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Abstract
Typical implementations of peridynamics use a constant or tapered micromodulus (or influence) function, the choice of
which has been shown to have a large impact on the dispersion relation. In this work, a method for computing micromodulus
function values at discretized points within a node’s horizon is presented for linearized peridynamics. The technique involves
constructing a system of equations representing the desired dispersion relation and solving for the micromodulus function
coefficients at discretized node locations. Both 1D and 2D formulations are presented. A straightforward implementation of
the method results in negative coefficients, which improve wave propagation accuracy, but results in unstable solutions of
fracture problems using a bond-breakage scheme. Two methods for addressing this issue are discussed: A hybrid method that
uses a constant micromodulus function after damage has occurred at a node, and a constrained solution that results in only
positive coefficients. The dispersion properties of the method are examined in detail, including the numerical anisotropy in
2D. Finally, results for wave propagation in 1D and 2D, static fracture, and dynamic fracture are given.

Keywords Dispersion · Fracture · Elastic wave propagation

1 Introduction

Peridynamics is a nonlocal reformulation of continuum
mechanics which allows for the treatment of discontinuities
in the displacement [26, 27], and has seen effective use
in the simulation of dynamic fracture problems [8, 12].
Peridynamics has two main formulations: bond-based,
which is restricted to certain classes of material models
(and includes restrictions on Poisson’s ratio for linear elastic
materials); and state-based, which generalizes peridynamics
to a wide range of material classes [7, 28]. In addition,
peridynamics has been extended to other fields, such as
thermomechanics [20], diffusion [3], porous flow [16, 21],
and electromigration [9].

For problems involving wave propagation, however,
peridynamics suffers from anomalous wave dispersion,
which can adversely affect the accurate simulation of
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the time-dependent deformation of linear elastic materials
[2, 4, 24]. The effects of wave dispersion are apparent in
peridynamics simulations in the form of slow wave speeds,
spurious oscillations, and wave damping [6, 10, 30, 31,
35]. The nonlocality inherent in peridynamic formulations,
while allowing for the incorporation of discontinuities and
singularities in the displacement field, is the main cause of
the anomalous dispersion. Two main approaches exist for
addressing dispersion, hybrid techniques, which use finite
element or finite difference methods in the bulk of a material
and peridynamics at fracture surfaces [1, 13, 25, 33, 34],
and alternative influence functions (rather than the standard
constant function) [4, 24]. The micromodulus or influence
function appears in the peridynamic integral formulation
and is typically constant or tapered and radially symmetric.
The purpose of this work is to extend the concept of
using the micromodulus function to alter the dispersion
characteristics to a discrete form wherein coefficients of the
micromodulus function are computed at discretized node
locations to match a given dispersion relation. A similar
approach may be found in Weckner and Silling [32], where
nonlocal constitutive models were derived using dispersion
relations for dispersive materials.

The discrete micromodulus function used here will
be computed by using a planewave representation of
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the displacement. Upon substitution into the discretized
peridynamic equation of motion, a system of equations can
be formed that enforces a specific dispersion relation at a
given number of frequencies (or wavelengths). The method
in 1D is straightforward and results in a set of coefficients
that resemble higher order finite difference coefficients. In
fact, similar techniques may be found in the finite difference
literature [14, 15, 29]. In 2D, the method is similar though
complicated by the vector displacement and two types of
waves: longitudinal and shear.

An unfortunate side effect of the improved accuracy is
that some of the micromodulus function coefficients are
negative, which causes stability issues when used with a
bond-breakage scheme for dynamic fracture. Two methods
for addressing this issue are discussed, namely, a hybrid
technique that uses the discrete micromodulus function in
the bulk and a constant micromodulus function at fracture
surfaces, and a constrained solution approach that places a
lower limit on the micromodulus function values.

The remainder of this paper is organized as follows:
First, Section 2 details the formulation of the method
in 1D and 2D. Second, Section 3 discusses several
implementation details including solution of the linear
systems and stabilization methods for modeling damage. In
Section 4, several examples of dispersion curves are given
of the discretized method, including plots of the numerical
anisotropy in 2D. Section 5 gives numerical examples
including 1D and 2D wave propagation as well as static
and dynamic fractures. Finally, conclusions are given in
Section 6.

2 Formulation

Bond-based peridynamics defines the following equation of
motion for a point x with density ρ(x) and body-force b(x)

ρ(x)
∂2

∂t2
u(x) =

∫
H

f (u(x′)−u(x), x′ − x)dVx′ +b(x), (1)

with H representing the neighborhood of x, which is
typically spherical with radius δ. Letting η = u(x′) − u(x)
and ξ = x′ − x, and expressing the stretch s in terms of the
deformed bond vector y = ξ + η as

s = |y| − |ξ |
|ξ | , (2)

the force-function is given as

f (y, ξ) = c(ξ)s
y
|y| , (3)

which models a linear elastic solid for small displacements
[27]. A linearized version of Eq. 3 is given by

f (y, ξ) = c(ξ)
ξ ⊗ ξ

|ξ |3 η. (4)

In Eqs. 3 and 4, the micromodulus function c(ξ) represents
a bond’s elastic stiffness, which may be expressed in
terms of the elastic constitutive properties (e.g., Young’s
modulus and Poisson’s ratio) by comparing the strain energy
resulting from an isotropic strain with that of a classically
elastic solid.

