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Abstract
We study the problem of loss estimation that involves for an observable X ∼ fθ the
choice of a first-stage estimator γ̂ of γ (θ), incurred loss L = L(θ, γ̂ ), and the choice
of a second-stage estimator L̂ of L . We consider both: (i) a sequential version where
the first-stage estimate and loss are fixed and optimization is performed at the second-
stage level, and (ii) a simultaneous version with a Rukhin-type loss function designed
for the evaluation of (γ̂ , L̂) as an estimator of (γ, L). We explore various Bayesian
solutions and provide minimax estimators for both situations (i) and (ii). The analysis
is carried out for several probability models, including multivariate normal models
Nd(θ, σ 2 Id) with both known and unknown σ 2, Gamma, univariate and multivariate
Poisson, and negative binomial models, and relates to different choices of the first-
stage and second-stage losses. Theminimaxfindings are achieved by identifying a least
favourable sequence of priors and depend critically on particular Bayesian solution
properties, namely situations where the second-stage estimator L̂(x) is constant as a
function of x .

Keywords Bayes estimation · Loss estimator · Minimax · Posterior distribution ·
Rukhin-type loss · Unbiased estimator

1 Introduction

Reporting on the precision of statistical decisions, whether it relates to a standard
error of an estimate in multiple regression or survey sampling, the power of a test,
or the coverage probability of an interval estimate etc., are central to the practice
of statistics. Whereas a frequentist approach typically prescribes the level of risk
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prior to the collection of data, while a Bayesian approach typically relates to post-
data inference to assess precision, such correspondences are not exclusively the case
and various approaches have been presented in the literature, for instance by Berger
(1985); Goutis and Casella (1995), as well as the references therein. The setting or
search for efficient accuracy reports thus matters and we investigate here various
issues and optimality properties cast in a loss estimation framework. The seminal
work of Johnstone (1988) put forth a framework for loss estimation with an emphasis
on the multivariate normal model and the discovery of improvements in terms of
frequentist risk on usual unbiased estimators. Earlier work in this direction includes
that of Sandved (1968), but many researchers engaged after Johnstone’s work with
further investigation towards various extensions in terms of different contexts and
other models (e.g., multivariable regression, model selection, spherical symmetry),
optimality properties (e.g., admissibility and dominance), and further related issues
(e.g., (Boisbunon et al., 2014); (Fourdrinier & Strawderman, 2003); (Fourdrinier &
Wells, 1995a, b, 2012); (Fourdrinier & Lepelletier, 2008); (Lele, 1992, 1993); (Lu
& Berger, 1989); (Maruyama, 1997); (Matsuda & Strawderman, 2019); (Matsuda,
2024); (Narayanan & Wells, 2015); (Wan & Zou, 2004)).

The approach which we adopt and study is that of accompanying an estimator γ̂ of
an unknown parameter γ (θ) by an estimator L̂ of a first-stage loss L = L(θ, γ̂ (x)).
To assess the accuracy of such a L̂ , we work with a second-stage loss typically of
the form W (L, L̂). We explore Bayesian estimators L̂π of L and their properties for
a given prior density π . We also address minimax optimality for estimating L and
provide minimax solutions, which capitalize on the behaviour of Bayesian solutions.
Minimax solutions serve as a benchmark for evaluating competing estimators, and
have been relatively unexplored in the context of loss estimation.

A particular interesting and different approach, which combines both the first-stage
estimation process and the second-stage loss estimation component was proposed and
analyzed by Rukhin (1988a, b). Here again, we provide minimax solutions (γ̂ , L̂)

which depend critically on the existence of prior densities and associated Bayesian
estimators L̂π that do not depend on the observed data.

The paper is organized as follows. Section2 describes the adopted language of
loss estimation namely with the aid of definitions and notations. Section3 explores
Bayesian solutions in cases where both the first-stage and second-stage estimators γ̂π

and L̂π are derived with respect to the same prior, with an emphasis on varied choices
of the first-stage and second-stage losses, and namely departures from the ubiquitous
squared error second-stage loss in the literature. Examples of models include normal
with or without a known covariance structure, Gamma, univariate and multivariate
Poisson, Negative Binomial, and location exponential. We also come across a surpris-
ing large number of cases where the Bayes estimator L̂ of loss is constant as a function
of the observable data x , including cases where even the posterior distribution L|x is
free of x . We further explore links between Bayesian and unbiased estimators of loss.

Section 4 provides minimax estimators L̂ of loss L(θ, γ̂ (x)) for different combina-
tions of probabilitymodels and losses, andwhen the first-stage estimate has previously
been obtained. To the best of our knowledge, the only known previously analyzed case
involves normal models and first and second-stage squared error losses (Johnstone,
1988). We extend the finding to a wider class of first and second-stage losses, to an
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unknown covariance structure, and proceed with minimax results for Gamma models.
The results are obtained through the determination of a least favourable sequence {πn}
of prior densities and an extended Bayes estimator with constant risk.

We point out that, unlike usual estimation problems, estimands of the form
L(θ, γ̂ (x)) depend not only on θ but also on x . Nevertheless, approaches to establish-
ing minimaxity remain familiar ones, namely through the determination of a sequence
πn of least favourable prior densities.

Finally, we obtain minimax solutions (γ̂0, L̂0) for estimating (γ, L) simultaneously
underRukhin-type losses, by using a sequence of priors approach to obtain an extended
Bayes estimator with constant frequentist risk. Properties established or observed in
Sect. 3, namely the constancy of Bayesian solutions L̂π (x) as functions of x play a
key role for the analysis.

2 Definitions and other preliminaries

Throughout, we consider amodel density fθ , θ ∈ �, for an observable X , a parametric
function γ (θ) of interest;mostly taken as identity; and the loss L = L(θ, γ̂ )measuring
the level of accuracy (or inaccuracy) of γ̂ (X) as an estimator of γ (θ). Such a loss L
is referred to as a first-stage loss, while loss W (L, L̂) ∈ [0,∞) used for estimating L
by L̂(X) is referred to as the second-stage loss.

Remark 1 A common and default choice in the literature for the second-stage loss W
has been squared error (L̂ − L)2 loss. This has been described as a matter of conve-
nience, but it is also the case that the developments for multivariate normal models,
as well as spherically symmetric models, bring into play Stein’s lemma and conve-
nient loss estimation representations arising for squared error loss (e.g. (Fourdrinier
et al., 2018)). However, since a loss L is more synonymous with a positive scale
parameter than a location parameter, it seems desirable to consider a scale invari-

ant second-stage loss of the form ρ( L̂L ), plausible choices satisfying the bowl-shaped
property ρ(t) decreasing for t ∈ (0, 1) and increasing for t > 1. The developments
in this manuscript thus address such losses amongst a wider choice of second-stage
losses. Such examples include weighted squared error loss with ρ(t) = (t − 1)2,
squared log error loss with ρ(t) = (log t)2, symmetric versions with ρ(t) = ρ( 1t ) like
ρ(t) = t+ 1

t −2 (e.g., (Mozgunov et al., 2019)), entropy loss with ρ(t) = t−log t−1,
and variants of the above (except log error) with ρm(t) = ρ(tm), m �= 0, the case
m = −1 being most prominent for squared error and entropy.

For a given prior density π for θ and estimate γ̂ (x), a Bayes estimator L̂π (X)

of L = L
(
θ, γ̂ (x)

)
minimizes in L̂ the expected posterior loss E

(
W (L, L̂)|x). As

addressed in Sect. 3, it is particularly interesting to study cases where γ̂ ≡ γ̂π , i.e., the
Bayes estimator of γ (θ) under the same prior. However, it is still useful to consider the
more general context, for instance because the first-stage estimator may be imposed
and not be Bayesian, or a theoretical assessment of a least favourable sequence of
priors such as the one pursued in Sect. 4 requires it. In such a framework, the stated
goal is how to report on sensible estimates of L for a given γ̂ (x).
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The frequentist risk performance of a given estimator L̂ for estimating a loss L =
L(θ, γ̂ (x)) is given by

R(θ, L̂) = Eθ

(
W (L, L̂(X))

)
, θ ∈ �, (1)

and different choices of L̂ can be compared leading to the usual definitions of
dominance, admissibility, and inadmissibility. Our findings relate also to the min-
imax criterion with estimator L̂m(X) being a minimax estimator of L whenever
supθ∈�{R(θ, L̂m)} = inf L̂ supθ∈�{R(θ, L̂)}.

Another criterion present in the literature, that sometimes interactswithBayesianity,
is that of unbiasedness. For a given estimator γ̂ (X) of γ (θ), an estimator L̂(X) of loss
L(θ, γ̂ ) is said to be unbiased if

Eθ L̂(X) = Eθ L
(
θ, γ̂ (X)

)
, for all θ, (2)

i.e., L̂(X) is an unbiased estimator of the frequentist risk of γ̂ (X) as an estimator of
γ (θ).

