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Abstract
In the realm of financial data analytics, machine learning techniques, particularly clas-
sification and regression trees (CARTs) and random forests, have shown remarkable
efficiency. This article serves as a user guide for these methods, with an emphasis on
their applicability and effectiveness in analyzing datasets in FinTech and InsurTech. In
particular, we present several numerical examples and empirical studies, and demon-
strate their superiority in handling datawith a variety of input features, offering insights
into their potential applications in the industries.

Keywords Classification and Regression Tree · Random Forest · FinTech ·
InsurTech · Financial Data Analytics

1 Introduction

Classification of data has long been one of the prime topics in industrial practice, and
various methods have been proposed and commonly used for this purpose, such as the
binary logistic regression and multinomial logit model that perform the task through
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linear feature combinations. However, the lack of interpretability for these methods,
which is crucial from the regulatory perspective, makes it necessary for simpler and
more explainable classificationmethods to be proposed. To this end, the Classification
Tree or Decision Tree, a greedy algorithmic approach, offers a remarkable solution.
It creates easy-to-follow rules for categorizing data, making it highly valuable in data
mining and applicable in financial sectors for various tasks related to credit approval
and relief of financial stress. Initially developed by Breiman, Friedman, Olshen, and
Stone in Breiman et al. (1984), this method has gained widespread recognition in
supervised learning, with continual research and development since then; also see
(Gordon, 1999) for more recent developments.

For decades, the finance and insurance industries have been at the forefront of
embracing new and innovative technologies. Their long-lasting relationship with AI
can date back to the 1980s. With the boom of data mining in the 1990s and the rise of
decision trees, we have witnessed the long-term prosperity of machine learning in the
fields of FinTech and InsurTech till today. As powerful andwell-developed representa-
tives of machine learning, CARTmodels and their ensemble version of random forests
have played an important role in many different practical scenarios, such as fraud
detection, risk assessment and prediction, marketing analytics, as well as pricing and
reserving in insurance. Indeed, in the era of big data, companies have to revolutionize
how to manage the vast amount of data they collect. With rapid advancements in tech-
nology, the volume and types (namely structured, semi-structured, and unstructured) of
data processed have significantly increased (Chakraborty andKar 2017). Thanks to the
development of high-performance computers and new effective algorithms, industries
can havemore choices beyond the traditional algorithmswith low efficiency, and hence
achieve a more efficient daily operation via the use of CARTs and random forests.

The flourishing of CART and random forests in the fields of finance and insur-
ance is also reflected in the various works since the turn of the century. In the realm
of finance, Smith et al. (2000) explored the use of various data mining techniques,
including CART, in the insurance industry for the analysis of customer retention and
claim patterns, and discussed how they could help to formulate strategic decisions
for policy renewals and premium pricing. Viaene et al. (2002) evaluated the power of
various commonly used methods for detecting frauds in automobile insurance; while
Decision Tree performed slightlyworse than other candidates, the authors did point out
that an ensemble version of Decision Tree would yield better performance than almost
all competitors. This claim was later realized by a novel fraud detection method pro-
posed by Phua et al. (2004) combining back-propagation, naïve Bayesian, and CART
with a stacking-bagging approach; more recent developments on the application of
CART and random forests in fraud detection can be referred to Gepp et al. (2012);
Phua et al. (2010); Varmedja et al. (2019). Moreover, Gepp et al. (2010) introduced
decision trees as a method for predicting business failure, suggesting they may be
more effective than traditional discriminant analysis, in response to the costly impact
of major company failures. As for the field of insurance, Quan and Valdez (2018)
demonstrated the use of multivariate decision tree models for insurance claim data,
emphasizing their advantages over univariate models in accuracy and the ability to
capture relationships among variables. Wüthrich (2018) explored the application of
regression trees in individual claims reserving, and assessed its impact on accurately
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predicting claim costs and improving reserving processes in insurance. All theseworks
serve as concrete evidence of the power and usefulness of CART and random forest,
as well as their versatility on various objectives. It is therefore no wonder that they
have been widely utilized in finance and insurance industries.

In particular, with the rise of the trendy topics of FinTech and Insurtech, the need
for data-driven decision-making is greater than ever in history, and CART and random
forests are certainly among the most popular choices for this purpose. To this end, we
aim to provide a user guide of these tools, including both their theoretical principles
and, more importantly, practical illustrations on real-life datasets with program codes
in both Python and R, so as to provide some insights into these tools to the readers,
as well as facilitate the plug-and-play need of them.

The rest of this article is arranged as follows. We begin with a concise introduction
of the concept of entropy in information theory in Sect. 2, which is the fundamental
building block of CART and random forests. We then discuss how the two pillars of
CART, namely classification tree (a.k.a. decision tree) and regression tree, are con-
structed in Sects. 3 and 4, respectively; some practical considerations at this stage will
also be mentioned. Section 5 introduces the random forest, the ensemble version of
CART. We then move on to the programming perspective in Sect. 6 and investigate
how these tools are trained and validated in Python and R using several illustrative
examples. Finally, we conduct a comparative experiential study using two represen-
tative real-life datasets in finance and insurance to testify to the power of CART and
random forest in Sect. 7.

2 Concepts of entropies

Typically, the construction of CARTs is based on the notion of entropy in information
theory. Indeed, it is important to establish a comprehensive understanding of the con-
cept of entropy in information theory, as it provides the foundational basis for making
informed and accurate data splits. We first introduce several key information-theoretic
quantities to be used later in this article.

2.1 Shannon and differential entropies

In 1948, Claude Shannon introduced the concept of entropy, derived from thermody-
namics, into information theory; see (Shannon, 1948, 1949) for details. This entropy,
often termed Shannon entropy in his honor, measures the deviation of a distribution
from a uniform distribution. It plays a crucial role in information theory, especially
in defining the capacity of a communication channel and gauging its efficiency in
transmitting information.

Let x be a discrete random variable whose support is denoted by X , and p be its
probability mass function. The Shannon entropy H(x) of x is defined as:

H(x) := −E(log2 p(x)) = −
∑

x∈X
p(x) log2 p(x), (1)
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adhering to the convention 0 log2 0 = 0. For example, the Shannon entropy of a
Bernoulli random variable x with a success probability of p is:

H(x) = −p log2 p − (1 − p) log2(1 − p). (2)

Note that although entropy is defined for random variables, it is fundamentally reliant
on their distributions. In a dataset S, the empirical estimation of entropy involves
calculating the frequency of occurrence for each value inX . The empirical probability
in a dataset S, denoted as pS(x), is calculated as:

pS(x) = number of occurrences of x in S
total data points in S ,

helping to empirically estimate the entropy by −∑
x∈X pS(x) log2 pS(x).

In the context of information theory, entropy is measured in binary bits, namely 0 or
1. As the entropy increases, the amount of distinct, useful information decreases,1 and
hence the randomness and chaotic information both increase. Moreover, the concept
of Shannon entropy is closely linked with Fisherian statistical inference. For a random
sample x1, . . . , xn from a discrete random variable x, the likelihood is

∏n
i=1 p(xi ), and

the average negative log-likelihood of− 1
n

∑n
i=1 ln p(xi ) converges to−E(ln p(x)) =

−∑
x∈X p(x) ln p(x) by the weak law of large numbers. This limit is exactly H(x) ·

ln 2, equating the likelihood to
(

1
2H(x)(1+op (1))

)n
. Additionally, in information theory,

the application of entropy is highly motivated for its role in data compression; for
a sample (x1, . . . , xn) ∈ X n , approximately nH(x) bits are needed for binary code
compression with a large enough n; more details are discussed in Appendix A.1.

By the definition of Shannon entropy, it is clear that H(x) ≥ 0. For a degenerate
variable x, H(x) equals 0, indicating no uncertainty in x. In the case of a Bernoulli
variable taking values 0 or 1, by Eq. (2), H(x) falls within the range [0, 1], reaching 1
when both outcomes are equally probable. For a discrete variable x with n values and
probabilities pi , i = 1, . . . , n, the entropy peaks when pi ≡ 1

n for each i , yielding
H(x) = log2 n by using Jensen’s inequality.

For a continuous random variable x with support X and a continuous density func-
tion f (x), the concept of Shannon entropy evolves into what is known as differential
entropy2 (see (Shannon, 1948)). Unlike its discrete counterpart, differential entropy
is defined as:

h(x) := E(ln f (x)) = −
∫

X
f (x) ln f (x) dx . (3)

1 In disciplines like communication and signal processing, “information” is used to measure uncertainty;
higher entropy corresponds tomore (chaotic) information.Here, useful information increases as randomness
decreases. For instance, predicting the flip of a fair coin is highly uncertain, yet as the coin becomes more
biased, prediction becomes more reliable, indicating an increase in useful information for forecasting
outcomes. It is important to recognize the fundamental divergence between two kinds of information:
chaotic information, which relates to the randomness, and useful information in the financial sphere.
2 In standard practice, the differential entropy is typically defined using the natural logarithm, contrasting
with the binary logarithm employed in Shannon entropy for discrete scenarios.
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This form of entropy, however, does not share all properties of Shannon entropy, such
as non-negativity and scaling invariance, and hence not a simple generalization of the
latter. For example, take a normally distributed variable x ∼ N (μ, σ 2). The differen-
tial entropy h(x) is given by h(x) = 1

2

(
1 + ln(2πσ 2)

)
, which is evidently negative

if σ 2 < 1
2πe . Furthermore, as σ 2 → 0, x becomes a degenerate distribution at μ,

and h(x) approaches −∞, unlike Shannon entropy which approaches 0. Furthermore,
differential entropy may not exist for certain distributions; for instance, consider the
distribution with a density function f (x) = ln k

x(ln x)2
for x > k, and 0 otherwise, where

k > 1, then it can be shown by routine calculations that its differential entropy is
infinite.