For a circular horizon (in 2D plane strain), the
micromodulus function with a constant influence function
is given as [19]

c(ξ) = 6λ

πδ3ν
H(δ − |ξ |), (5)

where ν is Poisson’s ratio, λ is Lamé’s first parameter,
and H(·) is the Heaviside step function. Comparing the
strain energies of the classical and peridynamic models for a
purely deviatoric deformation reveals a Poisson ratio ν = 1

4
in 3D, and ν = 1

4 and ν = 1
3 for 2D plane strain and plane

stress, respectively.
The main idea of the proposed approach is to compute

a discrete micromodulus function that matches a particular
dispersion curve at a given set of frequencies. A 1D
formulation will be given first as its presentation is
simpler. Subsequently, a 2D formulation is given, which is
complicated by the need for matching two wave speeds—
longitudinal and shear.

2.1 1D Formulation

The linearized, spatially discretized peridynamic equation
of motion in 1D is given by

ρ
∂2

∂t2
um = E

N∑
n=−N

cn

um+n − um

|xm+n − xm|vn, (6)

where the cn are the discretized values of the micromodulus
function, and vn is the length associated with a node that
appears from discretizing the integral. Further assumed in
Eq. 6 is a uniform grid spacing of Δx, so that xm = mΔx,
and that the equation is enforced at the integration nodes.
The horizon size in this discretization is δ = NΔx, so
that each node’s neighborhood (away from the boundary)
contains 2N + 1 bonds. Figure 1 gives an example of this
discretization with N = 3.

Now, a planewave representation will be used for the
displacement, given as

u = eiωt eikx, (7)

Fig. 1 Node locations in 1D with horizon
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and is substituted into Eq. 6 giving

−ρω2eiωt eikxm =E

N∑
n=−N

cnvn

|n|Δx
(eiωt eik(m+n)Δx −eiωt eikmΔx).

(8)

Next, without loss of generality, we can consider only the
equation at m = 0 and split the summation as

− ρ

E
ω2 =

−1∑
n=−N

cnvn

|n|Δx
(e−ik|n|Δx − 1)

+
N∑

n=1

cnvn

|n|Δx
(eik|n|Δx − 1). (9)

Assuming that the coefficients are symmetric (i.e., c−n =
cn) allows the summations to be combined as

− ρ

E
ω2 =

N∑
n=1

2cnvn

|n|Δx
(cos(k|n|Δx) − 1). (10)

Rather than separating the node length and micromodulus
function values, cnvn may be combined into one unknown,
say cnvn = Cn, giving

−Δxρ

2E
ω2 =

N∑
n=1

Cn

cos(k|n|Δx) − 1

|n| . (11)

Next, the linear dispersion relation ω2 = k2E/ρ may be
used to eliminate ω, ultimately giving

−Δxk2

2
=

N∑
n=1

Cn

cos(k|n|Δx) − 1

|n| . (12)

(Note that in this case a linear dispersion relation was
assumed, though in future work different dispersion
relations may be used to model dispersive materials as
discussed in Weckner and Silling [32].) Equation 12
represents one equation with N unknown coefficients Cn.
There are several techniques to form a full linear system,
though here we simply choose N wavenumbers at which
to enforce the equation. The choice of these wavenumbers
should span a range to capture both long and short
wavelength effects; thus, a small, but non-zero value is
chosen as the minimum value for k and a significant fraction
(approximately 40%) of the spatial Nyquist sampling rate is
chosen for the maximum value. In between, a set of equally
spaced values is used to complete the full set of N values.

2.2 2D Formulation

For a 2D Cartesian grid with spacings Δx and Δy and
a (in general) rectangular-shaped horizon with dimensions

2NΔx-by-2MΔy, the linearized and discretized peridy-
namic equation in 2D may be expressed as

ρ
∂2uij

∂t2
=

M∑
m=−M

N∑
n=−N

cij,mn

ξ ij,mn ⊗ ξ ij,mn

|ξ ij,mn|3
ηij,mnvij,mn,

(13)

where ξ ij,mn = xmn − xij and ηij,mn = umn − uij . As in
the 1D case, the horizon size is dictated by the grid spacings
and N and M , and the number of nodes in a horizon is given
by (2N + 1)(2M + 1). If a square horizon is assumed with
equal grid spacing, then M = N , Δx = Δy, and δ = NΔx,
though here δ represents half the side length and not a
radius. (Note that even though a square horizon is assumed,
the micromodulus function may be expressed in a way as to
form a standard, circular horizon by setting coefficients to
0 outside of a given radius.) Figure 2 illustrates the above
quantities for a square horizon.

As before, without loss of generality, we may specify
xij = 0, and consider the equation with i = j = 0. The
above can now be expressed as

ρ
∂2u00

∂t2
=

M∑
m=−M

N∑
n=−N

Cmn

|xmn|3 Ξ+
mnηmn, (14)

where, as before, the node area and coefficient are combined
into Cmn and now ηmn = umn − u00, xmn is given by

xmn = mΔxx̂ + nΔyŷ, (15)

which results in

xmn ⊗ xmn =
[

m2Δx2 mnΔxΔy

mnΔxΔy n2Δy2

]
≡ Ξ+

mn. (16)