Example 1 As an illustration, consider the normal model X ∼ Nd(θ, σ 2 Id) with
known σ 2, the benchmark estimator θ̂0(X) = X of θ , and the incurred squared error
loss L = L(θ, θ̂ (X)) = ‖X − θ‖2. Johnstone (1988) showed that the estimator
L̂0(X) = dσ 2; equal here to the mean squared error risk of θ̂0 making it an unbi-
ased estimator of loss; matches the (generalized) Bayesian estimator L̂π0(X) of L for
second-stage squared error loss W (L, L̂) = (L̂ − L)2 and the uniform prior density
π0(θ) = 1. He also established that L̂π0 is minimax for all d ≥ 1, admissible for
d ≤ 4, and inadmissible for d ≥ 5 providing dominating estimators L̂ in such a latter
case. Such dominating procedures are necessarily minimax. Our findings (Sect. 4.1)
for normal models relate to minimaxity for different choices of first-stage (L) and
second-stage (W ) losses, and address the case of unknown σ 2 (Sect. 4.1.1).

Rukhin (1988a, b) studied the efficiency of estimators, namely in terms of admissi-
bility, with his proposal to combine the two stages of estimation and to measure the
performance of the pair (γ̂ , L̂) for estimating

(
γ (θ), L

)
, with L = L(θ, γ̂ ) by the loss

L̂−1/2L(θ, γ̂ ) + L̂1/2, (3)

as well as extensions

W (θ, γ̂ , L̂) = h′(L̂)L(θ, γ̂ ) − h′(L̂)L̂ + h(L̂), (4)

h being an increasing and concave function on (0,∞), and the former being a particular
case of the latter for h(L̂) = 2L̂1/2. The two components are referred to as error of
estimation and precision of estimation, and such a loss is appealing namely since
L̂ = L minimizes the loss for fixed L and since the Bayesian estimator of L for a
given prior π is equal to the posterior expectation L̂π (x) = E(L|x).
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3 Bayesian estimators

In this section, we record various interesting scenarios concerning Bayesian inference
about a given loss L = L(θ, γ̂ ) incurred by estimator γ̂ (X) for estimating γ (θ).
Different choices of L and the second-stage loss W (L, L̂) are considered for the
determination of a point estimator L̂π , and we also describe directly the posterior
distribution L|x in some instances.

Section 3.1 deals with situations where a same prior π is used to determine both
the choices of γ̂π and L̂π , with a particular focus on Poisson and negative binomial
models. While these last two examples involve cases where point estimates L̂π (x)
do not depend on x , Section 3.2 deals with specific situations where the posterior
distribution L|x does not depend on x . The features and representations provided in
the Section will prove useful for the minimax findings of Sections 4 and 5.

3.1 Examples of (�̂�, L̂�) pairs

From a Bayesian perspective with the same prior π as for the first-stage, one could
naturally consider the posterior distribution of L|x for inference about L . Minimiz-
ing the expected posterior loss W (L, L̂) in L̂ produces Bayes estimate L̂π and the
ensemble produces pairs

(
γ̂π , L̂π

)
which we investigate and illustrate in this section.

We begin with the familiar case of squared error loss L(θ, θ̂ ) = ‖θ̂ − θ‖2 for esti-
mating γ (θ) = θ ∈ R

d based on X ∼ fθ (·). Assuming that the posterior covariance
matrix Cov(θ |x) of θ exists, we have

γ̂π (X) = E(θ |x) with incurred loss L = ‖θ − E(θ |x)‖2.

Now, if the second-stage loss is again squared error loss, i.e., W (L, L̂) = (L̂ − L)2,
then we obtain

L̂π (x) = E(L|x) = tr Cov(θ |x). (5)

Example 2 For location family densities fθ (x) = f0(x − θ), x, θ ∈ R
d , such that

Eθ (X) = θ , which include spherically symmetric densities g(‖x − θ‖2), and non-
informative prior π(θ) = 1, we obtain γ̂π (x) = x . Since x − θ |x =d X − θ |θ for all
x, θ , it follows that the posterior distribution of L|x , which is that of ‖θ − x‖2∣∣θ , is
independent of x . Consequently, L̂π (x) is a constant in terms of x . This observation
includes the familiar multivariate normal case with X |θ ∼ Nd(θ, σ 2 Id) where L|x ∼
σ 2χ2

d and L̂π (x) = dσ 2. With the posterior distribution of L independent of x ,

Bayes estimators L̂π (X) associated with other second-stage losses or even credibility
intervals for L will necessarily be independent of x . These last features fit into a more
general structure expanded upon with Theorem 1 and include proper priors as with
the following example.

Example 3 The general normal model with conjugate normal priors is also quite
tractable. Indeed, for model X |θ ∼ Nd(θ, σ 2 Id) and prior θ ∼ Nd(μ, τ 2 Id), we
have θ |x ∼ Nd

(
μ(x), τ 2(x)Id

)
with θ̂π (x) = E(θ |x) = τ 2

τ 2+σ 2 x + σ 2

τ 2+σ 2 μ and
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Table 1 Bayesian loss estimators

ρ(t) L̂π (general) L̂π (conditions)

ρA(t) = (tm − 1)2
(

E(L−m |x)
E(L−2m |x)

)1/m
2τ20

(

( d2 −m)


( d2 −2m)

)1/m
for d > 4m

ρm (t) = tm − m log t − 1 (E(L−m |x))−1/m 2τ20
( 
( d2 )


( d2 −m)

)1/m for d > 2m

ρB (t) = t + 1
t − 2

√
E(L|x)
E( 1L |x) τ20

√
d(d − 2) for d ≥ 3

ρC (t) = (
log t

)2 eE(log L|x) 2τ20 e
�( d2 ) for d ≥ 1

τ 2(x) = τ 20 = τ 2σ 2

τ 2+σ 2 . From this, one obtains

L|x = ‖θ − E(θ |x)‖2∣∣x ∼ τ 20χ2
d , (6)

again independent of x . For second-stage squared error loss, one obtains L̂π (x) = τ 20 d.

As addressed in Remark 1, second-stage losses of the form ρ( L̂L ) are desirable

alternatives given their scale invariance. Table 1 provides Bayesian estimators L̂π of
L for some choices of ρ. The third column is specific to the normalmodel context here,
while the second column expressions apply more broadly. For the loss ρC (t), �(t) is
the Digamma function given by �(t) = d

dt log
(t). Various degrees of shrinkage or

expansion in comparison to second-stage squared error loss; for which L̂π (X) = dτ 20 ;
are observable. For instance with loss ρA and d ≥ 5, we have L̂π (X) = τ 20 (d + 2)
versus L̂π (X) = τ 20 (d−4) according to the selectionsm = −1 orm = 1, respectively.
Shrinkage occurs for ρB and ρC (see Remark 5), while L̂π is decreasing as a function
of m for both ρA and ρm , with shrinkage iff m > −1 for ρm , and iff m > m0(d) for
ρA with m0(d) ∈ (−1, 0) such that L̂π = dτ 20 at m = m0(d) (see Appendix).

The next examples involve weighted squared error loss as the first-stage which is
a typical choice when the model variance varies with θ , such as Poisson and negative
binomial. To this end, consider first-stage loss asweighted squared error loss L(θ, γ̂ ) =
ω(θ)(γ̂ − γ (θ))2 for X ∼ fθ , γ (θ) ∈ R. Given a posterior density for θ , the Bayes
estimator of γ (θ) is given, whenever it exists, by the familiar

γ̂π (x) = E(γ (θ)ω(θ)|x)
E(ω(θ)|x) , (7)

with incurred loss given by L = ω(θ)
(
γ̂π (x) − γ (θ)

)2. For second-stage squared

error loss (L̂ − L)2, we obtain the Bayes estimator

L̂π (x) = E(L|x) = E(γ (θ)2ω(θ)|x) − E
2(γ (θ)ω(θ)|x)
E(ω(θ)|x) , (8)

123



Japanese Journal of Statistics and Data Science

as long as E(L2|x) exists.

3.1.1 Poisson distribution

Consider a Poisson model X |θ ∼ Poisson(θ) with a Gamma prior θ ∼ G(a, b)
(density proportional to θa−1e−θb

I(0,∞)(θ) throughout the manuscript), and the esti-

mation of γ (θ) = θ with normalized squared error loss (θ̂−θ)2

θ
. The set-up leads to

θ |x ∼ Ga(a + x, 1 + b), and Bayes estimator

γ̂π (x) = 1

E(1/θ |x) = a + x − 1

1 + b
, (9)

for a > 1, b > 0. For the case (a, b) = (1, 0), i.e., the uniform prior density on (0,∞),
the (generalized) Bayes estimator is also given by (9), i.e., γ̂π (X) = X , and, moreover,
is the unique minimax estimator of θ . The incurred loss by the Bayes estimator (9)
becomes

L = ( a+x−1
1+b − θ)2

θ
, (10)

and the Bayes estimator L̂π in (8) becomes

L̂π (x) = E(θ |x) − 1

E( 1
θ
|x) = a + x

1 + b
− a + x − 1

1 + b
= 1

1 + b
, (11)

provided a > 2 as the existence of E(L2|x) requires finite E(θ−2|x) which in
turn necessitates a > 2. Observe that estimate (11) is independent of x and of the
hyperparameter a.

Remark 2 A few remarks:

(I) Under the above set-up, Lele (1993) established the admissibility of the posterior

expectation L̂0(X) = E(L|X) = 1 as an estimator of L = (X−θ)2

θ
under

squared error loss (L̂ − L)2. Another interesting property of L̂0(X) is that of
unbiasedness, as can be seen by the risk calculation E(L|θ) = 1.