2.2 Conditional entropy

The Shannon entropy and differential entropy mentioned above are unconditional,
and hence useful in scenarios where there is no prior knowledge about the variable
x. Meanwhile, it is more typical in real-world applications to have some pre-existing
information from other source variables. Intuitively, this additional knowledge should
decrease the level of uncertainty and, consequently, the entropy. For example, in a lin-
guistic model designed to forecast upcoming texts, the range of potential subsequent
words is significantly narrowed down once the current words are identified. Let us
formalize this concept in the followingmanner. Consider a pair of discrete randomvari-
ables (x, y) with the joint probability mass function P(x = x, y = y) =: p(x, y) for
x ∈ X and y ∈ Y . Our objective is to investigate how the knowledge of x influences the
uncertainty of y, thereby affecting its entropy.Utilizing the concept of conditional prob-
ability p(y|x) = P(y = y|x = x), we define the conditional entropy of y given x as:

H(y|x):= −
∑

x∈X

∑

y∈Y
p(x, y) log2 p(y|x).

For the special case where y is entirely determined by x, i.e., y = f (x) for a given
function f , the conditional probability p(y|x) is 1 when y = f (x) and 0 otherwise,
for all x ∈ X , hence H(y|x) = −∑

x∈X p(x, f (x)) log2 p( f (x)|x) = 0.
We next investigate the relationship between conditional entropy and unconditional

entropy. From the definition of H(y|x), we can express p(x, y) in terms of the con-
ditional probability p(y|x) and rearrange the summation order to get:

H(y|x) = −
∑

y∈Y

(
∑

x∈X
p(x)p(y|x) log2 p(y|x)

)
.

Let φ(x):=x log2 x for x > 0. The inner summation can be represented as
E(φ(p(y|x))) for each y. Given that φ′(x) = ln x+1

ln 2 and φ′′(x) = 1
x ln 2 > 0 for all

x > 0, φ(x) is convex. This permits the application of Jensen’s inequality, leading to:

H(y|x) = −
∑

y∈Y
E(φ(p(y|x))) ≤ −

∑

y∈Y
φ(E(p(y|x))) =

∑

y∈Y
p(y) log2 p(y) = H(y),

(4)
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which alignswith the intuition that additional information decreases the randomness or
entropy of the original random variable. Similarly, for the case where y is a continuous
variable and x is any type of variable with distribution function Fx(x), the conditional
differential entropy of y given x is defined using the conditional density f (y|x)3:

h(y|x):= −
∫

X

∫

Y
f (y|x) ln f (y|x) dy d Fx(x)

Consider, for instance, the bivariate normal variables x and y, where both share
the common marginal distribution N (μ, σ 2) and possess a correlation coefficient
ρ ∈ (−1, 1). It is evident that y|x = x ∼ N (μ(1 − ρ) + ρx, σ 2(1 − ρ2)).
Consequently, the conditional differential entropy h(y|x) is equal to h(y|x) =
1
2

(
1 + ln

(
2πσ 2(1 − ρ2)

))
, which is less than h(y) = 1

2

(
1 + ln

(
2πσ 2

))
, thereby

illustrating a decrease in entropy.
As a remark, the conditional entropy H(y|x) can be reformulated as H((y, x)) −

H(x), where H((y, x)) is the joint entropy of (y, x). The proof for the discrete case is
straightforward as follows, while the proof in the continuous case is analogous:

H(y|x) = −
∑

x∈X

∑

y∈Y
p(x, y) log2 p(y|x) = H((y, x)) − H(x). (5)

2.3 Mutual information, relative entropy, and cross entropy

In the realm of information theory, mutual information uniquely quantifies the inter-
dependence of two variables, symbolized as x and y. This measure is given by
I (x, y) := H(y) − H(y|x). Notably, it exhibits symmetry, expressed as I (x, y) =
H(x) − H(x|y) = I (y, x), which is straightforward from (5). Delving into entropy
and its conditional counterpart, mutual information is bounded, namely 0 ≤ I (x, y) ≤
H(y), underpinned by the inequalities H(y) ≥ H(y|x) ≥ 0, as delineated in (4).
Specifically, it reaches the maximum of H(y) when y is completely determined by
x, leading to H(y|x) = 0, while it reaches the minimum of 0 when x and y are
independent, resulting in H(y|x) = H(y).

Relative entropy and cross entropy serve as key indices for gauging disparities
between two probability distributions. While these measures do not conform to the
requirement of ametric, they retain certainmetric-like qualities, such as nonnegativity.
Consider two discrete distributions P and Q, which also act as their respective prob-
ability mass functions, defined over a shared discrete domain X ,4 then the concept
of relative entropy (also known as Kullback–Leibler divergence, refer to Kullback
(1997)) from Q to P is defined as:

D(P‖Q) := −E
P

(
ln

(
Q(x)

P(x)

))
= −

∑

x∈X
P(x) ln

(
Q(x)

P(x)

)
,

3 Consistency with the concept of unconditional differential entropy is maintained by using the natural
logarithm instead of the binary logarithm in this definition.
4 Should the domains of P and Q be XP and XQ respectively, one can simply define X := XP ∪ XQ .
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where E
P signifies the expected value according to distribution P . For illustration,

assume P and Q are Poisson distributions with parameters λ and θ respectively. The
relative entropy from Q to P is computed as

D(P‖Q) = θ − λ − λ ln(θ/λ).

Similarly, for binomial distributions P = Bin(n, α) and Q = Bin(n, β), the relative
entropy from Q to P is

D(P‖Q) = nα ln

(
α

β

)
+ n(α − 1) ln

(
1 − β

1 − α

)
.

These examples indicate that relative entropy inherently lacks symmetry, contravening
the commutative nature typical of a metric, though this property may still hold in
some special cases, e.g., when n = 1 and α = 1 − β in the latter example above.
Nevertheless, relative entropy does possess nonnegativity in general; to validate this,
we apply Jensen’s inequality on the convex function − ln x , then we have:

D(P‖Q) = E
P

(
− ln

(
Q(x)

P(x)

))
≥ − ln

(
E

P
(

Q(x)

P(x)

))
= − ln

(
∑

x∈X
Q(x)

)
= 0.

Similarly, if P and Q are now continuous over a common supportX , we define the
relative entropy from Q to P analogously by replacing summation with integration:

D(P‖Q) := −
∫

X
P(x) ln

(
Q(x)

P(x)

)
dx .

For instance, if P adheres to a d-variate normal distribution with mean vector μP and
covariance matrix�P , and Q follows another d-variate normal distribution with mean
vector μQ and covariance matrix �Q , then the relative entropy from Q to P is:

D(P‖Q) = 1

2

(
ln

|�Q |
|�P | − d + tr(�−1

Q �P ) + (μP − μQ)��−1
Q (μP − μQ)

)
.

When �P = �Q , the relative entropy from Q to P increases as the distance between
μP and μQ grows. Conversely, if μP = μQ , discerning the change direction when
�P = �Q can be complex; while in the simplest one-dimensional scenario, with
variances σ 2

P and σ 2
Q , then regardless of the value of the correlation coefficient ρ, the

relative entropy from Q to P simplifies to:

D(P‖Q) = 1

2

(
σ 2

P

σ 2
Q

− ln
σ 2

P

σ 2
Q

− 1

)
,

which intensifies as the ratio σ 2
P/σ 2

Q deviates more significantly from 1.
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Based on the relative entropy, the cross entropy for two discrete distributions P and
Q is defined as follows:

H(P, Q) := H̃(P) + D(P‖Q) = −
∑

x∈X
P(x) ln Q(x), (6)

with H̃(P) := −∑
x∈X P(x) ln P(x) representing the scaled entropy of P . Note that

it is different from the joint entropy H((x, y)) in (5).
Given a fixed P , H(P) remains constant regardless of Q, establishing a correspon-

dence between relative entropy and cross-entropy. This entropy framework extends
to continuous distributions by substituting summation with integration. Cross entropy
often plays the role of a loss function in deep learning, assessing the degree of similarity
between the actual label distribution and the predicted distribution in a dataset.

3 Construction of classification trees

In this section, we shall introduce the infrastructure of a classification tree, and discuss
how it is constructed and calibrated with the aid of entropy and information gain.

3.1 Classification tree

Consider a dataset S = (xi , yi )
n
i=1 of size n where xi = (x (1)

i , x (2)
i , . . . , x (p)

i ) com-
prises p input variables, and yi is the associated label within Y = {c1, . . . , cM }. It
is implicitly assumed that identical feature vectors (xi ≡ xi ′ ) imply identical labels
(yi ≡ yi ′ ). The feature vector space is denoted by D := ∏p

j=1R(x ( j)), with R(x ( j))

representing the range of x ( j). A classification tree (a.k.a. decision tree) segments
D into M distinct subsets D1, . . . ,DM , creating a corresponding partition of S into
S1, . . . ,SM , where

Sk := {(x, y) ∈ S : x ∈ Dk}. (7)

A classification tree is defined as an acyclic graph, where each internal node denotes an
attribute. This attribute is described by specific quantitative relationships, derived from
certain components of a feature vector x. Branches emerging from a node indicate the
outcomes of decision rules. To illustrate, consider a binary classification tree, where
each node evaluates a distinct component of x, denoted as x ( j). If x ( j) is less than
a threshold t ( j), the process follows the left branch; otherwise, it proceeds along the
right branch. Descending through the tree involves continuously dividing the dataset
into increasingly smaller subsets. Branch construction ceases at a particular leaf node
when all the labels yi within that leaf belong predominantly to the same category. This
terminal node, or leaf, is then classified as representing a “pure” class label ck in the
set Y . The path from the root to a leaf node represents a classification rule. The depth
of the tree is the longest path length, or the maximum number of branches, from the
root to any leaf node. This framework naturally raises the following questions:
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(1) At each node, which feature should be examined, and what criteria should guide
the choice of this feature?

(2) Specifically, in the context of a binary classification tree, how do we determine
the appropriate threshold value, and in cases where an attribute offers a range of
values, how should the number of branches be decided?