–M

M

–N N
Fig. 2 Node locations in 2D for a square horizon. Red nodes indicate
unique coefficients
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Now, in 2D, the planewave representation of the displace-
ment is given by the following

u = Ak̂eiωt eikp·x + B(ẑ × k̂)eiωt eiks·x, (17)

where kp and ks are the wave vectors for the longitudinal
and shear waves respectively and k

p
x = kp · x̂, etc. Further,

the wavenumbers are given by

|kp|2 = ω2ρ

λ + 2μ
, (18)

|ks|2 = ω2ρ

μ
, (19)

where μ is Lamé’s second parameter and the wave vector
direction may be given by the unit vector with angle θ

k̂ = ks

|ks| = kp

|kp| = [cos θ, sin θ ]T. (20)

Substituting Eq. 17 into Eq. 14 and simplifying gives

− ω2ρ[Ak̂ + B(ẑ × k̂)] = A

M∑
m=−M

N∑
n=−N

Cmn

|xmn|3 Ξ+
mnk̂(eik

p
xmΔxeik

p
ynΔy − 1)

+B

M∑
m=−M

N∑
n=−N

Cmn

|xmn|3 Ξ+
mn(ẑ × k̂)(eiks

xmΔxeiks
xnΔy − 1). (21)

As with the 1D case, the coefficients are assumed to be
symmetric, in this case about the x = 0 and y = 0
lines, meaning that one quadrant defines the set of unique
coefficients. As we are only treating isotropic materials
here, the coefficients could further be assumed symmetric

about the y = x line, though this will not be incorporated
into the formulation as it can be enforced by using the
appropriate wave directions when solving the system of
equations. These assumptions result in

− ω2ρ[Ak̂ + B(ẑ × k̂)] = A

M∑
m=0

N∑
n=0

hmn

Cmn

|xmn|3 Ξ+
mnk̂[cos(kp

xmΔx + k
p
ynΔy) − 1]

+A

M∑
m=0

N∑
n=0

hmn

Cmn

|xmn|3 Ξ−
mnk̂[cos(kp

xmΔx − k
p
ynΔy) − 1]

+B

M∑
m=0

N∑
n=0

hmn

Cmn

|xmn|3 Ξ+
mn(ẑ × k̂)[cos(ks

xmΔx + ks
xnΔy) − 1]

+B

M∑
m=0

N∑
n=0

hmn

Cmn

|xmn|3 Ξ−
mn(ẑ × k̂)[cos(ks

xmΔx − ks
xnΔy) − 1], (22)

where

Ξ−
mn =

[
m2Δx2 −mnΔxΔy

−mnΔxΔy n2Δy2

]
, (23)

hmn = 1 − 1
2 (δm + δn), and δm is the Kronecker delta

function.

3 Implementation

Several implementation details are discussed in this section.
First, the solution for the discrete micromodulus function
coefficients is discussed in 1D, which simply requires the
solution of a square system of equations. Second, the 2D
implementation is detailed, which is complicated by a non-
square system of equations. Finally, as mentioned above,

the coefficients may be negative and result in instability
when used with a standard bond-breakage scheme. Two
methods of addressing this instability are discussed, a
hybrid technique similar to that of hybrid finite difference
and finite element schemes [33, 34] and an approach for
constraining the coefficients.

3.1 1D Coefficient Solution

In 1D, the method is straightforward as a square system of
equations can be formed at a given set of values of k and
solved for the coefficients Cn. Thus, the only user-defined
values for the 1D method are the choice of k at which the
equations are enforced. The linear system then has the form

Ac = b, (24)
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where

A =
⎡
⎢⎣

cos(k1Δx) − 1 1
2 (cos(k12Δx) − 1) . . . 1

N
(cos(k1NΔx) − 1)

...
...

. . .
...

cos(kNΔx) − 1 1
2 (cos(kN 2Δx) − 1) . . . 1

N
(cos(kNNΔx) − 1)

⎤
⎥⎦ , (25)

and

b = −Δx

2

⎡
⎢⎣

k2
1
...

k2
N

⎤
⎥⎦ (26)

As an example, a set of micromodulus function
coefficients was computed using E = 1 and ρ = 1, Δt =
0.002, Δx = 0.01, and δ = 3.5Δx. If the spatial Nyquist
sampling rate is given by kNyq = π/Δx, then choosing
k = ω = kNyq[3×10−5 0.2 0.4] = [0.01 62.8 125.7] results
in the coefficients

c ≈ [155.9 − 34.9 4.6]T . (27)

Clearly, (and unsurprisingly) the coefficients may be
negative and the same will be true in 2D, leading to
difficulties using standard bond-breakage schemes for
damage modeling.

The above example used a linear dispersion relation,
though the constant micromodulus function may be nearly
recovered by using the dispersion relation of linearized
peridynamics (with a constant micromodulus function) in
1D. In Eq. 12, the linear dispersion relation was substituted
for ω, though if left unchanged, any arbitrary ω-k relation
may be used. For example, setting E = 1 and ρ = 1,
along with discretization parameters Δt = 0.002, Δx =
0.01, and δ = 3.5Δx, the dispersion curve for linearized
peridynamics with a constant micromodulus function is
matched at the following points

k = [100 150 200],
ω ≈ [77.4 87.3 85.9], (28)

and results in the following coefficients

c ≈ [16.3 16.4 16.3]T. (29)

The 1D bond stiffness constant (multiplied by the node
length) is

cΔx = 2ΔxE

ρδ2
≈ 16.3, (30)

and thus the coefficients computed above closely match the
linearized peridynamic bond stiffness. This suggests that
other linear materials with dispersion may be treated with
this technique, such as viscoelastic and periodic media.