(II) The frequentist risk of L̂0(X) is given by

R(θ, L̂0) = E(L̂0(X) − L)2 = V(L|θ) = E(X − θ)4

θ2
− 1 = 2 + 1

θ
,

using the fact the fourth central moment of a Poisson distribution with mean
θ is given by E(X − θ)4 = θ(1 + 3θ). Observe that the supremum risk is
equal to +∞ which is not conducive to the property of minimaxity. However,
L̂0(X) is (unique) minimax for estimating L under weighted second-stage loss

θ
2θ+1 (L̂ − L)2 because it remains admissible, it has constant risk, and such
estimators are necessarily minimax.
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(III) For a > 2 and b > 0, the estimators L̂π (X) of L given in (11) are proper
Bayes and admissible since the corresponding integrated Bayes risks are
finite. The finiteness can be justified by the fact that

∫ ∞
0 R(θ, L̂π )π(θ)dθ ≤∫ ∞

0 R(θ, L̂0)π(θ)dθ = ∫ ∞
0 (2 + 1

θ
)π(θ)dθ = 2 + b

a−1 < ∞

3.1.2 Poisson distribution (multivariate case)

As a multivariate extension, consider X = (X1, . . . , Xd) with Xi ∼ Poisson(θi )

independent, the first-stage loss L = L(θ, θ̂ ) = ∑d
i=1

(θ̂i−θi )
2

θi
for estimating

θ = (θ1, . . . , θd) based on θ̂ = (θ̂1, . . . , θ̂d), and second-stage squared error loss.
Proceeding as for the case d = 1, we have for a given prior π the Bayes estimators
(whenever well defined):

θ̂π,i (x) = (
E(θ−1

i |x))−1
, i = 1, . . . , d, (12)

and

L̂π (x) = E(L|x) =
d∑

i=1

E(θi |x) −
d∑

i=1

(
E(θ−1

i |x))−1
. (13)

As an example, a familiar prior specification choice for π (e.g., (Clevenson & Zidek,
1975)) brings into play S = ∑d

i=1 θi and Ui = θi
S , i = 1, . . . , d, and density

(S,U ) ∼ h(s)I{1}(
∑

i ui ), where h(·) is a density on R+. With such a choice and
setting Z = ∑d

i=1 xi hereafter, one obtains the posterior density representation
U |s, x ∼ Dirichlet(x1 +1, . . . , xd +1) and h(s|x) ∝ sZ e−sh(s). WithU and S inde-
pendently distributed under the posterior and Beta(xi + 1, Z − xi + d − 1) marginals
for theUi ’s, the evaluation of (12) and (13) is facilitated and yields a Clevenson–Zidek
type estimator of θ and accompanying loss estimator

θ̂π (X) = X

Z + d − 1

(
E(S−1|X)

)−1
, and L̂π (X) = E(S|X) − Z

Z + d − 1

(
E(S−1|X)

)−1
.

For a gamma prior S ∼ G(a, b) with a ≥ 1, we have S|x ∼ G(a + Z , b + 1) and the
above reduces to

θ̂π,a,b(X) = X

Z + d − 1

a + Z − 1

b + 1
, and L̂π,a,b(X) = dZ + a(d − 1)

(b + 1)(Z + d − 1)
.

Notice that the univariate L̂π given previously in (11) is recovered from the above for
d = 1, while the case a = d, b = 0 yields the unbiased estimators θ̂π,d,0(X) = X
and L̂π,d,0(X) = d. We point out that Lele (1992, 1993) established: (i) in the latter
case, the admissibility of L̂π (X) = d as an estimator of loss L(θ, X) for d = 1, 2,
and inadmissibility for d ≥ 3; and (ii) the admissibility of L̂π,1,0 as an estimator of
L(θ, θ̂π,1,0(x)) for all d ≥ 1. As in Remark 2 for the bivariate case, we point out that
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L̂π,d,0(X) = 2 has frequentist risk equal to 4 + 1
θ1

+ 1
θ2
, infinite supremum risk, and

that it is minimax for weighted squared error second-stage loss (L̂−L)2

4+ 1
θ1

+ 1
θ2

.

Remark 3 In the specific situation where S ∼ G(d, b), one verifies that the above
prior reduces to independently distributed θi ∼ G(1, b) for i = 1, . . . , d. Since
the Xi ’s are also independently distributed given the θi ’s, the multivariate Bayesian
estimation problem reduces to the juxtaposition of d independent univariate problems
as analyzed in the previous section. For instance, expressions (9) and (11) applied to
the components θi lead to the above θ̂π,d,b(X) and L̂π,d,b(X), and the same remains
true for the improper proper choice with b = 0.

3.1.3 Negative binomial distribution

Consider a negative binomial model X ∼ NB(r , θ) such that

P(X = x |θ) = (r)x
x !

(
r

θ + r

)r (
θ

θ + r

)x

IN(x), (14)

with r > 0, E(X |θ) = θ > 0, (r)x the Pochhammer symbol representing the quantity
(r)x = 
(r+x)


(r) and where we study pairs (θ̂π , L̂π ) for a class of Beta type II priors for
θ which are conjugate and defined more generally as follows.

Definition 1 ABeta type II distribution, denoted as Y ∼ B2(a, b, σ )with a, b, σ > 0
has density of the form

f (y) = σ b 
(a + b)


(a)
(b)

ya−1

(σ + y)a+b
I(0,∞)(y).

The following identity, which is readily verified, will be particularly useful.

Lemma 1 For Y ∼ B2(a, b, σ ), γ1 > −a, and γ2 > γ1 − b, we have

E

(
Y γ1

(σ + Y )γ2)

)
= (a)γ1

(a + b)γ2

(b)γ2−γ1

σγ2−γ1
(15)

where, for α > 0 and α + m > 0, (α)m is the Pochhammer symbol as defined above.

It is simple to verify the following (e.g., (Ferguson, 1968), page 96).

Lemma 2 For X |θ ∼ NB(r , θ) with prior θ ∼ B2(a, b, r), the posterior distribution
is θ |x ∼ B2(a + x, b + r , r).

Now with such a prior, for estimating θ , since V(X |θ) = θ(θ + r)/r , under
normalized squared error loss

L(θ, θ̂ ) = (θ̂ − θ)2

θ(θ + r)
, (16)
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the Bayes estimate of θ may be derived from (7) and (15) as

θ̂π (x) = E
( 1

(θ+r) |x
)

E
( 1

θ(θ+r) |x
) = r

a + x − 1

b + r + 1
,

for a + x > 1. For a = 1 and x = 0, a direct evaluation yields θ̂π (0) = 0, which
matches the above extended to x = 0. The associated loss L(θ, θ̂π (x)) has posterior
expectation for a > 1 equal to

L̂π (x) = E
(

θ
θ+r |x

) − E
2
(

1
θ+r |x

)

E

(
1

θ(θ+r) |x
)

= a+x
a+b+x+r − ( b+r

b+r+1

)( a+x−1
a+b+x+r

) = 1
b+r+1 ,

making use of (8) and (15). Interestingly, the estimator does not depend on a and is
constant as a function of x and this property will play a key role for the minimax
findings of Sect. 5. We conclude by pointing out that the above applies to the improper
prior θ ∼ B2(1, 0, r) yielding the generalized Bayes estimator θ̂0(x) = r x/(r + 1).
It is known (e.g., Ferguson, 1968) that the estimator θ̂0 is minimax with minimax risk
equal to 1/(r + 1).

3.2 Posterior distributions for loss that do not depend on x

There are a good number of instances; some of which have appeared in the literature;
where both the posterior distribution of loss L(θ, γ̂ ) and (consequently) the Bayes
estimate with respect to loss W (L, L̂) are free of the observed x . Such a property is
particularly interesting and will play a critical role for the minimax implications in
Sect. 4.We describe situationswhere such a property arises and collect some examples.
The situations correspond to similar scenariosmathematically and relate specifically to
cases where the posterior density admits: (I) a location invariant, (II) a scale invariant,
or (III) a location-scale invariant structure.

Theorem 1 Suppose that the posterior density for γ (θ) = θ is, for all x, location
invariant of the form θ |x ∼ f (θ − μ(x)) and that the first-stage loss for estimating θ

is location invariant, i.e., of the form L(θ, θ̂ ) = β(θ̂ − θ); β : Rd → R+. Then,
(a) the Bayes estimator θ̂π (X), whenever it exists, is of the form θ̂π (x) = μ(x) + k,

k being a constant;
(b) the posterior distribution of the loss β(θ̂π (x) − θ) is free of x;
(c) the Bayes estimator L̂π (x) of the loss β(θ̂π (x) − θ) with respect to second-stage

loss W (L, L̂) is, whenever it exists, free of x.