We shall discuss them in detail in the rest of this section.

3.2 Information gain

Information gain is pivotal in determining the optimal attributes for branching in a
classification tree. At each decision node, the entropy of the empirical data distribution
is computed, guiding the decision to further split the node based on the adequacy of
the information gain. This essentially evaluates whether the split notably reduces
uncertainty, as quantified by entropy. For each node, out of the p potential features,
a specific feature x( j) is chosen for the split if it yields the maximum information
gain. This gain is essentially the mutual information between the label y and the
chosen feature x( j) for the subsample at the node. Specifically, consider x( ji ) as the
selected attribute at node i with its associated subsample S(i). The information gain
IG(S(i), x( ji )), which is a specific form of a goodness measure to be discussed further
in (12), is conceived as the entropy difference on average before and after dividing
S(i) using x( ji ). It is defined as:

IG(S(i), x( ji )) := I (y(i), x( ji )) = H(y(i)) − H(y(i)|x( ji ))

= H(y(i)) −
∑

v∈V(x( ji ))

px( ji ) (v)H(y(i,v))

= H(y(i))) −
∑

v∈V(x( ji ))

|S(i,v)|
|S(i)| H(y(i,v)), (8)

where V(x( ji )) represents all possible values of the attribute x( ji ) after the split, and
S(i,v) is the subset of samples from S(i) where x( ji ) takes the value v ∈ V(x( ji )),
and y(i) and y(i,v) are labels of the subsamples S(i) and S(i,v), respectively. The
unconditional entropy H(y(i,v)) in (8) is derived from the conditional probabilities:

P̂

(
y(i) = u

∣∣∣x( j ′n) = v, x( j ′n−1) = v j ′n−1
, . . . , x( j ′1) = v j ′1

)

=
∣∣∣
{
(x, y(i)) ∈ S : y(i) = u, x ( j ′n) = v, x ( j ′n−1) = v j ′n−1

, . . . , x ( j ′1) = v j ′1

}∣∣∣
∣∣∣
{
(x, y) ∈ S : x ( j ′n) = v, x ( j ′n−1) = v j ′n−1

, . . . , x ( j ′1) = v j ′1

}∣∣∣
, (9)

for all u ∈ Y and every v ∈ V(x( j ′n)). Here, j ′n = ji is the current node, with
j ′1, j ′2, . . . , j ′n−1 being the previously traversed nodes, starting from the root at j ′1
and proceeding along the corresponding branches to the current node j ′n . The value
v j ′j is the corresponding value of the attribute x ( j ′j ) at the j-th node. For a visual
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Fig. 1 An illustration for splitting tree with a sample S(i) at node i by using an attribute of x( ji )

Fig. 2 Selection of attribute x(1) or x(2) based on information gain

representation, refer to Fig. 1. To simplify notations, we replace H(y(i,v)) by an abused
symbol H(S(i,v)), which implies that we make reference to the subsample directly,
rather than its associated labels, thereby avoiding any confusion. This approach aids
the straightforward comparison of entropy across various subsamples.

To exemplify the concept of information gain, we consider a node with a sample
size of 20 from a credit default dataset, S(1) = {(x (1)

i = I, x (2)
i = S), yi ∈ {N,Y}}20i=1.

In this sample, 13 individuals did not default (N) on their loans, while 7 defaulted (Y).
The first attribute, x (1), denotes “Income level” (I) and can be either “High income”
(H) or “Low income” (L). The second attribute, x (2), represents “Sex” (S) and can
be either “Female” (F) or “Male” (M). Within these 20 samples, 6 from the non-
defaulting class (N) and 5 from the defaulting class (Y) are categorized as low income
with x (1) = L. The rest fall in the high-income category with x (1) = H. On the
other hand, 7 samples from class N and 3 from class Y are females with the attribute
x (2) = F, while the others are males with x (2) = M; refer to Table 1 for details.

The information gain of two attributes is then given by:

IG(S(1), I) = H(S(1)) − 11

20
H(SL) − 9

20
H(SH) = 0.0435;

IG(S(1),S) = H(S(1)) − 10

20
H(SF) − 10

20
H(SM) = 0.0080.
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Table 1 20 credit default
samples with Class N or Y as
their label y; attributes are
“Income level” x(1) = I and
“Sex” x(2) = S

Index Default Income level Sex

1 N H F

2 N H F

3 N H M

4 N H M

5 N H M

6 N H M

7 N H M

8 N L F

9 N L F

10 N L F

11 N L F

12 N L F

13 N L M

14 Y H M

15 Y H M

16 Y L M

17 Y L M

18 Y L F

19 Y L F

20 Y L F

Clearly, IG(S(1), I) > IG(S(1),S), which indicates that “ Income level” is more
effective than “Sex” for partitioning the data at this node. It is worth noting that
there are some circumstances where H(SH) > H(SF) and H(SL) = H(SM), yet
IG(S(1), I) > IG(S(1),S); in such scenario, the individual entropies of child nodes
derived from “ Income level” are higher than those from “Sex”, while their combined
effect (average entropy) is lower once the proportional contributions of each child node
are factored in. This phenomenon, more commonly known as the Simpson’s Paradox,
highlights a situation where a clear-cut trend in separate groups vanishes or reverses
when these groups are aggregated; also see (Wagner, 1982) for detailed discussions.

3.3 Other impurity measures for information

In addition to the entropies and mutual information previously discussed, we now
introduce two additional prevalent impurity measures:
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Fig. 3 Graphical illustration of entropy, Gini-index, and misclassification error for a Ber(p) distribution as
p varies

1. Gini-index For a discrete random variable x with its probability mass function
denoted as p(x) for each x ∈ X , the Gini-index, denoted by G, is defined by:

G(x) := 1 −
∑

x∈X
p2(x). (10)

2. Misclassification Error The misclassification error for a discrete random variable
x is given by:

Misclassification Error(x) := 1 − max
x∈X

p(x). (11)

Refer to Fig. 3 for an illustration of the characteristic trends of entropy, Gini-index,
and misclassification error when x is modeled as a Bernoulli random variable with the
success probability p. Apparently, for all these measures of impurity, their peak values
are attained when p = 1− p = 1

2 , indicating the equal likelihood of all outcomes. At
this juncture, the respective node in a binary tree is in its “most impure” state.

Similar to entropy, for a discrete random variable x with n distinct outcomes, all
impurity measures reach their respective maxima when the probabilities are uniformly
distributed, i.e., p(x) ≡ 1

n , indicating that each outcome is equally probable. Themax-
imum values for these impurity measures under uniform distribution are as follows:
(1) for entropy, it reaches H(x) = log2 n as discussed before; (2) for the Gini-index,
the maximum is G(x) = 1 − 1

n , which can be shown using the Lagrange multiplier
method; and (3) for misclassification error, it achieves 1− 1

n , derived from the condi-

tion (maxi pi ) · n ≥
n∑

i=1
pi = 1. In line with the principle of maximizing information

gain for optimal attribute selection in node splitting, we typically evaluate the impurity
of the parent node prior to splitting and compare it with the weighted average impurity
of the resulting child nodes. Following the notations defined in Subsection 3.2, we
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Table 2 Number of elements in
Groups 1 and 2 after splitting by
either attribute A or B

Parent node (6,7) Parent node (6,7)

Child node N1 A = 0 (5,3) B = 0 (3,5)

Child node N2 A = 1 (1,4) B = 1 (3,2)

define the goodness5 of an attribute x( ji ) at the node i in a similar manner as entropy:


Im(x( ji )) := Im(S(i)) −
∑

v∈V(x( ji ))

|S(i,v)|
|S(i)| Im(S(i,v)), (12)

where Im(·) represents a predetermined impurity measure, akin to one of those as
previously discussed. The impurity measure applies to the probability distributions
of labels, specifically to the conditional distribution in (9). To simplify our notation
without causing significant confusion, we use Im(S(i,v)) to denote the impurity mea-
sure associated with the conditional probability distribution of labels derived from the
subsample S(i,v). Additionally, for ease of reference, we equate the name of a node
with that of its corresponding subsample. The chosen impurity measure is consistently
applied across the development of the entire classification tree, and potentially even
across an entire random forest (refer to Sect. 5 for more details). Our goal is to select
an attribute x( ji ) that lowers the impurity measure the most, indicated by the largest
value of 
Im(x( ji )).

Let us explore a straightforward example to demonstrate the computations using
the various impurity measures mentioned before. Consider a dataset comprising 13
elements, roughly evenly split between two groups: 6 in group 1 and 7 in group 2.
To decide how to split the root node into two child nodes, we evaluate two binary
attributes, namely A and B, using the data presented in Table 2. For the sake of
illustration, we employ the Gini index as the impurity measure.

The Gini-index at the parent node is:

G(parent) = 1 −
(

6

13

)2

−
(

7

13

)2

= 0.4970;

similarly, we can calculate the Gini-index at each child node using A as the split-
ting attribute as GA(N1) = 0.4688, GA(N2) = 0.32; and using B as the splitting
attribute, the correspondingGini-index at each child node becomesGB(N1) = 0.4688,
GB(N2) = 0.48. Therefore, the respective goodness measures for A and B are:


G(A) = G(parent) −
(
5 + 3

13

)
GA(N1) −

(
1 + 4

13

)
GA(N2) = 0.0854,

5 Indeed, (12) can be viewed as a form of the Laplacian operator
 applied to the impuritymeasure function
Im. This Laplacian is also crucial in the fundamental equation (in Riemannian geometry) that models the
flow (Ricci flow) of molten lava. Analogously, in a classification tree, the branching process halts when
the impurity measure variation due to further splitting becomes negligible, akin to lava flow ceasing and
solidifying when the temperature change is minimal.
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Fig. 4 Choosing the threshold value for the attribute Age with the smallest weighted Gini-index


G(B) = G(parent) −
(
3 + 5

13

)
GB(N1) −

(
3 + 2

13

)
GB(N2) = 0.0239.

