z

+trz(r + �r, θ, z)(r + �r)�z�θ

−trz(r, θ, z)r�z�θ = Dρvz

Dt
r�z�θ�r (1)

where ρ is the fluid density ρ(r, θ, z, t) and D
Dt

denotes
total derivative. Equation 1 may be rewritten, after some
straightforward manipulations, as

∂trz

∂r
+ trz

r
+ 1

r

∂tθz

∂θ
+ ∂tzz

∂z
= Dρvz

Dt
(2)

Equation 2 is the balance of linear momentum in z direction
and, under the assumption of axi-symmetric flow, with the
additional assumptions of stationary flow (Dρvz/Dt = 0)
the balance equation in Eq. 2 yields

∂trz

∂r
+ trz

r
= −∂tzz

∂z
= −�p

L
(3)

where we assumed that a constant pressure gradient �p/L

is applied at z = 0 and z = L along the cylindrical domain.
Equation 3 is a differential equation for the shear stress
trz(r); in order to be solved, it is necessary to introduce the
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Fig. 1 Blood vessel model
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rheological behavior, that in the case of Newtonian fluid
reads:

trz = μ
∂vz

∂r
= μ

∂

∂t

∂uz

∂r
= μγ̇rz (4)

where γ̇rz is the rate of the change of the displacement
uz = uz(r) of the generic particle inside the control volume
and μ is the viscosity parameter. Equation 4 is a constitutive
equation that relates the shear stress to the shear velocity in
the actual configuration of the fluid, and, after substitution,
we get

μ
d2vz

dr2
+ μ

r

dvz

dr
= −�p

L
(5a)

vz(−R) = 0; vz(R) = 0 (5b)

being R the diameter of the cylinder, that may be solved
with the additional boundary conditions in Eq. 5b for the
velocity at the border of the domain to yield

vz(r) = R2 − r2

4μ

�p

L
(6)

that represents a parabolic velocity profile along the
diameter of the considered circular cross-section.

2.1 The Non-NewtonianModel of Blood Flow in
Small Diameter Vessels

The experimental evidences of the velocity profile in small-
diameter vessels show a strong deviation from the parabolic
profile predicted by Newton constitutive equation. Such a
drawback, observed at the beginning of the fifties of last
century is known to be due to Fahreius-Lindqvist effect
and Rouleaux formations and involves a self-organization
of the RBCs in a microstructure. The phenomenological
constitutive model capable to handle this effect is the so-
called Casson model, that reads
√

trz(r) = √
τ0 + √

μ (γ̇rz)
1/2 (7)

where τ0 is a yield shear stress and μ is a viscosity
parameter as in the Newtonian model. Equation 7 is a
non-linear constitutive law that, by the introduction in the
balance equation in Eq. 3, leads to a non-linear governing
equation

�p

L
= 1

r

[

τ0 + μ
duz

dr
+ 2

√
τ0μ

(
duz

dr

) 1
2
]

+d2uz

dr2

[

μ + 2
√

τ0μ

(
duz

dr

)− 1
2
]

(8)

The solution to Eq. 8 is a piecewise velocity profile that may
be expressed in the form

uz(r) = R2

4μ

{
�p

L

[
1 −

( r

R

)2] − 8

3

(
2τ0
R

�p

L

) 1
2 ×

[(
1 − r

R

) 3
2
]

+ 4τ0
R

(
1 − r

R

)}
|r| > ry (9a)

uz(r) = uz(ry) |r| ≤ ry (9b)

where ry = (2τ0L)/�p. Close inspection of Eq. 9 reveals
that in the central part of the vessel, the velocity is constant;
this is related to the fact that in the region −ry ≤ r ≤
ry the yield stress τ0 is not reached, hence the velocity
gradient is zero. Although the Casson model is satisfying
in the reproduction of experimentally measured velocity
profiles, it has the disadvantage to be non-linear, hence
mathematical manipulations are not straightforward except
that for problems with simple geometry and in stationary
conditions; moreover, the concept of shear yield stress is an
idealization that, in the authors opinion, does not reflect the
real mechanics of the blood. For these reasons, in the next
sections, alternative approaches are discussed.
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2.2 Gradient and Integral Non-local Approaches
to Microstructured Blood Flow

The idea that in the presence of microstructure some non-
linear effects observed at the macroscale may be due to
linear microstructural effects is not new and it traces back at
the beginning of the seventies [8]. Recently, microstructured
fluids have been investigated in the context of gradient
models of mechanics [13, 14, 27] introducing a non-
local model of Herschal-Bulkey relation that reads in our
particular study