Proof Part (c) follows from part (b). Now, observe that

inf
θ̂∈Rd E

{
β(θ̂ − θ)|x

}
= inf

θ̂∈Rd E
{
β
(
θ̂ − μ(x) − (

θ − μ(x)
))

|x}
= inf α̂∈Rd E

{
β(α̂ − Z)|x}

= E
{
β(α̂π (x) − Z)|x},
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for all x , with α̂ = θ̂ −μ(x), α̂π (x) = θ̂π (x)−μ(x), and Z |x =d θ −μ(x)|x . Part (a)
follows since the distribution of Z |x does not depend on x and hence the minimizing
α̂ (i.e., α̂π (x)) does not depend on x . Finally, part (b) follows since

β
(
θ̂π (x) − θ

)|x =d β
(
k − Z

)|x

is free of x . ��
We pursue with similar findings as described in (II) and (III) above

Theorem 2 Suppose that the posterior density for θ is, for all x, scale invariant of the
form θ |x ∼ 1

σ(x) f (
θ

σ(x) ), θ ∈ R+, and that the first-stage loss for estimating θ is scale

invariant, i.e., of the form L(θ, θ̂ ) = ρ( θ̂
θ
); ρ : R → R+. Then,

(a) the Bayes estimator θ̂π (X), whenever it exists, is of the form θ̂π (x) = kσ(x), k
being a constant;

(b) the posterior distribution of the loss ρ(
θ̂π (x)

θ
) is free of x;

(c) the Bayes estimator L̂π (x) of the loss ρ(
θ̂π (x)

θ
) with respect to second-stage loss

W (L, L̂) is, whenever it exists, free of x.

Proof A similar development to the proof of Theorem 1 establishes the results. ��
The next result inspired initially by the context of estimation of a multivariate

normal mean with unknown covariance matrix (see Example 7) is presented in a more
general setting.

Theorem 3 Suppose that the posterior density for θ = (θ1, θ2) is, for all x, location-
scale invariant of the form

θ |x ∼ 1

σ(x)θd2
f
(θ1 − μ(x)

θ2
,

θ2

σ(x)

)
, (17)

with θ1 ∈ R
d , θ2 ∈ R+, and that the first-stage loss for estimating θ1 is location-scale

invariant, i.e., of the form L(θ, θ̂1) = ρ
(

θ̂1−θ1
θ2

)
. Then,

(a) the Bayes estimator θ̂1,π (X), whenever it exists, is of the form θ̂1,π (x) = μ(x) +
kσ(x), k being a constant;

(b) the posterior distribution of the loss L
(
θ, θ̂1,π (x)

)
is free of x;

(c) the Bayes estimator L̂π (x) of the loss L
(
θ, θ̂1,π (x)

)
with respect to second-stage

loss W (L, L̂) is, whenever it exists, free of x.

Proof Part (c) follows from part (b). Observe that

inf
θ̂1∈Rd

E

{

ρ

(
θ̂1 − θ1

θ2

)
∣∣x

}

= inf
α∈Rd

E

{
ρ

(
α − Z

V

) ∣∣x
}

,
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with α = θ̂1−μ(x)
σ (x) , Z |x =d θ1−μ(x)

σ (x) |x , and V |x =d θ2
σ(x) |x . Since the pair (Z , V )|x

has joint density 1
vd

f ( z
v
, v) which is free of x , the minimizing α is free of x which

yields part (a). Finally for part (b), observe that ρ(
θ̂1,π (x)−θ1

θ2
)
∣
∣x =d ρ( k−Z

V )|x , which
is indeed free of x given the above. ��

3.2.1 Examples

First examples that come to mind are given by the non-informative prior density
choices:

(i) π(θ) = 1 for the location model density X |θ ∼ f0(x − θ), x, θ ∈ R
d , with

f (t) = f0(−t) and μ(x) = x (Theorem 1);
(ii) π(θ) = 1

θ
for the scale model density X |θ ∼ 1

θ
f1(

x
θ
), x, θ ∈ R+, with

f (u) = 1
u2

f1(
1
u ) and σ(x) = x (Theorem 2);

(iii) π(θ) = 1
θ2
I(0,∞)(θ2)IRd (θ1) for X = (X1, X2)|θ ∼ 1

θd+1
2

f0,1
( x1−θ1

θ2
, x2

θ2

)
with

f (u, v) = 1
v2

f0,1(−u, 1
v
), μ(x) = x1, σ(x) = x2 (Theorem 3).

Applications of the above theorems are however not limited to such improper priors
and we pursue with further proper prior examples.

Example 4 (Multivariate normal model with known covariance) Theorem 1 applies
for the normal model set-up of Example 3 since the posterior distribution is of the
form f (θ − μ(x)). For instance, under second-stage squared error loss, identity (6)
and L̂π (X) = τ 20 d are illustrative of parts (b) and (c) of the theorem.

Theorem 1 applies as well to many other first-stage and second-stage losses, such as
Lq and reflected normal first-stage losses β(t) = ‖t‖q and 1−e−c‖t‖2 , with c > 0; and

second-stage losses of the form ρ( L̂L ) such as those of Remark 1. Finally, as previously
mentioned, the above observations apply for the improper prior density π(θ) = 1 with
corresponding expressions obtained by taking τ 2 = +∞.

Example 5 (A Gamma model) Gamma distributed sufficient statistics appear in many
contexts and we consider here X |θ ∼ G(α, θ) with a Gamma distributed prior θ ∼
G(a, b), which results in the scale invariant form of Theorem 2 with f a G(α + a, 1)
density and σ(x) = (x+b)−1. Therefore, Theorem 2 applies for scale invariant losses

ρ( θ̂
θ
) as those referred to in Remark 1. As an illustration, take entropy-type losses of

the formwith ρm(t) = tm −m log(t)−1,m �= 0, for which one obtains form < a+α

the Bayes estimator

θ̂π (x) = {
E(θ−m |x)}−1/m = kσ(x),

with k = {

(a+α)


(a+α−m)

}1/m , and the posterior distribution of the loss ρm(
θ̂π (x)

θ
) free of

x and matching that of ρm(Z−1) (or equivalently ρ−m(Z)) with Z ∼ G(a + α, k).
Finally, the Bayes estimate L̂π (x) will also be free of x for any second-stage loss. For
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the case of squared error loss W (L, L̂) = (L̂ − L)2, one obtains

L̂π (x) = E

{

ρm

(
θ̂π (x)

θ

)

|x
}

= E

{
ρm(Z−1)

}

= E
(
Z−m + mE log Z − 1

)

= m�(a + α) + log

(

(a + α − m)


(a + α)

)
, (18)

for m < a + α, where � is the Digamma function.
To conclude, as previously mentioned, we point out that the above expressions are
applicable for the improper density π0(θ) = 1

θ
on (0,∞) by setting a = b = 0.

Related minimax properties are investigated in Sect. 4.2

Example 6 (An exponential location model) Consider X1, . . . , Xn i.i.d. from an expo-
nential distribution with location parameter θ and density e−(t−θ)

I(θ,∞)(t) (fixing
the scale without loss of generality) with a Gamma prior θ ∼ G(a, b), a > 0
and b = n. This yields a posterior density of the form θ |x ∼ 1

σ(x) f (
θ

σ(x) ) with

σ(x) = x(1) = min{x1, . . . , xn}, and f (u) = aua−1
I(0,1)(u), i.e., with the density

of U ∼ Beta(a, 1). Theorem 2 thus applies for any first-stage scale invariant and
second-stage losses.

As an illustration, consider the entropy-type loss L(θ, θ̂ ) = θ

θ̂
−log( θ

θ̂
)−1, yielding

θ̂π (x) = a
a+1 x(1) and loss L = L

(
θ, θ̂π (x)

)
distributed under the posterior as a+1

a U −
log(U ) − log(1 + 1

a ) − 1, for U ∼ Beta(a, 1) which is indeed free of x . Finally, for
squared error second-stage loss, the Bayes estimator of L is given by

L̂π (x) = E(L|x) = 1

a
− log

(
1 + 1

a

)
,

since E(U ) = a
a+1 and E(logU ) = − 1

a .

Example 7 (Multivariate normal model with unknown covariance) Based on X =
(X1, . . . , Xn)

� with Xi ∼ Nd(μ, σ 2 Id) independently distributed components, set-
ting θ = (θ1, θ2) = (μ, σ ), consider estimating θ1 under location scale invariant loss

L(θ, θ̂1) = ρ
(

θ̂1−θ1
θ2

)
, such as the typical case ρ(t) = ‖t‖2. For this set-up, a suffi-

cient statistic is given by (X̄ , S) with X̄ = 1
n

∑n
i=1 Xi and S = ∑n

i=1 ‖Xi − X̄‖2.
Furthermore, X̄ and S are independently distributed as X̄ |θ ∼ Nd(θ1, (σ

2/n)Id) and
S|θ ∼ G(k/2, 1/2σ 2) with k = (n − 1)d.