Therefore, we conclude that attribute A is favored over B, as 
G(A) = 0.0854 >

0.0239 = 
G(B).

3.4 Splitting against continuous attributes

The methods studied before can be extended to identify the optimal split for a con-
tinuous attribute x( j). This involves segmenting the value range of x( j) into several
non-overlapping, consecutive intervals, and calculating the impurity measure for each
child node based on the probability mass distribution over these intervals. The crucial
part is how to choose the potential splits, and a common way is as follows: we first sort
the data with respect to the attribute, then compute the possible splitting points, typi-
cally the midpoints between each pair of adjacent values. We illustrate the idea with
an example using a continuous attribute of Age to predict a binary outcome, “Buys
Premium Subscription” (taking values of Yes or No) on a service, see the illustration
in Fig. 4.

As shown in Fig. 4, the black crosses represent individual data points, with the
x-coordinate indicating the age and the vertical position indicating whether the person
makes the subscription, and the red line shows the trend of weighted Gini-index after
partitioning at each potential splitting point (the midpoints between consecutive ages,
indicated by the solid dots), and the blue dashed line indicates the best split using
this attribute, which in this case occurs at the age of 25, where the Gini-index is at its
lowest of 0.3. To verify the result for this particular splitting, by noting that one child
contains 2 data points both being “No”, and that the other contains 8 data points with
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6 being “Yes” and 2 being “No”, the Gini-indices of the two child nodes are 0 and
0.375, respectively, and the weighted Gini-index for the split at this threshold can be
calculated as:

Weighted Gini = 2

10
× 0 + 8

10
× 0.375 = 0.3.

We can also compute the Gini-index for other candidate splitting points analogously,
and then verify that the age of 25 is an optimal splitting point.

3.5 Overfitting in classification tree

Overfitting is a common issue where the model becomes too complex and starts to
capture not only the underlying patterns in the training data but also the noise. In clas-
sification trees, this happens when the tree is too detailed and has too many branches.
Ideally, there is an optimal time to stop the growth of the decision tree, ensuring that
it maintains a sufficiently high accuracy while also possessing good generalization
capabilities. This can be achieved via pre-pruning or post-pruning; we shall introduce
the philosophy behind, it and also discuss some examples of commonly used pruning
algorithms.

Pre-pruning is quite intuitive; it involves setting thresholds or criteria that determine
when the growth of the tree should stop, such as fixing the maximum depth of the tree
or the minimum number of samples required at a leaf node. However, pre-pruning
methods share a common problem known as the “horizon effect”, namely they may
cause the classification to stop too early before valuable partitions appear in subsequent
steps.

On the other hand, post-pruning, also known as backward pruning, allows the tree
to grow to a certain size first and remove branches that do not contribute significantly
to the accuracy or other measures of the tree on validation data. There are two primary
methods depending on where the pruning process begins:

1. Bottom-up pruning starts at the leaves of the tree and moves upward towards the
root. A node (and its subtree) is pruned if removing it improves or maintains
the performance of the tree according to a certain metric, like error rate or cost
complexity.

2. Top-down pruning starts at the root of the tree and removes the subtree beneath a
node if its “contributed reduction” in terms of entropy or other impurity measures
is below a specified threshold.

Furthermore, deciding which branches to prune in a classification tree involves a
careful evaluation of its structure and the impact of each split on the performance of
themodel.We here introduce three representative pruning techniques that are arguably
more popular than the others:
(a) Reduced Error Pruning In this technique, we start at the leaves and evaluate the
impact of removing each split (or subtree) on the validation set. A split is deleted if its
removal does not decrease the accuracy of the tree. This approach is straightforward
and effective in reducing the complexity of the tree without sacrificing accuracy.
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(b) Cost complexity pruning The aim of this approach is to prevent overfitting by
considering not only the original classification error R(T ) but also the complexity of
the tree. This is achieved by introducing a “penalty” term to the original misclassifica-
tion rate R(T ) := 1

n

∑T
�=1

∑
(xi ,yi )∈T�

1{yi =ȳT�
}, where T is the number of terminal

leaf nodes in the tree, leading to the objective of constructing a tree that minimizes
the following criterion:

Rα(T ) := R(T ) + αT = 1

n

T∑

�=1

∑

(xi ,yi )∈T�

1{yi =ȳT�
} + αT . (13)

Here, α represents a hyperparameter that controls the influence of model complexity.
Given α ≥ 0, the objective is to find a subtree T (α) within T , denoted as T (α) ⊆ T ,
that minimizes Rα(T ), defined as:

T (α) := argmin
T̃ ⊆T

Rα(T̃ ) = argmin
T̃ ⊆T

(
R(T̃ ) + αT̃

)
. (14)

(c) Chi-squared pruning In the construction of a classification tree, we usually carry
out a splitting whenever there is an Information Gain, without investigating whether
the change in entropy holds statistical significance. This issue can be addressed by
hypothesis testing, where the null hypothesis is that the feature used to split the data at
a node is conditionally independent of the target variable, given all the classification
rules leading to this node. Mathematically, let C(i) be the collection of classification
rules leading to the current node j ′n = ji in a built tree, in terms of the splitting

attributes at the traversed nodes, x( j ′1), . . . , x( j ′n−1), and a further splitting into q child
nodes by x( ji ) is carried out, where the k-th child node S(i+1,k) contains those data
points with x( ji ) ∈ X ( ji ,k) ⊂ X ( ji ), for k = 1, . . . , q, such that

⊔q
k=1 X ( ji ,k) = X ( ji ).

The null hypothesis can now be written as x( ji ) | C(i) ⊥⊥ y | C(i), under which we
have, for any u ∈ Y and k = 1, . . . , q,

P(y = u | C(i), x( ji ) ∈ X ( ji ,k)) = P(y = u, x( ji ) ∈ X ( ji ,k) | C(i))

P(x( ji ) ∈ X ( ji ,k) | C(i))

= P(y = u | C(i))P(x( ji ) ∈ X ( ji ,k) | C(i))

P(x( ji ) ∈ X ( ji ,k) | C(i))

= P(y = u | C(i)).

In particular, under this hypothesis, we expect that the child nodes will share the
exact class distribution as that in the parent node, hence the splitting of the node
using this feature will not essentially improve the prediction of the target variable

in nature due to the independence; mathematically, this means |(x,y)∈S(i+1,1):y=u|
|S(i+1,1)| ≈

· · · ≈ |(x,y)∈S(i+1,q):y=u|
|S(i+1,q)| ≈ |(x,y)∈S(i):y=u|

|S(i)| for all u ∈ Y . If we do not reject the null
hypothesis, then for the sake of this independence test, the most commonly used tool
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Fig. 5 Example of chi-square pruning

is the celebrated Pearson’s chi-squared test statistic, which is also why the resulting
pruning method is called chi-squared pruning.

Let us illustrate the idea of this approach using a simple example as shown in Fig. 5,
where at a particular node of the tree as the parent node, the observations in classes A
and B are displayed in red solid dots and black crosses, respectively. In particular, NL
and NR are the numbers of nodes in left and right child nodes; the proportions of data
points in classes A and B in the parent node are denoted by PA and PB; NAL and NBL

(resp. NAR and NB R) are the actual numbers of class-A and class-B data points in the
left (resp. right) child node, respectively, and their corresponding expected numbers
are denoted similarly with E replacing N .

Recall that Pearson’s chi-squared test statistic is calculated as the sum of squared
standardized differences between observed and expected frequencies of certain vari-
ables at each node; the general form of the test statistic, for M number of possible
class labels and q number of child nodes in the splitting of concern, is:

K :=
∑

i=1,...,M
j=1,...,q

(Ni j − Ei j )
2

Ei j
, (15)

where Ni j (resp. Ei j ) is the actual (resp. expected) number of class-i data points in
the j-th child node, and it follows a χ2 distribution with (M − 1)(q − 1) degrees
of freedom under the null hypothesis above. A lower value of the chi-squared test
statistic, corresponding to a larger p-value, means that it is advisable to remove the
split. To this end, we conduct the Pearson’s chi-squared test as follows:

(1) We first calculate the test statistic as follows; note that M = q = 2 in this particular
example:

K = (NAL − EAL)2

EAL
+ (NAR − EAR)2

EAR
+ (NBL − EBL)2

EBL
+ (NBR − EBR)2

EBR

= (2 − 25
9 )2

25
9

+ (3 − 20
9 )2

20
9

+ (3 − 20
9 )2

20
9

+ (1 − 16
9 )2

16
9

= 1.1025.
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(2) Under the null hypothesis, the degree of freedom of the χ2 distribution is (M −
1)(q −1) = 1, then the p-value of the test can be computed as P(χ2

1 > 1.1025) =
0.2937 > 0.05. Therefore, we do not reject the null hypothesis at a 5% significance
level, suggesting that the split should be pruned as the amount of reduced entropy
is of little statistical significance.

In summary, this statistical approach ensures that the complexity of the decision tree
is balanced with its predictive power, leading to more robust and versatile models.