3.2 2D Coefficient Solution

The main difficulty for the solution of the 2D system is that
it may not be possible to form a square system of equations.
Consider, the number of unknowns is Nc = (N + 1)2 − 1
(where δ = NΔx) if the full quadrant is used or Nc = (N +
1)(N+2)/2−1 for the unique unknowns. Figure 2 illustrates
the unique coefficients in a square horizon for an isotropic
material: Red nodes show the locations of the unique nodes,
while light red nodes show their images across the x = y

line. Gray nodes indicate images across the y = 0 and x = 0
lines. On the other hand, the number of equations is given
by 4NθNk , where Nθ is the number of wave angles and
Nk is the number of wavenumbers. The factor of 4 appears
because there are two components of the displacement and
two wave types (longitudinal and shear). The system may
then be solved in a least-squares sense using the singular
value decomposition.

The above method was applied with the following
parameters: time step Δt = 10 ns, spatial intervals Δx =
Δy = 0.66667 mm, Young’s modulus 72 GPa, Poisson’s
ratio 0.25, density ρ = 2440 kg/m3, and horizon δ =
3Δx. The above equations were enforced at five frequencies
linearly spaced between 10−8 Hz and 1 MHz (which
represents 39% of the spatial Nyquist rate for the shear
wave) and three angles θ = 0, π/4, and π/2. Note that
the system was constructed for all coefficients in the upper
right quadrant, and symmetry across the x = y line was
enforced by using the angle θ = π/2. This approach may
result in a rank deficient system due to linear dependencies
between the various components and directions, thus a
larger than expected number of frequencies may be used.
The coefficients resulting from the above parameters are
then given in Table 1. Note that the coefficient 0.00

Table 1 Discrete micromodulus function coefficients (each normal-
ized by 1014)

− 0.34 0.35 − 0.25 0.11

0.20 − 0.53 0.31 − 0.25

1.19 1.22 − 0.53 0.35

0.00 1.19 0.20 − 0.34
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appearing in the bottom left is arbitrary as the peridynamic
kernel is 0 at that point regardless.

For comparison, the constant micromodulus function
(times the node volume with exact partial volumes at the
cell-horizon intersections [22, 23]) for plane strain is shown
in Table 2.

3.3 Stabilization

As expected, negative coefficients may result in unstable
behavior when combined with a bond-breakage scheme.
Two mitigation strategies are discussed here, though there
may be alternative approaches that yield better results.

3.3.1 Positive Coefficients

One approach is to restate the coefficient solution as a
constrained optimization problem wherein a positive lower
bound is enforced on the coefficients. The optimization
problem may be stated as

min
c

‖Ac − b‖2

subject to l ≤ ci, i = 1, . . . , Nc,
(31)

where l > 0 is some positive lower bound. Of course,
in terms of dispersion properties, coefficients computed
using this approach will underperform those computed
using an unconstrained method, though they should
outperform standard peridynamics micromodulus functions.
In addition, the dispersion characteristics of the coefficients
will be highly dependent on the lower bound l.

To illustrate this method, the discrete micromodulus
function coefficients were computed using the same
parameters as given in Section 3.2, though now a lower
bound of 1012 was used. The resulting coefficients are given
in Table 3. Interestingly, the coefficients everywhere but
near the origin are equal to the lower bound. This structure
resembles the influence functions in Seleson and Parks [24]
with high exponents that spike near the origin.

Coefficients were also computed for varying lower
bounds, and the structure of the solution is identical to that
in Table 3: Aside from the three coefficients neighboring

Table 2 Constant micromodulus function with partial area (each
normalized by 1013)

0.59 0.38 0.01 0.00

1.22 1.22 0.85 0.01

1.22 1.22 1.22 0.38

1.22 1.22 1.22 0.59

Table 3 Discrete micromodulus function constrained solution (each
normalized by 1013)

0.10 0.10 0.10 0.10

0.10 0.10 0.10 0.10

7.57 5.08 0.10 0.10

0.00 7.57 0.10 0.10

the origin, all coefficients are equal to the lower bound
l. Further, these three coefficients asymptote to a given
value as the lower bound decreases, as shown in Fig. 3. In
Fig. 3, the coefficients were computed using the constrained
method for varying lower bound l, from 1012 to 102,
and the two unique coefficients are shown. As the lower
bound decreases, the method begins to resemble a local
method (with improved dispersion properties) and thus we
anticipate that the fracture solutions will suffer as a result.
In general, we find that using a lower bound of about 1 order
of magnitude lower than the bond stiffness for a constant
influence function provides a reasonable trade-off.

3.3.2 Hybridized Method

Similar to the technique used in Wildman and Gazonas
[33] and Wildman et al. [34], a hybrid approach may
also be used. With this approach, the more accurate,
discrete micromodulus function is used while no damage
has occurred and after damage initiates at a node,
the micromodulus function is replaced with a standard
peridynamics micromodulus function. In other words, two
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Fig. 3 Neighboring coefficient values (normalized by 1013) versus
lower bound for the constrained coefficient solution
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sets of micromodulus function coefficients are used to
compute the force at a node, according to

fi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
j

cdmm
ij

ξ ij ⊗ ξ ij

|ξ ij |3
ηij if χ(t, ξ)=1 for all x′ ∈ H

∑
j

χc
pd
ij

ξ ij ⊗ ξ ij

|ξ ij |3
ηij otherwise

,

(32)

where cdmm
ij are the coefficients of the discrete micromodu-

lus function, c
pd
ij are the coefficients of peridynamics with a

constant micromodulus function (times the nodal volume),
and χ is the bond health given by

χ(t, ξ) =
{

1 if s(t ′, ξ) < s0 for all 0 < t ′ < t

0 otherwise
, (33)

where s0 is the critical bond stretch which may be related
to energy release rate or fracture toughness [12, 27]. For
the discrete micromodulus functions (and assuming that the
node area is accounted for in the micromodulus function
coefficients), the critical stretch may be related to the energy
release rate G0 as

s2
0 = 2G0∑N

l=0
∑M

m=−M

∑N
n=lΔycmn|ξmn|

, (34)

which is a discretized form of the critical stretch relations
in Silling and Askari [27] and Ha and Bobaru [12] for
rectangular horizons.