Now consider a normal-gamma conjugate prior distribution for θ such that

θ1|θ2 ∼ Nd(ξ,
θ22

c
Id) with

1

θ22
∼ G(a, b),
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denoted θ ∼ NG(ξ, c, a, b), with hyperparameters ξ ∈ R
d , a, b, c > 0. Calculations

lead to the posterior density

θ |x ∼ NG
(
ξ(x), c + n, a(x), b(x)

)
,

with ξ(x) = nx̄+cξ
n+c , a(x) = a + d+k

2 , and b(x) = s+2b+ nc
n+c ‖x̄−ξ‖2
2 . The corre-

sponding posterior density of θ can be seen to match form (17) with ξ(x) as given,
σ(x) = √

b(x), and f the joint density of (V1, V2)where V1 and V2 are independently
distributed as V1 ∼ Nd(0, 1

c+n Id) and V−2
2 ∼ G(a + d+k

2 , 1). The last representation

is obtained by the transformation (θ1, θ2) → (V1 = θ1−ξ(x)
θ2

, V2 = θ2
σ(x) ) under the

posterior distribution.
Theorem 3 thus applies for any first-stage location-scale invariant and second-stage

losses. For instance, the familiar weighted squared error loss L(θ, θ̂1) = ‖θ̂1−θ1‖2
θ22

leads

to θ̂1,π (x) = ξ(x), 1 and loss L = ‖θ1−ξ(x)‖2
θ22

whose posterior distribution (i.e., ‖V1‖2
with V1 as above) is that of a 1

n+cχ
2
d (0) distribution.

Remark 4 Further potential applications of Theorems 1 and 3 may arise when the
posterior distribution can be well approximated by a multivariate normal distribution.
Such a situation occurs with the Bernstein-von Mises theorem and the convergence
(under regularity conditions; e.g., (DasGupta, 2008) for an exposition) of

√
n
(
θ −

θ̂mle
)∣∣x to a Nd(0, Iθ0), Iθ0 being the Fisher information matrix at the true parameter

θ0, and θ̂mle the maximum likelihood estimator.

4 Minimax findings for a given loss

In this section, we present different scenarios with loss estimators that are minimax
and therefore a benchmark against which we can assess other loss estimators. The
results are subdivided into two parts: (i) multivariate normal models with independent
components and common variance, with or without a known variance; and (ii) univari-
ate gammamodels. Throughout, the first-stage estimator and associated loss are given,
and the task consists in estimating the loss. For normal models, a quite general class
of first-stage losses which are functions of squared error is considered with various

second-stage losses of the form ρ( L̂L ), while the analysis for the gamma distribution
involves first-stage entropy loss and second-stage squared error loss. The theoretical
results are accompanied by observations and illustrations.

1 This can be seen as follows.

θ̂1,π (x) =
E

(
θ1
θ22

∣
∣x

)

E
( 1
θ22

∣
∣x

) =
E

θ2|x (E
( θ1
θ22

∣
∣x, θ2

))

E
( 1
θ22

∣
∣x

) =
E(

ξ(x)
θ22

|x)
E( 1

θ22
|x) = ξ(x). (19)

123



Japanese Journal of Statistics and Data Science

4.1 Normal models

We first study models X ∼ Nd(θ, σ 2 Id) with known σ 2 before addressing the
unknown σ 2 case with an i.i.d. sample. We consider first-stage losses of the form

β
( ‖θ̂−θ‖2

σ 2

)
for estimating θ , with β(·) absolutely continuous and strictly increasing on

[0,∞), and the loss

L = β
(‖X − θ‖2

σ 2

)
(20)

incurred by estimator θ̂0(X) = X . In this set-up, the first-stage frequentist risk is given

by R(θ, θ̂0) = Eθ

{
β
( ‖X−θ‖2

σ 2

)} = E{β(Z)} with Z ∼ χ2
d , and we assume that it is

finite. In the identity case β(t) = t , the estimator θ̂0(X) is best equivariant, minimax
and (generalized) Bayes with respect to the uniform prior density π0(θ) = 1 (e.g.,
(Fourdrinier et al., 2018)). These properties also hold more general β, and even for
X ∼ f (‖x − θ‖2) with decreasing f (e.g., (Kubokawa et al., 2015)).

As a second-stage loss, consider the entropy-type loss

W (L, L̂) = ρm

(
L̂

L

)

with ρm(t) = tm − m log(t) − 1, m �= 0, (21)

and the Bayes estimator L̂π0(X) of loss L with respect to prior density π0. Since the

posterior distribution ‖x−θ‖2
σ 2

∣∣x is χ2
d (see Example 3) independently of x , a direct

minimization of the expected posterior loss tells us that

L̂π0(x) = argminL̂

{
E

(
ρm(

L̂

L
)|x

)}

= argminL̂

{
L̂m

E(L−m |x) − m log L̂ + mE(log L|x) − 1
}

=
{
E(L−m |x)

}−1/m

=
{
E

(
(β(Z))−m)}−1/m

, (22)

for all m �= 0, and that

inf
L̂

{
E

(
ρm(

L̂

L
)|x

)}
= E

(
ρm(

L̂π0

L
)|x

)

= mE
(
logβ(Z)

) + logE
(
(β(Z))−m)

= R̄ (say), (23)

as long as these expectations exist. L̂π0 takes values on (0,∞) and a specific example
is provided after the proof. Also observe that L̂π0 has constant risk R(θ, L̂π0) = R̄.
This also can be seen directly by the equivalence of the frequentist and posterior
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distributions of ‖X−θ‖2
σ 2 which tells us that

L̂π0
L |θ =d L̂π0

L |x for all θ, x and therefore

R(θ, L̂π0) = E

(
ρm(

L̂π0
L )|θ

)
= E

(
ρm(

L̂π0
L )|x

)
= R̄.

Theorem 4 Under the above set-up and assumptions, for estimating the first-stage
loss L in (20) under second-stage loss (21), the minimax estimator and risk are given
by L̂π0(X) and R̄, respectively.

Proof Since L̂π0(X) has constant risk R̄ = R(θ, L̂π0), it suffices to show that
L̂π0(X) is an extended Bayes estimator with respect to the sequence of priors
πn ∼ Nd(0, nσ 2 Id), n ≥ 1, which is to show that

lim
n→∞ rn = R̄, (24)

with rn the integrated Bayes risk associated with πn . For prior πn , we have θ |x ∼
Nd(

n
n+1 x,

nσ 2

n+1 Id) implying that ‖X−θ‖2
σ 2 |x ∼ n

n+1χ
2
d (

y
n ), with y = ‖x‖2

(n+1)σ 2 . Now,

set Zn such that Zn|y ∼ n
n+1χ

2
d (

y
n ) and y as above. Then as earlier, the Bayesian

optimization problem for πn results in

L̂πn (x) =
{
E

((
β(

‖x − θ‖2
σ 2 )

)−m |x
)}−1/m =

{
E

((
β(Zn)

)−m |y
)}−1/m

and

inf L̂
{
En

(
ρm( L̂L )|x)} = En

(
ρm(

L̂πn
L )|x)

= mE
(
logβ(Zn)|y

) + logE
((

β(Zn)
)−m |y

)

= un(y) say.

From the above, we have

rn = E
(
un(Y )

)
with Y = ‖X‖2

(n + 1)σ 2 . (25)

Nowobserve that themarginal distribution of X is Nd(0, (n+1)σ 2 Id) implying that
the marginal distribution of Y is χ2

d free of n. Finally, by the dominated convergence

theorem with |un(y)| ≤ vn(y), vn(y) = En
(
ρm(

L̂π0
L )|x) for all n ≥ 1 and y >

0, E
(
vn(Y )

) = EnE
(
ρm(

L̂π0
L )|θ) = R̄ (independently of n), and an application of

Lemma 6, which is stated and proven in the Appendix, we infer that

limn→∞ rn = E
Y
{
limn→∞ mE

(
logβ(Zn)|Y

) + limn→∞ logE
((

β(Zn)
)−m |Y

)}

= E
Y
{
mE

(
logβ(Z)

) + logE
((

β(Z)
)−m

)}

= mE
(
logβ(Z)

) + logE
((

β(Z)
)−m

)

which is (24) and completes the proof. ��
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Table 2 Bayesian Estimators, Bayes Risks and Minimax Risks

ρ j (
L̂
L ) L̂π0, j (X) rn, j = E

(
g j (Y )

)
, Y ∼ χ2

d Minimax risk

(
( L̂L )m − 1

)2 {
E

(
β−m (Z)

)

E

(
β−2m (Z)

)
}1/m

1 − E
2
(
β−m (Zn )|Y

)

E

(
β−2m (Zn )|Y

) 1 − E
2
(
β−m (Z)

)

E

(
β−2m (Z)

)

1
2
( L̂
L + L

L̂
− 2

)
√

E

(
β(Z)

)

E

(
1

β(Z)

)
√
E

(
β(Zn )|Y

)
E

(
1

β(Zn )
|Y

)
− 1

√
E

(
β(Z)

)
E

(
1

β(Z)

)
− 1

(
log( L̂L )

)2 eE
(
logβ(Z)

)
V

(
logβ(Zn)

∣∣Y
)

V
(
logβ(Z)

)

Theorem 4 applies quite generally for various choices of β and loss ρm . and the
approach is unified. A particular interesting case is given by first-stage Lq losses with
β(t) = tq , q > 0. Calculations are easily carried out with the moments of Z ∼ χ2

d

yielding the minimax loss estimator L̂π0(X) = 2q
( 
( d2 )


( d2 −mq)

)1/m of L = ‖x−θ‖2q
σ 2q for

m < d/2q.
An analogous approach establishes the minimaxity of the generalized Bayes loss

estimator L̂π0 for various other interesting loss functions of the form ρ( L̂L ). We
summarize such findings as follows.