4 Regression tree

A regression tree is similar to a classification tree, with the key distinction that in
regression trees, the target variable y spans a continuous range of values, as opposed
to the categorical nature required for classification trees. Recall that the foundational
inspiration of a classification tree involves dividing the space of feature vectorsD into
M more manageable regions, specifically D1, . . . ,DM . In this context, the predictor
function f̂ , utilized for label prediction, is expressed as follows:

f̂ (x) =
M∑

k=1

ck1{x∈Dk }. (16)

Recall that constructing a classification tree T involves identifying a series of terminal
leaf nodes, represented as {T1, . . . , TT }, to minimize the possible misclassification
rate R(T ). In contrast, when creating a regression tree, the binary loss indicated by
1{yi =ŷT�

} in the expression of R(T ) is substituted by a squared loss function:

R(T ) := 1

n

T∑

�=1

∑

(xi ,yi )∈T�

(yi − ŷT�
)2, (17)

and the tree derived from minimizing (17) is typically referred to as a regression tree;
M = T represents the total number of divisionswithin the tree. In a standard approach,
each terminal node T� is assigned a unique continuous value, such as the average of
the subsample at that node. This can be mathematically expressed as:

ŷT�
= 1

|T�|
∑

(xi ,yi )∈T�

yi , for � = 1, . . . , T . (18)

Furthermore, the regression loss in (17) can be reformulated as:

R(T ) := 1

n

n∑

i=1

(yi − f̂ (xi ))
2,

where the function f̂ (x) is defined similarly to (16), except that the values ck’s may
assume any value within a continuous range. Considering this framework, a regression
tree can be viewed as a variant of a threshold regression model, whose predictor
function is given by:
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Fig. 6 An illustration of splitting at a parent node with a dataset S

f̂ (x) =
T∑

�=1

f̂�(x)1{x∈D�},

where f̂� is a specific regression function applicable within the domain D�, for � =
1, . . . , T .

Like classification trees, a regression tree is constructed using a top-down, greedy
search method. Beginning at the root node, we identify the optimal splitting attribute
that reduces the squared loss function to its minimum. This process is then repeated,
moving to a subsequent child node. In our discussion, we concentrate primarily on
the prevalent practice of binary splitting. However, it is important to note that binary
splitting is not a requirement for regression trees. The approach we describe here can
be readily generalized to accommodate scenarios where a parent node is divided into
three or more child nodes.

Consider S = {(xi , yi )}n
i=1 as the dataset at a given parent node. For a selected

feature variable x( j) and a yet-to-be-determined attribute value t ( j), our goal is to
partition the dataset into two segments:

S( j)
− = {(xi , yi ) ∈ S : x ( j)

i < t ( j)} and S( j)
+ = {(xi , yi ) ∈ S : x ( j)

i ≥ t ( j)},

as visually represented in Fig. 6.
We define the mean label values for the subsamples at the two resulting child nodes

as:

ȳS( j)
−

=
∑

(xi ,yi )∈S( j)
−

yi

|S( j)
− |

and ȳS( j)
+

=
∑

(xi ,yi )∈S( j)
+

yi

|S( j)
+ |

.

The efficacy of this split is quantified by the following mean squared error:

1

|S|

⎛

⎜⎝
∑

(xi ,yi )∈S( j)
−

(yi − ȳS( j)
−

)2 +
∑

(xi ,yi )∈S( j)
+

(yi − ȳS( j)
+

)2

⎞

⎟⎠ . (19)

Our objective is to identify the most effective combination of x( j) and t ( j) that mini-
mizes (19). For each feature x( j), we initially pinpoint the ideal t ( j) that reduces (19)
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Fig. 7 Regression tree splitting algorithm for one attribute

to its minimum, utilizing potential thresholds from a specific discretization approach
(also see Subsection 3.4). Subsequently, we compare these minimum mean squared
errors across all attributes and select the attribute yielding the lowest error. This pro-
cess repeats until a stopping criterion is met at a terminal node T�, halting further
splits. Common stopping criteria include:

(i) the sample count of the node falls below a preset threshold n0:

|T�| < n0; or

(ii) the sum of squared errors at the node falls beneath a predetermined limit ε:

∑

(xi ,yi )∈T�

(yi − ŷT�
)2 < ε; or

(iii) the reduction in mean squared error (19) from an additional split of the current
node S into S( j)

− and S( j)
+ , using any feature variable x ( j), is less than some

threshold ε:

max
j

⎛

⎜⎜⎝
1

|S|

⎛

⎜⎜⎝
∑

(xi ,yi )∈S
(yi − ŷS )2 −

⎛

⎜⎜⎝
∑

(xi ,yi )∈S( j)
−

(yi − ȳ
S( j)

−
)2 +

∑

(xi ,yi )∈S( j)
+

(yi − ȳ
S( j)

+
)2

⎞

⎟⎟⎠

⎞

⎟⎟⎠

⎞

⎟⎟⎠ < ε.

Once a regression tree is constructed, the predicted value of a test observation is the
mean of the training observations in the region D� where the test observation falls.
Consider an illustrative example as shown in Fig. 7, which depicts a dataset with four
distinct categories, encompassing a single feature variable x and a label variable y,
both of which are real-valued. The root node of the tree initiates the division of the
dataset into two segments based on the condition x < t1 or x ≥ t1. Subsequently, the
mean values ĉ1 and ĉ2 for these segments are computed. Each of these segments is
further subdivided into two smaller groups, using the thresholds t2 and t3. This results
in distinct clusters, each aligned with a specific label.
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Fig. 8 Illustrations of a feasible partition of a space of feature vectors caused by a regression tree, and an
impossible one

While the regression tree model is frequently utilized, it is also important to note
its limitations. The tree construction is inherently a greedy, top-down binary search,
in the sense that each split decision is optimal given the results of previous splits at
preceding nodes, making it locally optimal but not necessarily globally. Besides, some
spatial partitions of D cannot be achieved by a regression tree. Take the case of two
feature variables for instance, a regression tree may be able to partitionD as shown in
Fig. 8(a), yet it is never possible for any regression tree to achieve a partitioning such
as the one in Fig. 8(b). Indeed, even the initial split in scenario (b) cannot be located,
whereas in (a), the vertical line x (1) = s′′

1 can serve as the initial split, and the sub-
sequent splitting steps are also viable. Last but not least, just like classification trees,
the construction of regression trees is sometimes also subject to the overfitting issue,
adversely affecting its performance on test data. This issue can likewise be mitigated
by various pruning methods leading to a simpler tree with fewer splits, which might
increase the variance of the tree but also improve its interpretability.

5 Random forest

The concept of a random forest stems from the principle of bagging. Starting with a
training set S, the approach involves generating B random subsets S1, . . . ,SB from
S, where B is a pre-defined hyperparameter. Corresponding to each subset, B distinct
tree models, with respective predictive functions f̂1, . . . , f̂ B , are constructed for clas-
sification and regression purposes. For each b = 1, . . . , B, we obtain Sb by sampling
from S with replacement until |Sb| = n = |S|. Additionally, when dealing with a
large number of features, say p of them, the construction of each tree for a subset Sb

may be limited to a smaller number of features, let’s say m � p, so as to streamline
the computational complexity. After training, the ensemble comprises B distinct tree
models. For a new input vector x, the predictive outcome from the random forest is
the mean of the predicted values from the B models in the case of regression:

f̂rf(x) = 1

B

B∑

b=1

f̂b(x);
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Fig. 9 A graphical illustration of random forest

while it becomes the majority vote in the classification context. Also see Fig. 9 for a
graphical illustration.

The rationale for choosing random subsets of features in constructing different trees
is to minimize correlation among these trees, thereby lowering the overall variance
of the model beyond what is achieved through bagging alone. When certain features
are exceptionally strong indicators for the target label, they tend to be repeatedly
selected for splitting in multiple trees, leading to a collection of highly similar, or
correlated, trees in the ensemble. This correlation among predictors does not contribute
to enhancing prediction accuracy by variance reduction. The key to the effectiveness
of model ensembling lies in the fact that good models usually concur on predictions,
whereas less effective models tend to diverge. By amalgamating these models, the
ensemble can spread out the errors, thereby diminishing variance. However, when bad
models exhibit correlation, they are more inclined to produce concordant predictions,
which can undermine the effectiveness of methods like majority voting or averaging.

6 Application in Python and R

6.1 Classification tree

In the context of both Python and R, the process of creating a classification tree
involves iterative binary segmentation of predictor variables x( j), where j = 1, . . . , p.
This approach, which examines every possible division resulting from each pre-
dictor variable, renders the tree construction both computationally demanding and
time-intensive. Commonly, subsequent to the tree’s assembly, an optimally chosen
hyperparameter, denoted as α, is employed for the tree pruning procedure. The opti-
mal subtree, whichminimizes the criterion outlined in (13), is selected as the definitive
tree. From this tree, a series of clear and concise classification rules are then extracted.
In Python, the implementation of a classification tree is facilitated through the use
of DecisionTreeClassifier, a component of the widely-utilized sklearn
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packagewithin thetree class. The necessary libraries for constructing a classification
tree in Python can be imported as demonstrated in Program 1.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from matplotlib.colors import ListedColormap
4 from sklearn.tree import DecisionTreeClassifier , plot_tree ,

export_text
5 from sklearn.metrics import confusion_matrix

Programme 1 Loading all required libraries for building a classification tree in Python.

The function plot_tree() is utilized in plotting the classification tree derived
from DecisionTreeClassifier, while export_text() generates a tex-
tual description of the classification rules. The DecisionTreeClassifier in
Python, noted for its user-friendliness, contains a variety of hidden options. Specif-
ically, ccp_alpha represents the hyperparameter α for cost complexity pruning,
with a default setting of 0. The parameter criterion determines the method for
measuring impurity, set by default to gini for the Gini-index, as indicated in (10).
Other alternatives for this parameter include entropy, corresponding to Shannon
entropy as outlined in 1, and log_loss, related to differential entropy as mentioned
in 3. Within the R environment, the construction of a classification tree is facilitated
through the rpart() function, which is a part of the built-in rpart library.6, where
the acronym rpart represents Recursive Partitioning and Regression Trees; also see
Programme 2.

1 > library(rpart) # load rpart library

2 > library(rpart.plot) # plot rpart object

Programme 2 Loading rpart and rpart.plot libraries in R.

The function rpart() in R provides a variety of options. For example, to employ
differential entropy, one can set parms=list(split="information"), while
the Gini-index, denoted by gini, is the default option. Regarding cost complexity
pruning, the default parameter of the function is α = 0.01, while users have the
flexibility to define any non-negative value forα, such asα = 0.05,which is achievable
through control=rpart.control(cp=0.05). It is important to highlight the
methodparameter inrpart,with the possible values of class,anova,poisson,
and exp; among them, class is ideal for classification tasks with a categorical target
variable, anova is adopted for regression trees designed to minimize the total mean
squared errors across all end nodes, poisson fits Poisson regression scenarios, and
exp is applicable for constructing regression trees in survival analysiswith exponential
scaling. These trees, often labeled as survival trees, provide a nonparametric substitute
for the renowned semiparametric Cox proportional hazards model.