4 Dispersion Comparison

In this section, the dispersion characteristics of the various
micromodulus functions are compared. First, the 1D
approach is compared with linearized peridynamics using
a constant micromodulus function along with various
finite difference stencils. Second, both the constrained and
unconstrained 2D methods are compared with linearized
peridynamics with a constant micromodulus function and
the numerical anisotropy is illustrated.

4.1 1D

The dispersion relations for the discretized methods may
be computed in 1D following the formulation given in
Section 2.1 with the only difference being the discretization
of time. For the linearized, spatially discretized peridynamic
equation of motion with arbitrary coefficients in 1D

and a second-order finite difference method in time, the
dispersion relation can be shown to be

cos(Δtω) = Δt2
N∑

n=1

Cn

nΔx
[cos(nkΔx) − 1] + 1. (35)

In 1D, the constant micromodulus function coefficients are
equal to the peridynamic constant given in Eq. 30, and for
the proposed discrete micromodulus function method, they
are computed as described in Section 3.1.

Figure 4 gives a comparison of the dispersion curves
associated with a constant micromodulus function (CMM)
and the discrete micromodulus (DMM) function using
a wavespeed of 1 and temporal discretization Δt =
0.002, spatial discretization Δx = 0.01, and horizon
size δ = 3Δx giving N = 3. Further, the dispersion
curve for a second-order finite difference method is shown
for reference. As can be seen, the discrete micromodulus
function matches the exact linear dispersion closely even to
high frequencies, while the constant micromodulus function
dispersion curve flattens out. This result is of course not
surprising as this behavior was designed into the method.
More interesting is that the discrete micromodulus function
yields a discretization that is more accurate than a second-
order finite difference method.

A more fair comparison would be against higher order
finite difference methods, which use additional degrees
of freedom to more accurately approximate the spatial
derivatives. For example, a fourth-order accurate central
difference method uses five discretization points and a
sixth-order accurate method uses seven points, which
corresponds to N = 3. The relative error (compared with
the exact, linear dispersion) in the dispersion curve for the
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Fig. 4 Comparison of dispersion curves for the exact solution (red),
constant micromodulus function (green), finite difference method
(magenta), and the discrete micromodulus function (blue)
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Fig. 5 Relative error of dispersion curves for the discrete micromod-
ulus function (blue), a fourth-order central difference method (green),
and a sixth order central difference method (magenta)

discrete micromodulus function method was then compared
with that of the fourth- and sixth-order central difference
methods and is shown in Fig. 5. As can be seen, the discrete

micromodulus function compares well with the sixth-order
finite difference method.

4.2 2D

Similar to the 1D case, the dispersion curves can be
calculated in 2D. Again assuming a second-order explicit
method in time, the 2D dispersion relation can be written
as

Δt−2[Ak̂ + B(ẑ × k̂)][cos(Δtω) − 1]

= A

M∑
m=0

N∑
n=0

hmn

Cmn

|xmn|3 Ξ+
mnk̂[cos(kp

xmΔx+k
p
ynΔy)−1]

+A

M∑
m=0

N∑
n=0

hmn

Cmn

|xmn|3 Ξ−
mnk̂[cos(kp

xmΔx−k
p
ynΔy)−1]

+B

M∑
m=0

N∑
n=0

hmn

Cmn

|xmn|3 Ξ+
mn(ẑ × k̂)

×[cos(ks
xmΔx + ks

xnΔy) − 1]

+B

M∑
m=0

N∑
n=0

hmn

Cmn

|xmn|3 Ξ−
mn(ẑ × k̂)

×[cos(ks
xmΔx − ks

xnΔy) − 1]. (36)

Fig. 6 Comparison of p-wave
dispersion curves for the exact
solution (red), constant
micromodulus function
(magenta), the discrete
micromodulus function (blue),
and a constrained solution
(green)
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In this case, the dispersion curves may be separated by
displacement component (x- and y-components) and wave
type (p- and s-waves). Further, the dispersion relation is a
function of both wavenumber k and wave direction θ and
may be visualized by fixing either. Fixing the angle and
varying k results in a dispersion curve similar to the 1D
case, while fixing k (or frequency f ) and varying the angle,
illustrates the numerical anisotropy in the method.

The dispersion in linearized peridynamics using a
constant micromodulus function is compared with both the
unconstrained and constrained solution approaches in Fig. 6
for the p-wave and in Fig. 7 for the s-wave. Figure 6a
shows the dispersion in the x-component of displacement at
θ = 0 for the exact solution (red), constant micromodulus
function (magenta), the unconstrained coefficients (blue),
and the constrained coefficients (green). The y-component
of displacement is shown in Fig. 6b and the x- and y-
components at 45◦ are shown in Fig. 6c and d respectively.
The same results are given for the s-wave in Fig. 7. As
with the 1D case, the 2D formulation exhibits improved
dispersion characteristics when compared with the exact
local dispersion.