Theorem 5 Consider the set-up of Theorem 4with its corresponding assumptions, and

the problem of estimating the first-stage loss (20) under second-stage loss ρ j (
L̂
L ), j =

A, B,C where ρA(t) = (tm−1)2,m �= 0, ρB(t) = 1
2 (t+ 1

t −2), and ρC (t) = (log t)2,

then assuming existence and finite risk, the generalizedBayes estimator L̂π0, j (X), j =
A, B,C, with respect to the uniform prior density is minimax, its frequentist risk is
constant and matches the minimax risk.

Proof In each of the three cases, a proof is quite analogous to that of Theorem 4
with estimators L̂π0, j (X), the integrated Bayes risk rn, j = E(g j (Y )), n ≥ 1 and the
minimax risk varying for j = A, B,C as presented inTable 2with Zn |Y ∼ n

n+1χ
2
d (Yn ),

Y ∼ χ2
d , Z ∼ χ2

d . ��
Remark 5 Some remarks:

(I) For squared error second-stage loss (L̂ − L)2, the generalized Bayes estimator

L̂π0 of L = β
( ‖X−θ‖2

σ 2

)
with respect to the uniform prior density π0 is given

by E(L|x) = E
(
β(Z)

)
with Z ∼ χ2

d (as for entropy loss ρ−1), assuming finite
E

(
β2(Z)

)
. The methodology of Theorems 4 and 5 can be applied to establish the

minimaxity of L̂π0 . This represents an extension of the identity case β(t) = t
proven by Johnstone (1988).

(II) Johnstone established in the identity case and for the squared error second-stage
loss the inadmissibility of L̂π0(X) = d for d ≥ 5 by producing estimators L̂ that
dominate L̂π0 . These estimators L̂ , and others appearing later in the literature, are
“shrinkers” exploiting a potential defect of L̂π0 . In comparison, it can be shown
using various applications of Jensen’s inequality and the covariance inequality
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that the Bayes estimators L̂π0 in Theorem 5 for ρB , ρC , and for ρA with m > 0,
as well as those of Theorem 4 for m > −1 are shrinkers in the sense that
L̂π0(X) < E

(
β(Z)

)
. In contrast, they are expanders for m < −1 for both ρm

and ρA. Such comparisons apply aswell beyond the set-up here, for othermodels
and priors, namely for Example 3’s general L̂π expressions, and in comparison to
the benchmark posterior expectation estimatorE(L|X) (seeAppendix). Stronger
properties can undoubtedly be established in specific cases, such as the identity
case seen in Example 3. Finally, we point out for a given loss of Theorem 4,
or Theorem 5, that the benchmark unbiased procedure L̂0(X) = E

(
β(Z)

)
is

dominated in terms of frequentist risk by L̂π0(X) unless these two estimators
coincide (e.g., ρ−1).

(III) The considerations above also informs us on a “conservativeness” criterion for
selecting a loss estimator which stipulates that

Eθ L̂(X) ≥ Eθ L(θ, γ̂ (X)) for all θ, (26)

(equality being (2)), put forth by Brown (1978), Lu and Berger (1989), and
others. In our context, such an “expander” property does not follow in general,
and rather is inherited (or disinherited) by the choice of the second-stage loss.
The adherence to (26) is rather involved in general, but it thus can be controlled
in this Example by the choice of the second-stage loss.

4.1.1 Unknown �2

For the unknown σ 2 case, a familiar argument (e.g., (Lehmann & Casella, 1998))
coupled with properties of L̂π0(X) for the known σ 2 case, leads to minimax findings
via the following lemma.

Lemma 3 For X = (X1, . . . , Xn)
� with independently distributed components Xi ∼

Nd(μ, σ 2 Id), θ = (μ, σ 2), consider estimating the loss L = β(
‖x̄−μ‖2

σ 2/n
) incurred by

γ̂ (X) = X̄ for estimating γ (θ) = μ, with β(·) absolutely continuous and strictly
increasing as in Sect.4.1. Suppose that L̂0(X) is under second-stage loss W (L, L̂)

free of σ 2, minimax, and with constant risk R̄ = Eθ

{
W (L, L̂0(X))

}
for estimating L

regardless of σ 2. Then, L̂0(X) remains minimax for unknown σ 2 with minimax risk
R̄.

Proof Suppose, in order to establish a contradiction, that there exists another estimator
L̂(X) such that

sup
θ

Eθ

{
W (L, L̂(X))

}
< sup

θ

Eθ

{
W (L, L̂0(X))

} = R̄.

Then, for fixed σ 2 = σ 2
0 , we would have

sup
θ=(μ,σ 2

0 )

Eθ

{
W (L, L̂(X))

}
< sup

θ

Eθ

{
W (L, L̂0(X))

}
< R̄,
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which would be not possible given the assumed minimax property of L̂0(X) for σ 2 =
σ 2
0 . ��

The above coupled with the results of the previous section leads to the following.

Corollary 1 In the set-up of Lemma 3 with second-stage loss (21), the loss estimator

L̂π0 given in () is minimax for estimating L = β(
‖x̄−μ‖2

σ 2/n
). Furthermore, minimaxity

is also achieved by the generalized Bayes estimators L̂π0, j (X) of Theorem 5 for the

corresponding losses ρ j (
L̂
L ), j = A, B,C .

Proof The results are deduced immediately as consequences of Lemma 3, Theorems 4,
and 5. ��

4.2 Gammamodels

We revisit here the Gamma model X |θ ∼ G(α, θ) of Example 5 with first-stage

entropy-type loss ρm( θ̂
θ
) for estimating θ and with m < α/2. We consider the loss

associated with θ̂π0(X) = k
X , k = {


(α)

(α−m)

}1/m , which as an estimator of θ , is

generalized Bayes for the improper density π0(θ) = 1
θ
I(0,∞)(θ), as well as minimax

with constant risk.
With the above first-stage estimator given, the task becomes to estimate

L =
(

k

θx

)m

− m log

(
k

θx

)
− 1, (27)

and we investigate second-stage squared error loss (L̂ − L)2. We establish below the
minimaxity of the Bayes estimator

L̂π0(X) = m�(α) + log
(
(α − m)


(α)

)
, (28)

given in Example 5 for a = b = 0. We will require the following Gamma distribution
properties, which are derivable in a straightforward manner, and related frequentist
risk expression for L̂π0 .

Lemma 4 Let W ∼ G(ξ, β) and h > −ξ/2. We have:

(a) V(Wh) = β−2 h
{


(ξ+2 h)

(ξ)

− (

(ξ+h)


(ξ)

)2}
,

(b) V(logW ) = � ′(ξ),
(c) Cov(Wh, logW ) = 1

βh

(h+ξ)


(ξ)

{
�(ξ + h) − �(ξ)

}
,


 and � being the Gamma and Digamma functions.

Lemma 5 The estimator L̂π0(X) of L has constant in θ frequentist risk given by

R(θ, L̂π0) = k2m
{
(α − 2m)


(α)
− (
(α − m)


(α)

)2} + m2� ′(α)+
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+ 2mkm

(α − m)


(α)

{
�(α − m) − �(α)

}
. (29)

Proof Let Z ∼ G(α, k). For the non-informative prior distribution here, one can
verify as in Theorem 3 that Xθ

k |θ =d Xθ
k |x =d Z for all θ, x , i.e., the frequentist

and posterior distributions coincide. This implies that L|θ =d L|x for all θ, x , so that
Eθ (L) = E(L|x) = L̂π0(x). Now, since the second-stage loss is squared error, the
frequentist risk is equal to

R(L, L̂) = Eθ

(
(L − E(L|X))2

) = V(L|θ)

= V
(
Z−m + m log Z

)

= V(Z−m) + m2
V(log Z) + 2mCov(Z−m, log Z).

The result then follows by applying Lemma 4 to the above for ξ = α, h = −m. ��

We now proceed with the main result of this section.

Theorem 6 For X ∼ G(α, θ) with known α (α > 2m) and unknown θ ∈ R+, first-
stage lossρm( θ̂

θ
), and second-stage squared error loss, the generalizedBayes estimator

L̂π0(X) given in (28) of L is minimax with minimax risk given by (29).

Proof We show that L̂π0(X) is an extended Bayes estimator of L with respect to the
sequence of prior densities πn := G(an, bn), with an = bn = 1

n , n ≥ 1. Since the risk

R(θ, L̂π0) = R̄ is constant in θ , establishing (24) with rn the integrated Bayes risk
with respect to πn will suffice to prove the above.

We have for a given n and πn ,

rn = E
X
n

{
En

(
L − L̂πn (X)

)2∣∣X
)} = E

X
n

(
Vn(L|X)

)
,

where L̂πn (X) = En(L|X) is the Bayes estimator of L , Vn(L|X) is the posterior
variance of L , and the expectationEX

n is taken with respect to the marginal distribution
of X .

Under πn , we have θ |x ∼ G
(
α + an, (x + bn)

)
so that θx

k |x ∼ G(α + an,
k(x+bn)

x ).

