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Abstract
The Stein-type identities are widely recognized for their substantial utility and potency
in deriving shrinkage estimators improving on crude estimators in normal, gamma,
Poisson, and negative binomial distributions. Additionally, these identities serve to
characterize these distributions themselves. The Stein identities are also used to
demonstrate normal approximation. Moreover, they are instrumental in constructing
statistical tests to assess the goodness-of-fit for normality, exponentiality, and Pois-
sonity of distributions. This article offers an instructive and comprehensive explanation
of the applications of Stein-type identities in the aforementioned contexts.

Keywords Characterization of distributions · Exponentiality · Goodness-of-fit tests ·
Negative binomial · Normal approximation · Normality · Poissonity · Stein identity ·
Stein’s method

1 Introduction

Stein (1973, 1981) introduced the Stein identity, also known as the Stein equation, to
derive unbiased estimators for risk functions of shrinkage estimators in the simulta-
neous estimation of means within normal distributions. This innovative method was
employed to enhance the performance of unbiased estimators. The simplicity and
potency of this technique have led to significant developments in the field of shrinkage
estimation, as extensively documented in the literature. For a comprehensive explo-
ration of this subject, refer to Stein (1981), Strawderman (1971), Shinozaki (1984),
Berger (1985), Brandwein and Strawderman (1990), Robert (2007), and Fourdrinier
et al. (2018). Komaki (2001) made an intriguing contribution by extending the Stein
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phenomenon to the prediction of predictive distributions. For further insights into this
topic, see Ghosh et al. (2020).

It is crucial to note that Stein identities offer utility not only in the context of
shrinkage estimation within decision-theoretic frameworks but also in normal approx-
imations, such as the central limit theorem. Their relevance in normal approximation
stems from the fact that Stein identities provide a characterization of the normal
distribution. Consequently, these identities can be employed in constructing goodness-
of-fit test statistics for normality. Hudson (1978) extended Stein-type identities to
gamma, Poisson, and negative binomial distributions. Thus, the threefold applications
of shrinkage estimation, distribution characterization, and goodness-of-fit testing can
be extended to these alternative distributions.

In this paper, we offer an instructive exposition and review of these expanded
applications of Stein identities. While many of the results presented herein are well-
established in the literature, readers will appreciate the versatile utility of Stein
identities in both statistical theory and practical applications.

In Sect. 2, we explain that the normal distribution is equivalent to the Stein identity
or the differential equation based on the moment-generating function. Although many
characterizations of normal distributions were given in the literature, some of which
are summarized there. Two applications of the Stein identity are provided in Sect. 3.
Especially, we construct a goodness-of-fit test statistic for normality based on the Stein
identity and investigate numerically the performance.

Another important application of the Stein identity is the normal approximation
of sum of independent random variables. An instructive explanation is provided in
Sect. 4 based on Chen et al. (2011).

In Sect. 5, we describe that the gamma distribution is equivalent to the Stein-
type identity or the differential equation of the moment-generating function. Some
characterizations of gamma and exponential distributions and shrinkage estimation
in decision-theoretic frameworks are summarized. A goodness-of-fit test statistic for
exponentiality is constructed based on the Stein-type identity and the performance is
investigated numerically.

In Sect. 6, we explain that the Poisson distribution is equivalent to the Stein-type
identity or the differential equation of the moment-generating function. Shrinkage
estimation and goodness-of-fit test for Poissonity are demonstrated. The Stein-type
identity in a negative binomial distribution is briefly described. Some remarks and
extensions are given in Sect. 7 as concluding remarks.

2 Stein identity and characterization of normal distributions

In normal distributions, Stein (1973, 1981) developed the so-called Stein identity
which is not only useful for calculating higher moments, but also powerful for devel-
oping shrinkage estimators improving on the minimax estimator in the simultaneous
estimation of normal means. The Stein identity also provides the characterization of
normal distribution, which means that the central limit theorem can be shown by using
the Stein identity. For recent developments and review on the Stein identity, see Bellec
and Zhang (2021), Chen (2021), Fathi et al. (2022) and Anastasiou (2023).
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Theorem 2.1 Let X be a random variable with mean E[X ] = μ and variance
Var(X) = σ 2. Then, the following four conditions are equivalent.