HSI dataset:We next demonstrate the construction of a classification tree using the
stock data from the Hong Kong market in 2018, stored in the file fin-ratio.csv,
for the task of classifying whether a stock is a constituent of the Hang Seng Index

6 For further information, refer to https://cran.r-project.org/web/packages/rpart/rpart.pdf; also, consult
(Therneau et al., 2015)
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(HSI); note that the data have not undergone outlier detection. See the programmes in
Python and R in Programmes 3 and 4, respectively.

1 df = pd.read_csv("fin -ratio.csv")
2 X = df.drop(columns="HSI")
3 y = df["HSI"]
4 ctree = DecisionTreeClassifier(ccp_alpha=0.01)
5 ctree.fit(X, y)
6 print(export_text(ctree , feature_names=list(X.columns),
7 show_weights=True))
8
9 fig , ax = plt.subplots(1, 1, figsize =(20, 15))
10 plot_tree(ctree , feature_names=X.columns , filled=True)
11 fig.savefig("Classification tree fin -ratio.png", dpi=200)

1 |--- ln_MV <= 24.93
2 | |--- weights: [430.00 , 1.00] class: 0
3 |--- ln_MV > 24.93
4 | |--- DY <= 4.68
5 | | |--- weights: [67.00 , 24.00] class: 0
6 | |--- DY > 4.68
7 | | |--- weights: [16.00 , 25.00] class: 1

Programme 3 Building a classification tree for the stock data in 2018 via Python.

1 > df <- read.csv("fin-ratio.csv") # read in data in CSV format

2 > ctree <- rpart(HSI~., data=df , method="class")

3 > print(ctree) # print detailed information

4 n= 563

5

6 node), split , n, loss , yval , (yprob)

7 * denotes terminal node

8

9 1) root 563 50 0 (0.911190053 0.088809947)

10 2) ln_MV< 24.92819 431 1 0 (0.997679814 0.002320186) *

11 3) ln_MV>=24.92819 132 49 0 (0.628787879 0.371212121)

12 6) DY< 4.682824 91 24 0 (0.736263736 0.263736264)

13 12) DTE>=0.7642766 33 2 0 (0.939393939 0.060606061) *

14 13) DTE< 0.7642766 58 22 0 (0.620689655 0.379310345)

15 26) DY< 0.6117958 17 1 0 (0.941176471 0.058823529) *

16 27) DY>=0.6117958 41 20 1 (0.487804878 0.512195122)

17 54) ln_MV< 25.51461 17 5 0 (0.705882353 0.294117647) *

18 55) ln_MV>=25.51461 24 8 1 (0.333333333 0.666666667)

19 110) ln_MV>=26.28936 10 4 0 (0.600000000 0.400000000) *

20 111) ln_MV< 26.28936 14 2 1 (0.142857143 0.857142857) *

21 7) DY>=4.682824 41 16 1 (0.390243902 0.609756098)

22 14) ln_MV< 26.34819 29 14 0 (0.517241379 0.482758621)

23 28) BTME>=0.4842549 21 7 0 (0.666666667 0.333333333)

24 56) BTME< 0.8468817 8 0 0 (1.000000000 0.000000000) *

25 57) BTME>=0.8468817 13 6 1 (0.461538462 0.538461538) *

26 29) BTME< 0.4842549 8 1 1 (0.125000000 0.875000000) *

27 15) ln_MV>=26.34819 12 1 1 (0.083333333 0.916666667) *

28 > rpart.rules(ctree , nn=TRUE) # print classification rules

29 nn HSI

30 56 0.00 when ln_MV is 25 to 26 & DY >= 4.68 & BTME is 0.48 to 0.85

31 2 0.00 when ln_MV < 25

32 26 0.06 when ln_MV >= 25 & DY < 0.61 & DTE < 0.76

33 12 0.06 when ln_MV >= 25 & DY < 4.68 & DTE >= 0.76

34 54 0.29 when ln_MV is 25 to 26 & DY is 0.61 to 4.68 & DTE < 0.76

35 110 0.40 when ln_MV >= 26 & DY is 0.61 to 4.68 & DTE < 0.76

36 57 0.54 when ln_MV is 25 to 26 & DY >= 4.68 & BTME >= 0.85

37 111 0.86 when ln_MV is 26 to 26 & DY is 0.61 to 4.68 & DTE < 0.76

38 29 0.88 when ln_MV is 25 to 26 & DY >= 4.68 & BTME < 0.48

39 15 0.92 when ln_MV >= 26 & DY >= 4.68

40 > rpart.plot(ctree , extra=1, cex=0.6, digits=4, nn=TRUE) # plot ctree

Programme 4 Building a classification tree for the stock data in 2018 via R.
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The classification trees of Python and R in Fig. 10 look different but still agree with
each other to a certain degree.What caused the difference will be discussed later. Here,
we may focus on a tree generated by Python for simplicity. Below are the detailed
classification rules along with the associated quality metrics:

R1: If ln_MV ≤ 24.928, then return as class = 0 (not HSI) (430/1).
R2: Ifln_MV > 24.9288 andDY ≤ 4.683, then return as class =0 (not HSI), (67/24).
R3: If ln_MV ≥ 24.9288 and DY > 4.683, then return as class = 1 (HSI) (16/25).

The figures at the terminal nodes indicate the number of cases. For instance, in the
subset where ln_MV ≤ 9.478, the count is 430 for the “zero” group and 1 for the
“one” group. With this in mind, given the only simple condition that ln_MV ≤ 9.478,
we can predict the stock is a Blue Chip with confidence.

A cross-tabulation table detailing this classification tree is available: refer to Pro-
gramme 5 for the Python version and Programme 6 for theR version. According to the
output, Python and R exhibit different performances and tree structures on the same
dataset. If we take a closer look at Fig. 10, the first two layers of trees share the same
threshold (cut-point) and structure, but the tree created by R is significantly larger,
which means that the growth of the tree in Python is stopped earlier. This difference
can be attributed to various other hyperparameters involved in tree construction. For
instance, minsplit determines the minimum number of observations required in
a node for a split to occur, and maxdepth defines the maximum depth of the tree,
considering the root node as depth 0.

Fig. 10 Classification tree for the stock data in 2018 without removing outliers
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1 y_hat = ctree.predict(X)
2 print(confusion_matrix(y_hat , y))

1 [[497 25]
2 [16 25]]

Programme 5 Cross tabulation table for the classification tree in Programme 3 using the 2018 stock price
dataset via Python.

1 > prob <- predict(ctree) # 2 columns of probabilities for 0 or 1
2 > y_hat <- colnames(prob)[max.col(prob)]
3 > table(y_hat , df$HSI) # confusion matrix
4

5 y_hat 0 1
6 0 503 13
7 1 10 37

Programme 6 Cross tabulation table for the classification tree in Programme 4 using the the 2018 stock
price dataset via R.

6.2 Regression tree

A medical insurance example In another scenario, we turn our attention to a case
study aimed at forecasting the Premium Price set by a health insurance provider.
This prediction is based on two key customer attributes: Age and Weight.7

From Fig. 11, we observe that the regression tree utilizes four boundary points: 30
years and 47 years for the Age feature, and 70kg and 95kg for the Weight feature.
These points partition the dataset R into five groups: R1, R2, R3, R4, and R5. The
regression tree model yields the following insights:

1. Age is a primary determinant of the Premium Price for a customer. Customers
younger than 30 years are assigned a lower premium, those between 30 and 47
years a medium premium, and customers older than 47 years a higher premium.

2. For customers younger than 47 years, Weight does not affect their premium.
3. For customers older than 47 years, Weight affects the Premium Price. In

this age group, customers weighing less than 70kg are charged a lower premium,
those between 70 and 95kg a medium premium, and customers over 95kg a higher
premium.

6.3 Random forest

Let us implement the random forest algorithm on the 2018 financial dataset using both
Python and R. We then compare these outcomes with those derived from a solitary
classification tree.

7 For dataset access, visit https://www.kaggle.com/datasets/tejashvi14/medical-insurance-premium-
prediction.

123

https://www.kaggle.com/datasets/tejashvi14/medical-insurance-premium-prediction
https://www.kaggle.com/datasets/tejashvi14/medical-insurance-premium-prediction


Japanese Journal of Statistics and Data Science

Age < 30

Age < 47

Weight < 95

Weight < 70

24e+3
n=986

16e+3
n=239

27e+3
n=747

25e+3
n=362

29e+3
n=385

28e+3
n=334

27e+3
n=123

29e+3
n=211

33e+3
n=51

yes no

1

2

3

6

7

14

28 29 15

Fig. 11 Regression tree for the medical premium data
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Fig. 12 Premium price is color-coded from low (red, green) to high (blue, purple)
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1 from sklearn.ensemble import RandomForestClassifier
2
3 df = pd.read_csv("fin -ratio.csv")
4 X = df.drop(columns="HSI")
5 y = df["HSI"]
6 rf_clf = RandomForestClassifier(max_features=2, random_state=4002

)
7 rf_clf.fit(X, y)
8 y_hat = rf_clf.predict(X)
9 print(confusion_matrix(y_hat , y))

1 [[513 0]
2 [ 0 50]]

Programme 7 A random forest for the 2018 financial data via Python.

The observed misclassification rate is 0%, significantly surpassing the rate achieved
with the classification tree in Programme 5.