Setting Y = Y (X) = k(X+bn)
X , we can write

Vn(L|X) = Vn
(
( k
θX )m − m log( k

θX )
∣∣X

)

= Vn
(
W−m + m logW

∣∣Y
)
,

with W |Y ∼ G(α + an,Y ). Expanding the above variance as in Lemma 5 and again
making use of Lemma 4, one obtains

Vn(L|X) = Cn{Y (X)}2m + m2� ′(an + α) + 2m{Y (X)}mDn, (30)
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with

Cn = 
(an + α − 2m)


(an + α)
− 
2(an + α − m)


2(an + α)
,

and

Dn = 
(an + α − m)


(an + α)

{
�(an + α − m) − �(an + α)

}
.

Now, since X ∼ B2(α, an, bn) under πn , i.e., a Beta type II distribution as in
Definition 1, we have by virtue of Lemma 1

En(Y (X)h) = E

((
X

k(X + bn)

)−h
)

= kh
(α)−h

(α + an)−h
for h < α,

so that limn→∞ En
(
(Y (X))h

) = kh for h = m and h = 2m. Finally with the above
and (30), we obtain directly

lim
n→∞ rn = lim

n→∞E
X
n

{
Vn(L|X)

} = R(θ, L̂π0) = R̄,

as given in (29), completing the proof. ��

5 Minimaxity for Rukhin-type losses

Whereas the minimax findings of the previous sections apply to decisions problems
that are sequential in nature, i.e., the decision of interest which is that of estimat-
ing a loss L = L

(
θ, γ̂ (x)

)
is assessed for optimality after having observed the

data x , Rukhin’s loss in (3) or (4) applies to the problem of estimating (γ (θ), L)

simultaneously. Whereas (Rukhin, 1988a, b) investigated questions of admissibility
of pairs (γ̂ , L̂), our investigation here pertains to minimaxity. An estimator (γ̂m, L̂m)

of (γ (θ), L) is defined to be minimax for loss W (θ, γ̂ , L̂) if supθ {W (θ, γ̂m, L̂m)} ≤
supθ {W (θ, γ̂ , L̂)} for all (γ̂ , L̂). Since we will investigate the behaviour of a sequence
of Bayes estimators, we point out that a Bayes estimator (γ̂π , L̂π ) of (γ, L) under loss
W (θ, γ̂ , L̂) and prior π is, whenever it exists, given by L̂ = E(L|x) and γ̂π the Bayes
point estimator of γ̂ (θ) under first-stage loss L = L

(
θ, γ̂ (x)

)
(independently of the

choice of h).
We capitalize on a combination of properties and findings of the previous sections

to establish a minimax result which we frame as follows.

Theorem 7 Consider a given model X ∼ fθ and loss W = W (θ, γ̂ , L̂) as in (4) for
estimating (γ, L) with γ = γ (θ) and L = L(θ, γ̂ ). Suppose there exist an estimator
(γ̂0, L̂0) and a sequence of proper densities {πn; n ≥ 1} such that: (i) γ̂0(X) is for
first-stage loss L an extended Bayes estimator of γ with constant risk in θ ; (ii) the
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Bayes estimator L̂πn (x) is for n ≥ 1 constant as a function of x; and (iii) the estimator
L̂0(x) is the limit of L̂πn (x) as n → ∞. Then (γ̂0, L̂0) is minimax.

Proof Denote RW
(
θ, (γ̂ , L̂)

)
as the frequentist risk of estimator (γ̂ , L̂) under loss

W (θ, γ̂ , L̂); R(θ, γ̂ ) as the first-stage risk of γ̂ ; R̄ as the constant first-stage risk of
γ̂0; rn and rWn as the integrated Bayes risks with respect to πn associated with the
first-stage loss L and global loss W , respectively. As well, denote the constant values
of L̂πn (x) and L̂0(x) as cn and c = limn→∞ cn . We have

RW
(
θ, (γ̂0, L̂0)

) = Eθ

(
W (θ, γ̂0, L̂0)

)

= h′(c)R̄ − ch′(c) + h(c)
= R̄W ,

which is constant as a function of θ . To establish the result, it will suffice to show that

lim
n→∞ rWn = R̄W (31)

which implies that the pair (γ̂0, L̂0) is an extended Bayes equalizer rule with respect
to the loss W (θ, γ̂ , L̂) which hence results in a minimax solution. As above, it is the
case that

RW (θ, (γ̂πn , L̂πn )
) = h′(cn)R(θ, γ̂πn ) − cnh

′(cn) + h(cn),

which implies that

rWn = h′(cn)rn − cnh
′(cn) + h(cn).

Finally, condition (31) is verified with the above expressions since, by assumptions,
γ̂0 is extended Bayes with limn→∞ rn = R̄ and limn→∞ cn = c. ��

Observe that the result is quite general and the minimaxity holds irrespectively of
the choice of h in loss function (4), as is the case for the determination of a Bayes
estimator of (γ (θ), L). The above theorem paves the way for various applications
which build on the results contained in the previous sections and we present as a series
of examples. A critical property is the one where the Bayes estimators L̂πn (x) are free
of x , situations that were expanded on in Sect. 3.

Example 8 (Normal model) Theorem 7 applies for X ∼ Nd(θ, σ 2 Id), γ (θ) = θ ,

simultaneous lossW as in (4) with first-stage squared error loss L = ‖θ̂−θ‖2
σ 2 , with the

estimator (γ̂0(X) = X , L̂0(X) = d) which is generalized Bayes for (θ, L) and the
uniform prior density π(θ) = 1. Indeed, with the prior sequence of densities θ ∼πn

Nd(0, nσ 2), the minimaxity follows from Theorem 7 since: (i) γ̂0(X) is extended
Bayes relative to {πn; n ≥ 1} with constant risk equal to d, (ii) L̂πn (x) = nd

n+1 is

constant as a function of x , and (iii) converges to L̂0(x) = d.
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Example 9 (Normal model continued) The above example can be extended to the

choice of L = β
( ‖θ̂−θ‖2

σ 2

)
with β a continuous and strictly increasing function on R+.

Let Z ∼ χ2
d (0). Then, the estimator (γ̂ , L̂) with γ̂0(x) = x and L̂0(x) = E

(
β(Z)

)

(as long as the latter is finite) can be shown to be minimax for estimating (θ, L) under
loss W . It is also generalized Bayes for the uniform prior density.

A justification of condition (i) of Theorem 7 is as follows. A result in Yade-
gari (2017) (Theorem 2.2, page 24), that applies when the posterior distribution
of θ is normal, tells us that the first-stage Bayes estimator of θ under loss L and
prior πn is given by the posterior mean nx

n+1 , independently of β, the posterior

being θ |x ∼ Nd
( nx
n+1 , (

nσ 2

n+1 )Id
)
under prior πn . It follows from this that the min-

imum expected posterior loss, equivalently L̂πn (x), is equal to E
( n
n+1β(Z)

)
since

( ‖θ̂−θ‖2
σ 2

)|x ∼ n
n+1χ

2
d (0). Now, since this is free of x , one infers that the integrated

Bayes risk rn is equal to the minimum expected posterior loss and thus converges
to E

(
β(Z)

)
which can be seen as an application of Lemma 6 (for y = 0). Since

this matches the constant risk of γ̂0(X), we infer that the latter is also extended
Bayes, whence condition (i) of Theorem 7. From the above, we infer have that (ii)
L̂πn (x) = E

( n
n+1β(Z)

)
is free of x , and which (iii) converges to L̂0(x), establishing

the minimaxity.

Example 10 (Gamma model) For a Gamma model X ∼ G(α, θ) (i.e., Example 5,

we apply Theorem 7 for estimating γ (θ) = θ and L(θ, θ̂ ) = (
θ̂
θ

)m − m log( θ̂
θ
) − 1

simultaneously under loss W in (3), with m < α. We show that the Bayes estimator
(θ̂0, L̂0) of (θ, L) with respect to the improper prior density π(θ) = 1

θ
I(0,∞)(θ),

given by θ̂0(X) = {

(α)


(α−m)

}1/m 1
X and L̂0(X) = m�(α) + log

(

(α−m)


(α)

)
is minimax.

Indeed, with the sequence of prior G( 1n , 1
n ) densities πn , the minimaxity follows since:

(i) θ̂0(X) can be shown to be extended Bayes with constant risk given by L̂0(X), (ii)
the Bayes estimator L̂πn (x) of L is a constant given by (18) with a = 1/n, and (iii)
converges to L̂0 as n → ∞.

Theorem7also applies for other first-stage losses, such as the familiar scale invariant

squared error loss L(θ, θ̂ ) = ( θ̂
θ

− 1)2 with α > 2. In this case, a minimax solution

is θ̂0(X) = α−2
X and L̂0(X) = 1

α−1 , and the conditions of the theorem can be verified

with the same prior sequence {πn} as above with L̂πn (X) = 1
α−1+n−1 computable

from (8).