(a) X ∼ N (μ, σ 2).
(b) For any differentiable function h(·)withE[|(X−μ)h(X)|] < ∞ andE[|h′(X)|] <

∞, it holds that

E[(X − μ)h(X)] = σ 2E[h′(X)], (2.1)

where h′(x) is the derivative of h(x).
(c) For any real constant t satisfying E[|X |et X ] < ∞, it holds that

E[(X − μ) exp{t X}] = tσ 2E[exp{t X}]. (2.2)

(d) Let g(t) = E[et(X−μ)]. Then for any t in the interval (−c, c) for positive constant
c, g(t) satisfies the differential equation

d

dt
log g(t)= g′(t)

g(t)
=σ 2t or

d2

dt2
log g(t)= g′′(t)

g(t)
−

(g′(t)
g(t)

)2=σ 2, (2.3)

where g(0) = 1, g′(0) = 0 and g′′(0) = σ 2.

Proof The proof from (a) to (b) can be done by integration by parts as seen from Stein
(1981) and Fourdrinier et al. (2018). We here introduce another approach. Making the
transformation Y = X − μ gives

E[h(X)] =
∫ ∞

−∞
h(x)

1√
2πσ

e−(x−μ)2/σ 2
dx =

∫ ∞

−∞
h(y + μ)

1√
2πσ

e−y2/σ 2
dy.

Differentiating both sides with respect to μ and using Lebesgue’s dominated conver-
gence theorem, we can demonstrate that

∫ ∞

−∞
h(x)

x − μ

σ 2

1√
2πσ

e−(x−μ)2/(2σ 2)dx =
∫ ∞

−∞
h′(y + μ)

1√
2πσ

e−y2/(2σ 2)dy,

which is rewritten as in (2.1) by turning back with X = Y + μ.
Clearly, one gets (c) from (b). Also, it is easy to get (d) from (c). For the proof

from (d) to (a), the solution of the differential equation in (2.3) is g(t) = exp{σ 2t2/2},
which implies that X − μ ∼ N (0, σ 2). ��

We briefly provide some conditions for characterizing normality. The study of
characterizations of normality has had a long history as explained in Kagan et al.
(1973) and Kotz (1974). For a good review of the book of Kagan et al. (1973), see
Diaconis et al. (1977). In Theorem 2.2, sufficient condition (b) was given by Cramér
(1936), and we provide a simple proof by using the Stein identity. Condition (d) was
shown by Kac (1939), Bernstein (1941) and Lukacs (1942).
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Theorem 2.2 Assume that independent random variables X1 and X2 are identically
distributed with E[Xi ] = μ and Var(Xi ) = σ 2 for i = 1, 2. Then the following four
conditions are equivalent.

(a) Xi ∼ N (μ, σ 2) for i = 1, 2.
(b) X1 + X2 ∼ N (2μ, 2σ 2).
(c) For i = 1, 2, the density function of Xi −μ is symmetric, and (X1−X2)

2/(2σ 2) ∼
χ2
1 .

(d) X1 + X2 and X1 − X2 are independent.

Proof Since one gets clearly (b), (c) and (d) from (a), it is sufficient to demonstrate
the opposite directions. For the proof from (b) to (a), the condition in (b) and Theo-
rem 2.1(c) implies that

E[(X1 + X2 − 2μ) exp{t(X1 + X2)}] = 2σ 2tE[exp{t(X1 + X2)}]. (2.4)

From the independence of X1 and X2, we have

E[(X1 − μ) exp{t X1}]E[exp{t X2}] + E[(X2 − μ) exp{t X2}]E[exp{t X1}]
= 2σ 2tE[exp{t X1}]E[exp{t X2}].

Since X1 and X2 have the samedistribution,wehaveE[(X1−μ) exp{t X1}]E[exp{t X2}]
= E[(X2 − μ) exp{t X2}]E[exp{t X1}], so that we can see that for i = 1, 2,

E[(Xi − μ) exp{t Xi }] = σ 2tE[exp{t Xi }],

which, from Theorem 2.1, shows that Xi ∼ N (μ, σ 2).
For the proof from (c) to (b), let Yi = Xi − μ for simplicity. Since (Y1 −

Y2)2/(2σ 2) ∼ χ2
1 , we have Y1 − Y2 ∼ N (0, 2σ 2). From Theorem 2.1(c), it follows

that

E[(Y1 − Y2) exp{t(Y1 − Y2)}] = 2σ 2tE[exp{t(Y1 − Y2)}]. (2.5)

Note that Y1 and Y2 are independent and −Yi has the same distribution as Yi . Thus,
equality (2.5) can be rewritten as

E[(Y1 + Y2) exp{t(Y1 + Y2)}] = 2σ 2tE[exp{t(Y1 + Y2)}],

which is identical to equality (2.4). Hence one gets (b).
Finally, we provide the proof from (d) to (a) along with the proof of Lukacs (1942).