< |trz| − l2c
d2|trz|
dr2

− τ0 >= μ1/n|γ̇rz|n (10)

where < x >= x+|x|
2 is the positive operator, lc is a specific

internal scale that governs the magnitude of the non-local
forces modelled with the second order gradient of trz, n

is a parameter ruling the non-linearity between stress and
shear rate and τ0 is the initial yield stress. The flow transport
equation in Eq. 10 is a non-local gradient generalization of
linear non-local approach ([28]) with the introduction of a
non-local stress as (τ0 = 0, n = 1)

trz − l2c
d2trz

dr2
− τ0 = μγ̇rz = μ

dvz

dr
(11)

that can be compared with the well-known stress gradient
approaches to non-local solid mechanics in 1D reading [29]:

t (l)rz + t (nl)
rz = Eγrz (12)

where the non-local stresses t
(nl)
rz = −l2c

d2trz
dz2

is related to
the local contribution by the second order gradient operator.
The constitutive assumption in Eq. 11 may be considered
in the balance equation to yield, upon the integration, the
velocity profile of the microstructured fluid [13, 14, 27].

A different approach to non-local fluid mechanics is
provided by the integral approach [8]. Integral approach
to fluids with dilute polymers and aggregates have been
proposed in recent papers (see, e.g., [17]) assuming that the
relations among the shear stress and shear strain is provided
as:

trz(r) =
∫ ∞

−∞
η(r − r1)γ̇ (r1)dr1 (13)

where η(r − r1) is the so-called non-local viscosity kernel
and that reverts to the well-known Newtonian case as η(r −
r1) = η0δ(r − r1) with δ(·) the Dirac delta function.

The aforementioned integral relation are formally analo-
gous to the integral non-local elasticity that, in the uniaxial
case, reads:

σ(x) =
∫ ∞

−∞
gk(|x − ξ |)ε(ξ)dξ (14)

where the elastic kernel gk(·) is a material dependent
attenuation function, σ is the stress and ε is the Euclidean
strain function.

Despite the wide diffusion of integral non-local elastic
models and, as a consequence, of the non-local viscosity
model in Eq. 13, some drawbacks exist as bounded domains
are considered. Indeed, in presence of boundary conditions,
strain dependent and strain rate dependent non-local integral
models shows mathematical inconsistencies [18].

These considerations push toward a different approach to
non-local viscosity model as proposed in the next section.

3 The Fractional-Order Approach to Blood
Circulation in Small-Size Arterial Vessels

In this section, the non-local blood flow model is introduced
starting from simple observation regarding the mechanics of
blood. In particular, two main facts are taken into account:

– the blood is multiphase material, which contain a fluid
part, the plasma, and many different solid parts, such as
RBCs that are the larger and more influent cells;

– the blood is strongly heterogeneous, indeed the
Rouleaux and the Fahraues-Lindqviust effects make the
concentration of RBCs larger at the center of the vessels
than at the sides (see Fig. 2); as a consequence if the
dimensions and the position of a representative volume
are changed, different situations may be found.

In order to take into account of these peculiarities without
really modelling all the phases contained in the blood, it
is possible to adopt a mesoscale approach. In this manner,
the blood is considered as a homogeneous fluid and the
presence of RBCs and fibrinogen is taken into account
by inserting in the governing equations long range forces
mutually exerted by non-adjacent fluids elements. The
reason to introduce these forces is readily understandable if
Fig. 2 is closely inspected.

Indeed when the dimension of the vessel is comparable
to the average dimension of RBCs, that is about 8 μm, it is
difficult to define the representative volume element (RVE)
that is a volume element that contains all features and blood
and then may be considered representative of all the blood
domain. More specifically, a volume element representative
of the blood has dimensions comparable with that of the
domain, but with such dimensions of volume elements, it
is not possible to describe the blood flow in a continuous
fashion along the domain. On the other hand, if we consider
volume elements small in comparison with the dimension
of the domain they are not fully representative of the blood.
Then, in the framework of a mesoscale approach, if two
very small volume elements are taken on the boundary of
a RBC, it is reasonable to think that they interact because



92 J Peridyn Nonlocal Model (2019) 1:88–96

Fig. 2 Heterogeneity and
multiphase nature of blood. In
the circle, two non-adjacent
fluid elements mutually
exchange forces because of the
presence of the RBC