Example 11 (Poisson model) Theorem 7 leads to the following application for the
Poisson models of Sect. 3.1.1 and 3.1.2. With the set-up of Sect. 3.1.2, for esti-

mating (θ, L) under loss (3) with loss L(θ, θ̂ ) =
∑d

i=1

(θ̂i − θi )
2

θi
, we infer that

(
θ̂0(X), L̂π (X)

) = (X , d) is minimax by considering the sequence of priors πn such
that S ∼ G(an = d, bn = 1

n ). Indeed for such a sequence, we may show, namely by

using Remark 3, that: (i) θ̂0(X) is extended Bayes with constant risk given by d, (ii)
the Bayes estimator L̂πn (x) of L is a constant as a function of x given by d

1+ 1
n
, and

which (iii) converges to L̂0 as n → ∞.
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Example 12 (Negative binomial model) We consider the set-up of Sect. 3.1.3 with
X ∼ NB(r , θ) as in (14), and the problem of estimating (θ, L) for simultaneous
loss W as in (3), with L = L(θ, θ̂ ) the weighted squared error loss given in (16).
Theorem 7 applies in establishing the minimaxity of (θ̂0, L̂0) with θ̂0(X) = r X

r+1 and

L̂0(X) = 1
r+1 . Indeed with the sequence of B2(an, bn, r) prior densities πn for θ with

an = 1 and bn = 1
n , it is the case that: (i) θ̂0(X) is extended Bayes with constant risk

R̄ = 1
r+1 , (ii) L̂πn (x) = 1

r+1+n−1 is free of x , and (iii) converges to L̂0(x) as n → ∞.

The results above paired with the particular features of the (θ̂0, L̂0) minimax solu-
tions lead to further minimax estimators with the simple observation that (θ̂1, L̂0)

dominates (θ̂0, L̂0) under loss (3) whenever θ̂1 dominates θ̂0 under first-stage loss
L(θ, θ̂ ), given that L̂0(X) is a constant. We thus have the following implications for
the multivariate normal and Poisson models, for d ≥ 3 and d ≥ 2 respectively, since
there exist (many) dominating estimators θ̂1(X) of θ̂0(X) = X . The same applies for
the multivariate normal model with a loss function which is a concave function of
squared error loss and d ≥ 4 (see for instance, (Fourdrinier et al., 2018)).

Corollary 2 (a) For the normal model context of Example 8 with d ≥ 3, an estimator
(θ̂ , L̂) is minimax for estimating (θ, L) whenever θ̂ (X) dominates θ̂0(X) = X

under first-stage loss ‖θ̂−θ‖2
σ 2 ;

(b) For the normalmodel context of Example 9with d ≥ 4 and concaveβ, an estimator
(θ̂ , L̂) is minimax for estimating (θ, L) whenever θ̂ (X) dominates θ̂0(X) = X

under first-stage loss β
( ‖θ̂−θ‖2

σ 2

)
;

(c) For the Poisson model context of Example 11 with d ≥ 2, an estimator (θ̂ , L̂)

is minimax for estimating (θ, L) whenever θ̂ (X) dominates θ̂0(X) = X under

first-stage loss
∑d

i=1
(θ̂i−θi )

2

θi
.

6 Concluding remarks

This paper brings into play original contributions and analyses for loss estimation that
culminate with minimax findings for: (i) estimating a first-stage loss L = L(θ, γ̂ ),
and for (ii) estimating jointly (γ (θ), L) under a Rukhin-type loss. Various models and
choices of the first and second-stage losses were analysed. Our work also clarifies the
structure of various Bayesian solutions, properties of which become critical for the
minimax analyses.

All in all, the optimality properties obtained here serve as a guide on how one
can sensibly report on an incurred loss in both situations (i) and (ii). Notwithstand-
ing existing results, related questions of admissibility questions remain unanswered,
namely in the context of Example 1 for different second-stage losses where it would
be interesting to revisit the effect of the dimension d in the d−variate normal case.
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Appendix A

A.1

The following result was used in Sect. 4.1.

Lemma 6 Let Zn ∼ n
n+1χ

2
d (

y
n ) for n ≥ 1, d ≥ 1, and fixed y ≥ 0, and let g be a pos-

itive valued function such that E
(
g(Z1)

)
< ∞. Then, we have limn→∞ E

(
g(Zn)

) =
E

(
g(Z)

)
with Z ∼ χ2

d (0).

Proof Denote hn and fn as the density of Zn and n+1
n Zn ∼ χ2

d (
y
n ) respectively. We

seek to apply the dominated convergence theorem and wemake use of theW ∼ χ2
ν (λ)

density representation

(
1

2

)ν/2
w

ν−2
2


(ν
2 )

0F1

(
−; ν

2
; λw

4

)
e−(λ+w)/2,

for w > 0, ν > 0, λ ≥ 0 and where 0F1(−; b; t) = ∑
k≥0

tk
(b)kk! . From this, we have

for all n ≥ 2 and z > 0:

g(z)hn(z) = g(z) fn(
(n+1)z

n ) n+1
n≤ 3

2g(z) fn(
n+1
n z)

= 3
2g(z)

( 1
2

)d/2 (
(n+1)z

n )
d−2
2


( d2 )
0F1(−; d

2 ; n+1
4n2

zy) e− (y+(n+1)z)
2n

≤ 3
2Ke

y
2 g(z) f1(z),

with K = max{1, ( 32 )
d−2
2 }, where we have exploited the fact that 0F1(−; b; t) is for

fixed b > 0 increasing in t > 0, as well as make use of the inequality ( n+1
n )

d−2
2 ≤ K

for all d ≥ 1 and n ≥ 2. The result then follows by dominated convergence. ��

A.2

As a complement to Example 3, here are justifications to the effect that the constant
loss estimate L̂π decreases as a function ofm for losses ρA and ρm and that the defined
cut-off point m0(d) takes values between −1 and 0. We have

log

(
L̂π (x)

2τ 20

)

= f (d,m) = 1

m

{
log


(
d

2

)
− log


(
d

2
− m

)}
,

for ρm , and log
( L̂π (x)

2τ 20

) = f (d−2m,m) for ρA. Now, observe that f (d,m) increases

in d, and decreases in m, the former being a consequence of the strict logconvexity of
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the gamma function, and the latter since

∂

∂m
f (d,m) = − 1

m2

{
log


(
d

2

)
− log


(
d

2
− m

)
− m�

(
d

2
− m

)}
< 0,

with the inequality due to the ordering u′(a) <
u(a+b)−u(a)

b < u′(a + b) for a, b ∈
R+ and strictly convex and differentiable functions u(·) on R+. The above tells us
directly that L̂π decreases in m for loss ρm , but it is also the case for loss ρA since
f (d − 2m1,m1) > f (d − 2m2,m1) > f (d − 2m2,m2) for m1 < m2 < d

4 .

For the bounds on m0(d) which apply to loss ρA, it suffices to observe that L̂π =
τ 20 (d + 2) for m = −1, calculate the limiting value L̂π = 2τ 20 e

�( d2 ) as m → 0,
and then infer that limm→0 L̂π ≤ τ 20 d by virtue of the Digamma function inequality

�(α) < log(α) for α > 0. More generally, one shows that limm→0

(
E(L−m |x)
E(L−2m |x)

)1/m =
eE(log L|x), so that the squared log error loss arises as the limiting loss

(
( L̂L )m − 1

)2

when m → 0.

A.3

Here are elements of justification for the stated properties of Remark 5. We make
use of two inequalities, first Jensen’s inequality for concave h, E

(
h(β(Z))

) ≤
h
(
E(β(Z))

)
and a Covariance inequality for increasing f and decreasing g,

E
(
f (β(Z))g(β(Z))

) ≤ E
(
f (β(Z))

)
E

(
g(β(Z))

)
. The implications for losses ρm and

ρC followwith Jensen’s inequality using h(t) = t−m or −t−m depending on the value
of m, and h(t) = log(t), respectively. The shrinkage for ρA with m ∈ (0, 1) follows
with the covariance inequality applied for f (t) = tm and g(t) = t−2m , telling us that(
L̂π0(x)

)m
< E(Lm |x), followed by Jensen’s inequality applied to h(t) = tm . The

shrinkage that occurs for ρB follows from the use of the covariance inequality with

f (t) = t and g(t) = t−1. There remains loss ρA, the Bayes estimator
{
E(L−m |x)
E(L−2m |x)

}1/m

and its properties of shrinkage for m > 0, and expansion for m < −1, in comparison
to the benchmark estimator L̂0(X) = E(L|X). These properties follow directly from
the following inequality, which is also of independent interest.

Lemma 7 The following inequality holds for a positive random variable T :

E(T−m)

E(T−2m)
≤ (

E(T )
)m

for m > 0 and m ≤ −1

assuming existence of the above expectations.

Proof For a positive real number N , we set �N� and {N } as integer and fractional
parts defined here as �N� = sup{ j ∈ N : j < N } and {N } = N − �N�. The result
has been previously shown for m ∈ (0, 1). For m ≥ 1, the result follows by applying
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the covariance inequality �m� + 1 times as follows

E(T−m) ≤ E(T−m−1)E(T ) ≤ · · · ≤ E(T−m−�m�)
(
E(T )

)�m�

≤ E(T−m−�m�−{m})
(
E(T )

)�m�+{m}

= E(T−2m)
(
E(T )

)m
.

Similarly for m < −1, the inequality follows as

E(T−2m) ≥ E(T−2m−1)E(T ) ≥ · · · ≥ E(T−2m−�−m�)
(
E(T )

)�−m�

≥ E(T−2m−�−m�−{−m})
(
E(T )

)�−m�+{−m}

= E(T−m)
(
E(T )

)−m
.
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