Finally, the numerical anisotropy of the various methods
is compared by plotting the phase velocity at a given
frequency over all wave directions. Specifically, Figs. 8
and 9 illustrate the phase velocity vs. angle for the
constant micromodulus function and both the constrained
and unconstrained solutions of the discrete micromodulus
function. Specifically, Fig. 8a and b shows the phase
velocity of the x- and y-components of the p-wave at
150 kHz respectively and Fig. 8c and d shows the phase
velocity at 1.5 MHz. Similar results are shown for the
s-wave in Fig. 9. As before, these figures demonstrate
the frequency-dependent nature of the phase velocity and
further illustrate anisotropic wave propagation at high
frequencies.

5 Results

Several numerical examples are given in this section,
beginning with 1D wave propagation. Next, 2D wave
propagation is demonstrated and comparisons are made
between the various micromodulus functions. Finally, the

Fig. 7 Comparison of s-wave
dispersion curves for the exact
solution (red), constant
micromodulus function
(magenta), the discrete
micromodulus function (blue),
and a constrained solution
(green)
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Fig. 8 Comparison of p-wave
numerical anisotropy for the
exact solution (red), constant
micromodulus function
(magenta), the discrete
micromodulus function (blue),
and the constrained solution
(green)
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Fig. 9 Comparison of s-wave
numerical anisotropy for the
exact solution (red), constant
micromodulus function
(magenta), the discrete
micromodulus function (blue),
and the constrained solution
(green)
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stress intensity factor is computed and compared and results
of several dynamic fracture tests are given to illustrate the
stabilization techniques.

5.1 1DWave Propagation

To demonstrate the discrete micromodulus function in 1D,
the coefficients given in Section 3.1 were used to simulate
propagation of a Gaussian initial condition given by

u = e−αx2
, (37)

where α = 200. The simulation region was 2 m in length
and both Dirichlet and Neumann boundary conditions were
tested. The wave speed and region size are such that
the pulse should, after reflection from the boundaries,
return to the origin at t = 2. First, Fig. 10 shows the
displacement computed using the discrete micromodulus
function and a constant micromodulus function at four
instances of time. The effects of dispersion are apparent
for the constant micromodulus function as the wave is slow
to arrive at the origin at t = 2 and spurious oscillations
are visible. In contrast, the discrete micromodulus function
more accurately captures the correct wave velocity over the
range of frequencies present in this initial condition.

Second, the simulation was repeated with Neumann
boundary conditions as shown in Fig. 11. These results are
similar to the results using Dirichlet boundary conditions in
that the constant micromodulus function exhibits significant
dispersion, while the discrete micromodulus function
appears more accurate.

5.2 2DWave Propagation

The 2D micromodulus functions were tested by inducing
1D-like wave propagation of the p- and s-waves in large
regions at two different angles. The initial conditions used
here are given by

up = An̂e−α[(x−xc)·n̂]2
, (38)

and

us = A(ẑ × n̂)e−α[(x−xc)·n̂]2
, (39)

where A = 10−8, α = 105, xc is the center location
of the initial condition, and n̂ = [cos φ, sin φ]T indicates
the propagation direction. Further, up will induce a
compressional wave and us will induce a shear wave.

First, propagation along φ = 0 was simulated using
the same parameters as given in Section 3.2 using a
constant micromodulus function, an unconstrained discrete

Fig. 10 1D wave propagation
using linearized peridynamics
with a constant micromodulus
function (blue) and the discrete
micromodulus function (green)
with Dirichlet boundary
conditions
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Fig. 11 1D wave propagation
using linearized peridynamics
with a constant micromodulus
function (blue) and the discrete
micromodulus function (green)
with Neumann boundary
conditions

micromodulus function, and a constrained micromodulus
function each assuming plane strain. The coefficients for
each are given in Tables 1, 2, and 3. The region was
100-by-200 mm with the initial condition placed at the
point xc = (50 mm, 100 mm). Figure 12 shows the x-
component of displacement using the initial condition given
in Eq. 38 at three locations along the y = 50 mm line
(x = 10, 20 and 30 mm) versus time for each method.
Specifically, the results using the constant micromodulus
function are shown in blue with the solid line showing
the displacement at 30 mm, the dashed line showing the
displacement at 20 mm, and the dotted line representing
10 mm. Similarly, the displacements for the unconstrained
discrete micromodulus function are shown in red and
for the constrained discrete micromodulus function in
green. Dispersion effects are clearly visible in both the
constant micromodulus function and to a lesser extent
the constrained micromodulus function. To quantify these
effects, the wave speed may be estimated for each method
by tracking the propagation of the initial condition through
the region. To estimate the wave speed, at each location, the
propagation time to that point was taken to be coincident
with the maximum of the displacement. The resulting wave
speed estimates are given in Table 4 and the exact wave
speed is 5950.62 m/s.