1 > library(randomForest)
2 >
3 > set.seed(4002)
4 > df <- read.csv("fin-ratio.csv") # read in data in csv format
5 > df$HSI <- as.factor(df$HSI) # change label into factor
6 > for classification
7 > rf_clf <- randomForest(HSI~., data=df , ntree=10, mtry=2,
8 > importance=TRUE)
9 > y_hat <- predict(rf_clf)

10 > table(y_hat , df$HSI)
11

12 y_hat 0 1
13 0 491 28
14 1 17 22

Programme 8 Building a random forest for the 2018 data via R.

The misclassification rate is calculated as = 28+17
491+22 = 7.51%, which is unexpectedly

higher compared to the classification tree in Programme 6. It’s noteworthy that the
total count of samples, 471 + 28 + 17 + 22 = 558, does not equal 563 due to some
predictions being NA.
This example illustrates that in each split of the tree-building process for a ran-
dom forest, only a randomly chosen subset of m = 2 features (specified as
max_features=2 in Python and mtry=2 in R) from the original p = 6 fea-
tures is examined. This is the key distinction between random forest and standard
bagging, where m = p. Here, since 2 = m < p = 6, there’s a possibility for the
random forest to underperform compared to a conventional classification tree. The
chosen value of m here aligns with the rule of thumb that m = �√p�.

Credit Card Default Prediction In a rating system for credit card reliability, we
collect information from potential clients to forecast their likelihood of future default.
Let us consider a dataset that contains details on default payments, demographic
attributes, credit information, payment histories, and billing records of credit card
users in Taiwan between April and September 2005 (Lichman, 2013). This dataset
is characterized by 26 distinct features including credit amount, gender, education
level, marital status, and age. The assigned label is 1 if the client defaults in the
subsequent month, and 0 otherwise. In the context of predictive analytics, we utilize
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both classification trees and random forests within Python (refer to Program 9) and R
(refer to Program 10) environments for forecasting.

1 from sklearn.model_selection import train_test_split
2 from sklearn.metrics import classification_report
3
4 df = pd.read_csv("credit default.csv")
5 X = df.drop(columns =["default payment next month"])
6 y = df["default payment next month"]
7
8 (X_train , X_test , y_train ,
9 y_test) = train_test_split(X, y, train_size=0.8, random_state=401

2)
10 ctree = DecisionTreeClassifier(ccp_alpha=0.01, random_state=4012)
11 ctree.fit(X_train , y_train)
12 y_hat_dt = ctree.predict(X_test)
13 print(confusion_matrix(y_hat_dt , y_test))
14 print(classification_report(y_test , y_hat_dt))
15
16 fig , ax = plt.subplots(1, 1, figsize =(20, 15))
17 plot_tree(ctree , feature_names=X.columns , filled=True)
18
19 rf_clf = RandomForestClassifier(random_state=4012)
20 rf_clf.fit(X_train , y_train)
21 y_hat_rf = rf_clf.predict(X_test)
22 print(confusion_matrix(y_hat_rf , y_test))
23 print(classification_report(y_test , y_hat_rf))

1 [[4511 870] # [[TN , FP],
2 [ 198 421]] # [FN , TP]]
3 precision recall f1 -score support
4
5 0 0.84 0.96 0.89 4709
6 1 0.68 0.33 0.44 1291
7
8 accuracy 0.82 6000
9 macro avg 0.76 0.64 0.67 6000
10 weighted avg 0.80 0.82 0.80 6000
11
12 [[4434 800] # [[TN , FP],
13 [ 275 491]] # [FN , TP]]
14 precision recall f1 -score support
15
16 0 0.85 0.94 0.89 4709
17 1 0.64 0.38 0.48 1291
18
19 accuracy 0.82 6000
20 macro avg 0.74 0.66 0.68 6000
21 weighted avg 0.80 0.82 0.80 6000

Programme 9 Applying CART and random forest to the credit default dataset via Python.

From the results shown in Program 9, the calculated precision, recall, F1-score, and
accuracy values for the classification tree in Python are as follows:

Precision = 421

421 + 198
= 0.680, Recall = 421

421 + 870
= 0.326,

F1-score = 2

1/0.680 + 1/0.326
= 0.441, Accuracy = 421 + 4511

6000
= 0.822.
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Fig. 13 Classification tree for the credit default dataset

In a similar fashion, the precision, recall, F1-score, and accuracy for the random forest
model implemented in Python are:

Precision = 491

491 + 275
= 0.641, Recall = 491

491 + 800
= 0.380,

F1-score = 2

1/0.641 + 1/0.380
= 0.477, Accuracy = 491 + 4434

6000
= 0.821.

Moreover, as shown in Fig. 13a, Python’s decision-making process in the dataset
focuses primarily on two out of the 26 feature variables, specifically PAY_0 and
PAY_2, which correspond to the repayment status in September and August of 2005,
respectively. These variables track the number ofmonths a client’s payment is delayed,
where -1 stands for no delay, and the maximum recorded delay is capped at 9 months.
A notable insight is that a client is more likely to default if there’s a payment delay
of several months, with the critical threshold identified as 2 months by Python. Cor-
respondingly, from Fig. 13b, the R also partition PAY_0 with the same threshold of
2 months. The confusionMatrix() function from the caret package in R is
used to calculate various performance metrics.

1 > library("caret") # confusionMatrix
2 >
3 > set.seed(4002) # set random seed

4 > df <- read.csv("credit default.csv")#read in data in csv format
5 > df$default.payment.next.month <- as.factor(
6 + df$default.payment.next.month
7 + ) # Change the label into a factor for classification
8 >
9 > train_idx <- sample(1:nrow(df), size=floor(nrow(df)*0.8))

10 > df_train <- df[train_idx ,] # training dataset

11 > df_test <- df[-train_idx ,] # testing dataset
12 >
13 > ctree <- rpart(default.payment.next.month~., data=df_train ,
14 + method="class")
15 > rpart.plot(ctree , extra=1, cex=1.5, digits=4, nn=TRUE)
16 > # plot ctree
17 > prob <- predict(ctree , newdata=df_test)
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18 > y_hat_dt <- colnames(prob)[max.col(prob)]
19 > # confusionMatrix(y_test , y_true , ...)
20 > dt_result <- confusionMatrix(as.factor(y_hat_dt),
21 + df_test$default.payment.next.month ,
22 + mode="prec_recall", positive="1")
23 > dt_result$table # Confusion matrix

24 Reference
25 Prediction 0 1
26 0 4440 920
27 1 196 444
28 > dt_result$byClass[c("Precision", "Recall")]
29 Precision Recall
30 0.6937 0.3255
31 >
32 > rf_clf <- randomForest(default.payment.next.month~.,
33 data=df_train , + ntree=10, importance=TRUE)
34 > y_hat_rf <- predict(rf_clf , newdata=df_test)
35 > rf_result <- confusionMatrix(as.factor(y_hat_rf),
36 + df_test$default.payment.next.month ,
37 + mode="prec_recall", positive="1")
38 > rf_result$table # Confusion matrix

39 Reference
40 Prediction 0 1
41 0 4324 872
42 1 312 492
43 > rf_result$byClass[c("Precision", "Recall")]
44 Precision Recall
45 0.6119 0.3607

Programme 10 Applying CART and random forest to the credit default dataset via R.

Clearly, both results from Python andR suggest that PAY_0 is themost crucial feature
variable in training the classification tree, and we would like to determine if the same
conclusion also holds in the random forest model. To this end, we can adopt the tools
readily available in Python and R to measure the importance of feature variables; the
following two metrics are the most commonly adopted criteria for this purpose, also
see (Breiman, 2001):

• Mean Decrease in Impurity (MDI): The importance of a feature variable is
computed by averaging the decrease in the impurity measure, which is specified
during the training stage.8, over all trees in the forest where the feature variable
in question is used; the larger the mean decrease, the higher the importance of the
feature variable.

• PermutationFeature Importance (a.k.a.MeanDecrease inAccuracy (MDA)):
This method involves shuffling the data of only the feature variable in question of
the testing dataset, and calculate the decrease in accuracy of the permuted testing
set against the original testing set; a larger decrease inmodel performance indicates
a higher importance of the feature variable.

We here only illustrate the two approaches in Python, as shown in respective Pro-
grammes 11 and 12, and the corresponding visualizations are depicted in Figs. 14 and
15, respectively. It is clear that both metrics consistently suggest that PAY_0 is the

8 Recalling that the default impurity measure is Gini-index as mentioned in Subsection 6.1, that is why this
metric is also usually called Gini importance.
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most important feature variable in building the random forest model, which agrees
with the result in CART. Readers can attempt in a similar manner to obtain the feature
importance results in R.

1 import seaborn as sns
2 from sklearn.inspection import permutation_importance
3
4 # feature importance using MDI
5 feature_scores = pd.Series(rf_clf.feature_importances_ , index=

X_train.columns).sort_values(ascending=False)
6 print(feature_scores)
7
8 f, ax = plt.subplots(figsize =(30, 24))
9 ax = sns.barplot(x=feature_scores , y=feature_scores.index)
10 ax.set_title("Feature importances using MDI",fontsize=30)
11 ax.set_yticklabels(feature_scores.index ,fontsize=25)
12 ax.set_xlabel("Mean decrease in impurity",fontsize=25)
13 ax.set_ylabel("Features",fontsize=25)
14 f.tight_layout ()
15 plt.show()

1 PAY_0 0.097363
2 AGE 0.065664
3 BILL_AMT1 0.060832
4 LIMIT_BAL 0.059594
5 BILL_AMT2 0.054394
6 BILL_AMT3 0.051889
7 PAY_AMT1 0.050959
8 BILL_AMT6 0.050809
9 BILL_AMT5 0.050172
10 BILL_AMT4 0.050005
11 PAY_AMT2 0.047979
12 PAY_2 0.046758
13 PAY_AMT6 0.046551
14 PAY_AMT3 0.044776
15 PAY_AMT5 0.043411
16 PAY_AMT4 0.043411
17 PAY_3 0.026829
18 PAY_4 0.022340
19 PAY_5 0.021259
20 EDUCATION 0.020097
21 PAY_6 0.018150
22 MARRIAGE 0.014471
23 SEX 0.012287
24 dtype: float64

Programme 11 Retrieving and plotting feature importances of the random forest (using mean decrease in
impurity) for the credit default dataset via Python.