Red Blood Cells

Arterial wall

Too small RVE

Non-adjacent
interacting VEs

Too large RVE

Capillary vessels  d=10-300 m

of the presence of the RBC itself, and their interaction is
modelled here as non-local viscous forces. Starting from
this concept in the following, the proposed non-local model
will be derived, for the sake of clarity, from considerations
related to two finite volume elements, then contributions
coming from all the volume were considered and at the
end by taking the limit for the volumes that go to zero the
governing equation is obtained.
Non-local forces are thought as linearly depending on
the product between the two interacting volumes and
their relative velocity; moreover, the long-range forces are
weighted by an attenuation function that decreases the
force magnitude as the distance between the two elements
increases. Under these assumptions, the force mutually
exerted by two non-adjacent volume elements may be
written as follows for a one-dimensional problem (see
Fig. 3):

Fki = μki�Vk�Vi(vi − vk) (15)

where �Vk and �Vi are the volume of the two fluid
elements, while vk and vi are the velocities of the fluid
elements; μki is a viscous coefficient that varies with the
distance dki through an appropriate attenuation function
g(·), that is μki = μNLg(dki), being μNL a non-local
viscosity parameter of the model.

The resultant of non-local forces on the element k may
be written as follows:

Fk = μNL�Vk

N∑

i=1

�Vig(dki)(vi − vk) (16)

If we refer to the two-dimensional domain of Fig. 4 in axial
symmetric conditions, the resultant of non-local forces on
the k − th volume element may be written as

Fk = μNL�Vk

Nr∑

i=1

Nθ∑

j=1

�Vijg(dk,ij )(vij − vk) (17)

where

�Vk = rk�r�θL �Vij = ρij�ρ�ϕL (18)

are the volumes of the two considered fluid elements and
Nr and Nθ are the number of elements in which the
radial and circumferential directions have been discretized,
respectively. By taking the limits for�Vk → 0 and�Vij →
0 , the double sum reverts to a double integral as

F(r) = μNL

∫ R

0

∫ 2π

0
g(drθ,ρϕ) (v(r) − v(ρ)) ρdϕdρ

(19)

where the dependence of F , v(r) and v(ρ) from the
angular coordinates θ and ϕ has intentionally been omitted
because the problem is axial-symmetric, while for obvious
geometric reasons the same can not be done for g(drθ,ρϕ).
By considering both non-local forces and Newtonian local

DVi

mki
Fki

dki

DVk

vkvi

Fik=-Fki

Fig. 3 Non-local forces mutually exerted by the two volume elements
i and k in a one-dimensional problem
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Fig. 4 Two-dimensional axial symmetric domain (cross-section of the
circular vessel)

forces and selecting a power law attenuation function in the
form

g(drθ,ρϕ) = 1

(drθ,ρϕ)2+α
(20)

where drθ,ρϕ = ρ2+r2−2rρ cosϕ, the governing equation
is obtained as

�p

L
= μ

(
1

r

dv(r)

dr
+ d2v(r)

dr2

)

+μNLL

∫ R

0

∫ 2π

0

(v(r)−v(ρ))

(ρ2+r2−2rρ cosϕ)2+α
ρdϕdρ

(21)

which may be labelled as fractional Hagen-Poiseuille (FHP)
law. Indeed, although the integral term in polar coordinates
in Eq. 21 does not seem to be a fractional derivative, in the
paper [30] an operator analogous to that in Eq. 21 has been
proved to be a fractional derivative labelled as Central Mar-
chaud Fractional Derivative (CMFD). More specifically, if
the problem is written in cartesian coordinates, the two-
dimensional CMFD is obtained in the governing equation
as the power law attenuation function is chosen; however, in
the case the problem is expressed in polar coordinates and if
the problem is axi-symmetric, the CMFD reduces to a clas-
sical ( truncated) Marchaud fractional derivative in bounded
domain. More details can be found in the Appendix.

The solution of such a problem in analytical form is not
straightforward and it may only be found for some special
cases (very simple geometries and unbounded domain
which imply the possibility to use the Fourier/Laplace
transform method). However, accurate solutions may be
easily found by discretizing the domain and the governing
equation with a finite difference approximation that the
authors have implemented in a custom routine of the