Figure 13 illustrates the propagation of the initial
condition given in Eq. 39, representing propagation of a
shear wave. The colors and line styles in the figure are the
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Fig. 12 x-directed displacement (p-wave) at three points (x = 10,
20, and 30 mm) in a 2D simulation for a constant micromodulus
function (blue), unconstrained discrete micromodulus function (red),
and constrained discrete micromodulus function (green)
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Table 4 Estimated longitudinal wave speeds (in m/s) from Fig. 12

CMM DMM DMM-constrained

x = 10 mm 5811 5951 5909

x = 20 mm 5790 5951 5904

x = 30 mm 5764 5951 5899

same as the above example. Again, the shear wave speed
can be estimated from these results as given in Table 5, and
the exact shear wave speed is 3435.59 m/s.

The same tests were repeated using an initial condition
with φ = π/4 and a region size of 200-by-200 mm with the
p-wave results shown in Fig. 14 (i.e., the initial condition is
that of Eq. 38) and the s-wave results are shown in Fig. 15.
In each figure, the magnitude of the displacement is shown,
again with the same colors and line styles as before, though
now the displacement is shown at the points (114, 114),
(121.333, 121.333), and (128, 128) (all in mm).

As before, the wave speeds were estimated at each point
and can be compared with the exact wave speeds for both
longitudinal and shear waves. Table 6 lists the estimated
wave speeds for the longitudinal wave and Table 7 lists
the estimated wave speeds for the shear wave. The results
are similar to the above example (with φ = 0) in that
the unconstrained discrete micromodulus function exhibits
minimal dispersion for this initial condition, while the
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Fig. 13 y-directed displacement (s-wave) at three points (x = 10,
20, and 30 mm) in a 2D simulation for a constant micromodulus
function (blue), unconstrained discrete micromodulus function (red),
and constrained discrete micromodulus function (green)

Table 5 Estimated shear wave speeds (in m/s) from Fig. 13

CMM DMM DMM-constrained

x = 10 mm 3330 3435 3439

x = 20 mm 3331 3436 3443

x = 30 mm 3321 3436 3440

constant micromodulus function exhibits visible dispersion
in terms of a slower wave speed, spurious oscillations, and
amplitude reduction.

5.3 Static Fracture

As described in Wildman and Gazonas [33], the dynamic
mode I stress intensity factor at a static crack tip can be
computed and used to compare the methods. For a semi-
infinite crack, the stress intensity factor is given as

KI(t) = H(t − tc)
2σ ∗

1 − ν

√
vl(t − tc)(1 − 2ν)

π
, (40)

where vl is the longitudinal wave speed, tc is the time for
the initial stress wave to reach the crack tip, and σ ∗ is
the applied stress [18]. For the numerical solution to this
problem, a large region can be used to approximate a semi-
infinite crack in an infinite medium. The stress intensity
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Fig. 14 Displacement magnitude (p-wave) at three points (x =
y = 114, 121.333, and 128 mm) in a 2D simulation for a constant
micromodulus function (blue), unconstrained discrete micromodulus
function (red), and constrained discrete micromodulus function
(green)
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Fig. 15 Displacement magnitude (s-wave) at three points (x = 10,
20, and 30 mm) in a 2D simulation for a constant micromodulus
function (blue), unconstrained discrete micromodulus function (red),
and constrained discrete micromodulus function (green)

factor can then be approximated by first computing the
stress along a straight line near the crack and extrapolating
the stress towards the crack tip. The extrapolated value
of the stress can be then used to approximate the stress
intensity factor [5]. As shown in Chen [5], all components
of the stress may be used to approximate the stress intensity
factor, and so here both σxx and σyy are used and the
results are averaged. Since a Cartesian grid is used, the
stress is computed by first computing the local strain using a
standard finite difference approximation and the local linear
elastic constitutive relation was then used to compute the
stress.

The stress intensity factor for a semi-infinite crack was
then estimated using a 300 mm-by-100 mm region with the
same material properties and discretization as used above.
The force was applied using a body force with a magnitude
of 1010, and according to Ha and Bobaru [11], the equivalent
traction is t = b/Δx, giving |t| = σ ∗ = 6.66667 MPa.
Further, the coefficients of the micromodulus functions
were those given by Tables 1, 2, and 3. The results are given
in Fig. 16, where the red curve represents the exact solution,

Table 6 Estimated longitudinal wave speeds (in m/s) from Fig. 14

CMM DMM DMM-constrained

x = y = 128 mm 5766 5951 5899

x = y = 121.33 mm 5747 5951 5890

x = y = 114 mm 5721 5951 5879

Table 7 Estimated shear wave speeds (in m/s) from Fig. 15

CMM DMM DMM-constrained

x = y = 128 mm 3415 3436 3422

x = y = 121.33 mm 3410 3436 3422

x = y = 114 mm 3403 3436 3421

peridynamics with a constant micromodulus function is
shown in blue, the unconstrained micromodulus function is
shown in green, and the constrained micromodulus function
is shown in yellow. Note that the discrete micromodulus
function is not the hybrid form described in Eq. 32, and
only uses the discrete micromodulus function. Similar to
the results in Wildman and Gazonas [33], these results
illustrate that the constant micromodulus function displays
spurious oscillations that may affect crack propagation
paths. Both discrete micromodulus functions reduce the
spurious oscillations seen in the solution, especially at
longer times.

5.4 Dynamic Fracture

To demonstrate dynamic fracture, two examples from
Kalthoff [17] were attempted using the standard constant
micromodulus function, the unconstrained method (using
the hybrid technique described in Section 3.3.2), and
the constrained method. The material properties and
discretization parameters were identical to those given in
Section 3.2 and the critical bond stretch criterion was s0 =
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Fig. 16 Stress intensity factor comparison using a constant micromod-
ulus function, and unconstrained and constrained discrete micromodu-
lus functions
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Fig. 17 Damage at 100 μs

3.69 × 10−4. (Note that expressions from e.g. Silling and
Askari [27] relating energy release rate and critical stretch
do not apply and must be recomputed for the discrete
micromodulus functions.)