1 # feature importance using permutation on full model
2 result = permutation_importance(
3 rf_clf , X_test , y_test , n_repeats=10, random_state=42, n_jobs=

2
4 )
5 forest_importances = pd.Series(result.importances_mean , index=

X_train.columns).sort_values(ascending=False)
6 print(forest_importances)
7
8 fig , ax = plt.subplots(figsize =(30, 24))
9 ax = sns.barplot(x=forest_importances , y=forest_importances.index

)
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Fig. 14 Feature importances of the random forest, using mean decrease in impurity, for the credit default
dataset via Python in Programme 11

10 ax.set_title("Feature importances using permutation on full model
",fontsize=30)

11 ax.set_yticklabels(feature_scores.index ,fontsize=25)
12 ax.set_xlabel("Mean decrease in accuracy",fontsize=25)
13 ax.set_ylabel("Features",fontsize=25)
14 fig.tight_layout ()
15 plt.show()

1 PAY_0 0.059417
2 PAY_2 0.004967
3 AGE 0.001067
4 PAY_6 0.000967
5 PAY_3 0.000600
6 MARRIAGE 0.000550
7 PAY_4 0.000383
8 LIMIT_BAL 0.000250
9 BILL_AMT1 -0.000050
10 EDUCATION -0.000550
11 PAY_5 -0.000617
12 PAY_AMT1 -0.000700
13 PAY_AMT3 -0.001000
14 PAY_AMT5 -0.001033
15 SEX -0.001300
16 PAY_AMT2 -0.001367
17 BILL_AMT2 -0.001383
18 PAY_AMT6 -0.001967
19 PAY_AMT4 -0.002200
20 BILL_AMT4 -0.002333
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Fig. 15 Feature importances of the random forest, using permutation on full model, for the credit default
dataset via Python in Programme 12

21 BILL_AMT5 -0.002483
22 BILL_AMT6 -0.002683
23 BILL_AMT3 -0.003017
24 dtype: float64

Programme 12 Retrieving and plotting feature importances of the random forest (using permutation on full
model) for the credit default dataset via Python.

7 Experiential study

In this section, we shall look at two real-life experiential studies, and give a more
general comparison with other common and competitivemachine learning algorithms.
To remove the randomness of the experiment result and emphasize the robustness of
the model’s performance, the following procedure is adopted:

1. Training data are randomly selected without replacement from the original data,
with the size Ntrain ;

2. Randomly select Ntest number of data points without replacement from each label
as the testing dataset;

3. Build and evaluate each of the candidate machine learning models, and repeat the
process 100 times.
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Fig. 16 Accuracy comparison of various models for Bank Churners

7.1 Bank churners

Banks provide consumer credit card services for annual fees and charges. Customer
attrition is one of the major problems they feared, it is then crucial for banks to predict
whether a given cardholder is likely to withdraw the credit card services. We aim to
predict Attrition_Flag by 19 feature variables from both existing and attritted
customers.9

The box plot in Fig. 16 displays a comparison of the accuracy of various machine
learning models, including Random Forest and Decision Tree. The Random Forest
model shows higher median accuracy and a smaller interquartile range (IQR) than the
Decision Tree model. This suggests that the Random Forest model not only achieves
higher accuracy on average, but also has amore consistent performance across different
runs or datasets. In contrast, the Decision Treemodel has a wider IQR, indicatingmore
variability in its accuracy. The median accuracy of the Decision Tree is also lower than
that of the Random Forest, suggesting its comparatively weaker performance than the
latter, yet both of them can achieve significantly better performances in general than
the other models. While we can tell that multilayered perceptron (MLP) seems to be
less robust and has extreme outlier and K -nearest neighbors (KNN) shows the worst
general performance.

Moreover, since it is more important for bankers to detect who has a higher chance
to be attrited, F1-score and Recall could be more effective measures in an unbalanced
dataset, since models may increase their accuracy by simply predicting more majority
labels. As displayed in Fig. 17, they show similar patterns, hence our conclusion above
still remains valid.

9 Dataset: https://www.kaggle.com/datasets/tejashvi14/medical-insurance-premium-prediction.
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Fig. 17 F1 and Recall scores comparison of various models for Bank Churners

Fig. 18 F1-score comparison of various models for Default Premium Prediction

7.2 Default premium prediction

Insurance companies offer multiple services, such as life and health insurance, requir-
ing policyholders to pay regular premiums for their policies. These premium payments
become a significant part of the insurance companies’ cash flowonce they are received.
Nevertheless, policyholders sometimes delay or completely stop making these pre-
mium payments. Let us consider a dataset which records 10 feature variables on the
personal profile details and premium payment history.10 The comparison of F1 and
Recall scores for different models are shown in Figs. 18 and 19, respectively.

It can be observed that both Decision Tree (DT) and Random Forest (RF) exhibit
commendable performances, consistently ranking as the top two models. However, a
notable divergence from the commonly expected trend is that the simplerDecisionTree
model slightly outperforms its more complex ensemble counterpart of RandomForest.
This counterintuitive result could be attributed to several factors that are specific to
the nature and structure of the dataset in question. Given that the dataset is extremely
imbalanced (95%majority), DecisionTreemay benefit from its inherent simplicity and
transparency, which allows it to overfit to the minority class, potentially capturing the
nuances and patterns that a more generalized model like Random Forest might miss.

10 Dataset: https://www.kaggle.com/datasets/prakharrathi25/insurance-company-dataset.
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Fig. 19 Recall comparison of various models for Default Premium Prediction

This is because the latter typically averages the results of its numerous constituent
trees, which can dilute the influence of the less represented class. Furthermore, the
configuration and tuning of Random Forest, such as the number of trees and the depth
of each tree, might not have been optimized for the particular characteristics of the
imbalanced dataset. Under such scenarios, DecisionTreemay outshineRandomForest
by focusing more closely on the critical decision boundaries that define the minority
class, resulting in a better performance as reflected by the evaluation metrics used
in this study. It is a reminder that in the realm of machine learning, especially with
imbalanced datasets, complexity is not always equal to superiority; rather, the tailored
fit of a model to the specific data at hand is paramount.

A Appendix

A.1 Entropy in information theory

In this section, we motivate the entropy concept introduced in Sect. 2 with its sig-
nificance in information theory. For further details, readers may refer to Cover and
Thomas (2006). Consider iid discrete random variables x1, . . . , xn ∈ X , all following
a common probability mass function p(x). Applying the weak law of large numbers,
we deduce the Asymptotic Equipartition Property (AEP), which is expressed as:

−1

n
log2 p(x1, . . . , xn) = −1

n

n∑

i=1

log2 p(xi )
p→ −E(log2 p(x)) = H(x),

as n approaches infinity. For any chosen ε > 0 and n ∈ N, we define a typical set
A(n)

ε , comprising sequences (x1, . . . , xn) ∈ X n that satisfy

2−n(H(x)+ε) ≤ p(x1, . . . , xn) ≤ 2−n(H(x)−ε), (20)
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or equivalently,

H(x) − ε ≤ −1

n
log2 p(x1, . . . , xn) ≤ H(x) + ε.

Given that

1 ≥ P

(
(x1, . . . , xn) ∈ A(n)

ε

)
=

∑

(x1,...,xn)∈A(n)
ε

p(x1, . . . , xn)

≥
∣∣∣A(n)

ε

∣∣∣ · 2−n(H(x)+ε),

we conclude that the cardinality
∣∣∣A(n)

ε

∣∣∣ is bounded by 2n(H(x)+ε), and according to

AEP’s properties, it holds that lim
n→∞P

(
(x1, . . . , xn) ∈ A(n)

ε

)
= 1. Altogether, for suf-

ficiently large n, the typical set A(n)
ε contains most of the sequences in X n . Owing to

(20), sequences within A(n)
ε are nearly equally probable, and this provides a founda-

tional idea of data compression.
Consider compressing a message x (n) = (x1, . . . , xn), composed of n alphabets
from X , into a binary code. Our focus is on the average number of bits, denoted as
l(x (n)), needed to encode a generic message x (n) ∈ X n . Assuming that the alphabets
x1, . . . , xn are independent and identically distributed, we reformulate this as calcu-
lating the expected length, E(l(x(n))), for a random message x(n) = (x1, . . . , xn).

Dividing X n into the typical set A(n)
ε and its complement A(n)

ε , we note that a max-
imum of n(H(x) + ε) + 1 bits is sufficient to represent sequences x (n) ∈ A(n)

ε . In

contrast, sequences in A(n)
ε can be encoded using at most n log2 |X | + 1 bits. Based

on AEP that P(x(n) ∈ A(n)
ε ) ≥ 1 − on(1) and on(1) → 0 as n → ∞, we derive:

E[l(x(n))] =
∑

x (n)∈X n

p(x (n))l(x (n))

=
∑

x (n)∈A(n)
ε

p(x (n))l(x (n)) +
∑

x (n) /∈A(n)
ε

p(x (n))l(x (n))

≤ P(x(n) ∈ A(n)
ε )(n(H(x) + ε) + 1) + P(x(n) /∈ A(n)

ε )(n log2 |X | + 1)

≤ n(H(x) + ε) + 1 + on(1)(n log2 |X | + 1)

= n(H(x) + ε′),

where ε′ = ε + 1+on(1)
n + on(1) log2 |X |. Hence,

E

(
1

n
l(x(n))

)
≤ H(x) + ε;
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Employing a similar argument, one can get that lim inf
n→∞ E

( 1
n l(x(n))

) ≥ H(x). This

leads to the conclusion that lim
n→∞E

( 1
n l(x(n))

) = H(x), indicating that, on average,

only nH(x) bits are necessary to code sequences in X n for large n.
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