software Matlab [31]. The computational cost associated
with the non-local Poiseuille flow is not a significant issue,
since the solution of the system with a finite difference
scheme involves only the construction of a coefficient
matrix and its inversion. Convergence of the solution is
obtained with less than 200 elements in 0.77 s in the analysis
with the custom routine in the software Matlab. On the
other hand for the Poiseuille flow using the Casson model
analytical solution is available. However, the proposed non-
local model may be convenient when complex geometries
and nonstationary conditions are studied: indeed, while the
proposed model is linear and involves only matrix inversion
for a step-by-step solution, the adoption of Casson model
implies the use of iterative algorithm in order to find the
solution at each step of the analysis.
The advantage on the use of the proposed approach
compared with the gradient or Eringen integral approaches
is that the boundary conditions can be enforced as in a
problem involving a classical local fluid. This is due to
the fact that, as it has been demonstrated in the paper
[18] considering the equilibrium equation of the volume
elements at the domain boundary, the long-range resultants
are infinitesimal of higher order with respect to the local
stress resultant. This fact is true independently of the
selected attenuation function. Then the boundary conditions
are exactly the same of those in Eq. 5b that in the context
of a finite difference approximation are enforced in a
straightforward manner.
In the next section, Eq. 21 is used in order to fit experimental
data and the simulate velocity profiles in a small arterial
vessel.

3.1 Best Fitting of Model Parameters

In [3], velocity profiles have been measured on arterioles
of rabbit mesentery. The measurement has been performed
on arterioles with diameter size in the range 17–32 μm.
In this paper, a measurement on a 32-μm diameter vessels
(Fig. (3) of ref. [3]) has been taken into consideration in
order to tune parameters of the HP model, the Casson model
and the proposed fractional model. For the Casson and
Newtonian models, least-squares method has been adopted
in order to set the parameters. For the proposed model,
since analytical solution is not available, the best fitting has
been performed by means of an iterative procedure with a
custom routine in the generic purpose software Matlab. The
procedure consists in solving the discretized system several
times varying the mechanical parameters and to assume
those set of parameters that minimize the root mean square
error (RMSE) between experimental data and analytical
results. Results of the best fitting are reported in Table 1 and
theoretical curves are contrasted with experimental data in
Fig. 5.
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Table 1 Parameters obtained by the best-fitting procedure for the HP,
Casson, and FHP model

Model μ (Pa s) τ0 (Pa) μNL (Ns/mm6) α

HP 1.23 × 10−2 – – –

Casson 2.45 × 10−3 1.79 – –

FHP 5.36 × 10−3 – 7.8 × 10−5 0.042

From Fig. 5, it is evident that the classical Hagen-
Poiseuille model is not suitable to model behavior of blood
in small arterial vessels; the Casson and the proposed non-
local model are capable of reproducing the characteristics
flattened velocity profiles that are experimentally observed.
Comparison between the Casson and the non-local model
shows that while the former has two different behaviors
along the diameter, the latter provides a velocity profile that
varies very gradually. In order to assess the accuracy of the
three models, the RMSE is used; the RMSE is defined as

RMSE =
√

∑r
i

(
vT (xi) − vm,i

)2

r
(22)

where r is the number of velocity data along the diameter,
vT is the theoretical velocity and vm is the measured
velocity. In Table 2, the RMSEs of the three models are
compared.

From Table 2, it can concluded that the proposed non-
local model represents an improvement of results obtained
with the Casson model. The proposed non-local model is a
linear model that is able to capture an apparent non-linearity
in the blood behavior. Moreover, it can be easily verified
that another desirable feature of the proposed model is that
as the diameter of the vessel increases, non-local forces
become negligible and the model reverts to the classical
Hagen-Poiseuille model.

Fig. 5 Comparison between theoretical velocity profile and experi-
mental data (black dots). HP model black dashed line, Casson model
blue thin line, FHP model red thick line

Table 2 Comparison of the RMSEs obtained with the three models
HP, Casson and FHP

Model RMSE

HP 0.6644

Casson 0.4486

FHP 0.3937

4 Conclusion

In this paper, a non-local model for the blood behavior
in small arterial vessels has been introduced. The model
is based on a mesoscale approach in which the presence
of RBCs and other cells dispersed in the blood plasma is
neglected but taken into account in the rheological behavior
of blood by adding long-range interactions between non-
adjacent fluid elements in the equilibrium equations.
The use of a power law attenuation function leads to
governing equations involving fractional derivatives. The
model has proved to be very efficient in reproducing
experimental velocity profiles without the need of non-
linearity in the rheological behavior. In comparison with
other non-local model, the proposed approach has the
advantage that boundary conditions can be enforced as in a
problem involving a local rheological behavior of the fluid.
Moreover, the model is linear and this ensure that in case
of problems with non-simple geometries the computational
effort is lower compared with the use of non-linear models.
In the future, the model may be applied to more complicated
problems and implemented in a CFD context.

Appendix: Recalls on fractional calculus

In this section, a brief introduction to the fundamentals of
fractional calculus will be given.