The first example is a 100-by-300 mm plate with a 33-
mm pre-notch subjected to sudden tension along the top
and bottom edges. The load was a body force applied to
the nodes on the top and bottom edges, with a magnitude
of 5.0685 × 109 N/m3 (or 310 kp [17]). Figure 17 shows
the peridynamic damage (ratio of the number of broken
bonds to unbroken bonds in a node’s horizon) at 100 μs.
The results compare well with the experimental results
in Kalthoff [17]. While the constrained micromodulus
function branches earlier than the other two approaches,
the branch in the experimental results was estimated
to occur at the midpoint (50 mm). The crack branch
for the result obtained using the constrained coefficients
occurs at approximately 42 mm, and the branch in the

constant micromodulus function and hybrid results occurs
at approximately 81 mm. The results using the constrained
coefficients appear to be closer to the experiment, though
it is difficult to make a quantitative assessment because the
length of the pre-notch and the material properties are not
known for the experiment.

For reference, Fig. 18 illustrates the instability seen for
negative coefficients in the micromodulus function. The
same loading was used as above, though here no hybrid
approach was used. Figure 18 shows the damage at 55, 60,
and 65 μs and demonstrates unstable growth of damage.

The final example follows the test in Kalthoff [17]
in which crack propagation from branched edge notches
at different angles are compared. It was shown that
a critical angle exists (approximately 16◦) at which
cracks propagating from a branched edge notch will
either converge towards or diverge from the centerline
immediately at the onset of crack propagation. (Note that

Fig. 18 Unstable damage for
negative coefficients
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after crack propagation continues, the crack path is less
dependent on the initial pre-notch.) The three approaches
were tested on the four examples in Kalthoff [17], which
consist of branched edge notches of 5.7◦, 11.3◦, 16.7◦, and
21.8◦. In this case, the plate size was 120-by-260 mm and
the pre-notches were an equal depth of 43 mm. For each
example, the critical stretch was s0 = 3 × 10−4, and all
other properties were identical to those used in the previous
example.

Figures 19, 20, and 21 show the peridynamic damage at
150 μs for each edge notch angle using the three methods.
The main comparison to consider is the crack angle relative
to the pre-notch immediately after propagation begins. For
edge notches with angles below 16◦, the crack should
propagate away from the centerline and for edge notches
with angles above 16◦ the crack should propagate towards

Fig. 19 Damage at 150 μs for the branched edge notch using the
constant micromodulus function

Fig. 20 Damage at 150 μs for the branched edge notch using the
hybrid unconstrained discrete micromodulus function

the centerline relative to the edge notch [17]. Computing this
angle quantitatively is difficult with peridynamics as there is
no discrete fracture surface, so a qualitative comparison will
be made. The constant micromodulus function and hybrid
unconstrained discrete micromodulus function methods
appear to give similar results in that the initial crack path
appears to be away from the center for 5.7◦ edge notch and
towards the center for the remaining examples. This result
appears to be at odds with the experimental and analytical
results in Kalthoff [17]. However, the constrained discrete
micromodulus function appears to be correct: The initial
crack path is angled away from the center for both the
5.7◦ and 11.3◦ edge notches and towards the center for the
remaining two examples. This indicates that the state of
stress around the crack tip may be more accurate for the
constrained micromodulus function.
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Fig. 21 Damage at 150 μs for the branched edge notch using the
constrained discrete micromodulus function

6 Conclusions

A method for reducing wave dispersion in linearized peri-
dynamics was presented, which computes values of a
micromodulus function at discrete points to match a given
dispersion curve. Linear dispersion curves were treated,
though it was shown that a near-constant micromodulus
function can be recovered if ω-k pairs from a standard, lin-
ear peridynamics formulation are used. The method results
in micromodulus function values that can be negative and
resemble high-order finite difference schemes, making them
difficult to use directly in a dynamic fracture simulation.
Two approaches for stabilizing the scheme were discussed,
the first being a hybrid discrete/constant micromodulus
function method and the second using constrained opti-
mization to ensure only positive coefficients constitute the

micromodulus function. The resulting numerical dispersion
relations were studied in 1D and 2D and in 2D, the numer-
ical anisotropy was also computed. Plots of the dispersion
relations show that the discrete micromodulus functions are
more accurate versus a constant micromodulus function at
higher frequencies. Numerical results also show the efficacy
of the method: 1D and 2D wave propagation simulations are
more accurate and mitigate the effects of numerical disper-
sion such as spurious oscillations. The stress intensity factor
around a crack tip was also shown to be more accurate and
smooth than that computed using a constant micromodu-
lus function. Finally, dynamic fracture simulations using the
two stabilization techniques show stable crack propagation,
and the constrained micromodulus function shows improved
crack path accuracy for a branched edge notch problem.

While the method was formulated in 2D, an extension
to 3D is straightforward, if somewhat involved due to the
additional wave components. In addition, dispersive mate-
rials could be treated with this approach including periodic
materials and possibly viscoelastic. Finally, linearized bond-
based peridynamics was the basis of the formulation, though
the method could also be applied to linearized state-based
peridynamics.
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