Consider the function f (x), x ∈ R, the left the right
Riemann-Liouville (RL) fractional integral are defined as
[25]:

(
Iα+f

)
(x) = 1

�(α)

∫ x

−∞
f (ξ)

(x − ξ)1−α
dξ (23a)

(
Iα−f

)
(x) = 1

�(α)

∫ ∞

x

f (ξ)

(ξ − x)1−α
dξ (23b)

while the RL fractional derivative are defined as
(
Dα+f

)
(x) = 1

�(1 − α)

d

dx

∫ x

−∞
f (ξ)

(x − ξ)α
dξ (24a)

(
Dα−f

)
(x) = − 1

�(1 − α)

d

dx

∫ ∞

x

f (ξ)

(ξ − x)α
dξ (24b)

where α ∈ R, 0 ≤ α ≤ 1 and �(·) is the Euler gamma
function. If f (x) is a continuous function with continuous
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first derivative, the left and right RL fractional derivatives
are coincident with the Marchaud fractional derivatives, that
may be written as follows:

(
Dα+f

)
(x) = α

�(1 − α)

∫ x

−∞
f (x) − f (ξ)

(x − ξ)α
dξ (25a)

(
Dα−f

)
(x) = α

�(1 − α)

∫ ∞

x

f (x) − f (ξ)

(ξ − x)α
dξ (25b)

The Marchaud fractional derivatives may be defined also
for a bounded domain 0 ≤ x ≤ L as

(
Dα
0+f

)
(x) = α

�(1−α)

∫ x

0

f (x)−f (ξ)

(x−ξ)1+α
dξ+ f (x)

�(1−α)xα
(26a)

(
Dα

L−f
)
(x) = α

�(1−α)

∫ L

x

f (x)−f (ξ)

(ξ −x)1+α
dξ+ f (x)

�(1−α)(L−x)α

(26b)

The definitions of Marchaud fractional derivatives
related to a single-variable scalar function may be extended
to a multi-variable scalar function. The extension is more
readable if referred to the Riesz fractional operators. Then it
is necessary to introduce Riesz fractional integral

(
Ī αf

)
(x)

and derivative
(
D̄αf

)
(x):

(
Ī αf

)
(x) = ν(α)

∫ ∞

−∞
f (ξ)

|x − ξ |1−α
dξ

= ν(α)
[(

Iα+f
)
(x) + (

Iα−f
)
(x)

]
(27a)

(
D̄αf

)
(x) = ν(−α)

∫ ∞

−∞
f (x − ξ) − f (x)

|ξ |1+α
dξ

= �(1−α)ν(−α)
[(
Dα+f

)
(x)+(

Dα−f
)
(x)

]

(27b)

where ν(±α) = [2 cos(απ/2)�(±α)]−1. The Riesz
fractional operator may be generalized to multivariate scalar
function f (x), with x ∈ R

n:

(
D̄αf

)
(x) = 1

dn,l̄(ᾱ)

∫

Rn

f (ξ) − f (x)
||ξ − x||n+α

dξ

= χ(ᾱ)

dn,l̄(ᾱ)

[(
Dα+f

)
(x) + (

Dα−f
)
(x)

]
(28)

where

dn,l(α) = βn(α)
Al(α)

sin(απ/2)
(29a)

βn(α) = π1+n/2

2α�(1 + α/2)�(n + α/2)
(29b)

Al(α) =
l∑

k=0

(−1)k−1
(

l

k

)
kα (29c)

and χ(α) = −Al(α)�(α), ᾱ = n − 1 + α, l̄ = n − 1 + l,
l = {α} + 1 and {α} is the integer part of α. The complete

demonstration of Eq. 28 is omitted here for the sake of
brevity; more information can be found in [26].

Finally, we briefly introduce the n-dimensional CMFD
as

(
Dα−f

)
(x) = α

�(1 − α)

∫

Rn

f (x) − f (ξ)

(ξ − x)n+α
J kj dξ (30)

where J kj = ikij is a Jacoby directional tensor, being
ik the unit vector associated with the direction x − ξ . In
the specific problem treated in this paper, the governing
equation written in polar coordinates and in axial-symmetric
conditions is basically a scalar governing equation, then
the Jacoby tensor reduce to unity; this is equivalent to
say that the attenuation function, that is responsible for
the appearance of fractional operator, reduces in this case
to a scalar function. As a consequence, in the governing
equation in Eq. 21, the integral term may be recognized
as the integral part of the Marchaud fractional derivative
defined in bounded domain and reported in Eq. 26. More
details can be found in [30].
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