The independence of X1 + X2 and X1 − X2 is equivalent to the independence of
Y1 + Y2 and Y1 − Y2 for Yi = Xi − μ, which implies that

E[exp{s(Y1 + Y2) + t(Y1 − Y2)}] = E[exp{s(Y1 + Y2)}]E[exp{t(Y1 − Y2)}]. (2.6)
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Letting g(t) = E[exp{tYi }], we can see that LHS of (2.6) is written as

E[exp{s(Y1 + Y2) + t(Y1 − Y2)}]
= E[exp{(s + t)Y1}]E[exp{(s − t)Y2}] = g(s + t)g(s − t).

On the other hand, RHS of (2.6) is written as {g(s)}2g(t)g(−t), so that Eq. (2.6) is
expressed as

g(s + t)g(s − t) = {g(s)}2g(t)g(−t),

equivalently rewritten as

log g(s + t) + log g(s − t) = 2 log g(s) + log g(t) + log g(−t). (2.7)

Let ψ(t) = (d/dt) log g(t). Differentiating the both sides in (2.7) with respect to s
and t , we have

ψ(s + t) + ψ(s − t) = 2ψ(s), (2.8)

ψ(s + t) − ψ(s − t) = ψ(t) − ψ(−t). (2.9)

Note thatψ(0) = 0. Substituting s = 0 in (2.8) gives ψ(t)+ψ(−t) = 0, orψ(−t) =
−ψ(t), which is used to rewrite (2.9) as ψ(s + t) − ψ(s − t) = 2ψ(t). Combining
this equality and (2.8) gives

ψ(s + t) = ψ(s) + ψ(t). (2.10)

Equation (2.10) implies that ψ(t) is written as ψ(t) = ct for constant c, namely
(d/dt) log g(t) = ct . From Theorem 2.1(d), the solution is g(t) = exp{ct2/2}. Since
g′′(0) = σ 2, we have c = σ 2. Thus, Yi = Xi − μ ∼ N (0, σ 2). ��

The normality can be characterized by a random sample. Conditions (b), (e) and
(f) in Theorem 2.3 were derived by Kagan et al. (1965), Lukacs (1942) and Ruben
(1974), respectively.

Theorem 2.3 Let X1, . . . , Xn be a random sample from a population with E[Xi ] = μ

and Var(Xi ) = σ 2. Let X = n−1 ∑n
i=1 Xi and S2 = n−1 ∑n

i=1(Xi − X)2. Then, the
following six conditions are equivalent.

(a) Xi ∼ N (μ, σ 2) for i = 1, . . . , n.
(b) E[X |X1 − X , . . . , Xn − X ] = μ for n ≥ 3.
(c) X and (X1 − X , . . . , Xn − X) are independent.
(d) X ∼ N (μ, σ 2/n).
(e) X and S2 are independent.
(f) For i = 1, . . . , n, the density function of Xi−μ is symmetric, and nS2/σ 2 ∼ χ2

n−1.
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Proof Using well-known properties of a normal distribution, one gets (b), (c), (d), (e)
and (f) from (a). For the proof from (b) to (a), let Zi = (Xi − μ)/σ for simplicity.
Then, (b) is rewritten as E[Z |Z1 − Z , . . . , Zn − Z ] = 0 for Z = n−1 ∑n

i=1 Zi . This
implies that

E
[ n∑
i=1

Zi exp{t1(Z1 − Z) + · · · + tn(Zn − Z)}
]

= 0.

Let si = ti − t for t = n−1 ∑n
i=1 ti . Then the above equality is expressed as

E
[ n∑
i=1

Zi exp
{ n∑

j=1

s j Z j

}]
=

n∑
i=1

E[Zi exp{si Zi }]
n∏

j=1, j 	=i

E[exp{s j Z j }] = 0,

equivalently rewritten as

n∑
i=1

E[Zi exp{si Zi }]
E[exp{si Zi }] = 0, or

n∑
i=1

ψ(si ) = 0

for ψ(t) = (d/dt) log E[exp{t Zi }]. Since ∑n
i=1 si = 0, we have sn = −∑n−1

i=1 si .
Thus,

n−1∑
i=1

ψ(si ) = −ψ
(

−
n−1∑
i=1

si
)
.

Substituting s2 = · · · = sn−1 = 0 givesψ(s1) = −ψ(−s1). Hence, the above equality
is expressed as

n−1∑
i=1

ψ(si ) = ψ
( n−1∑

i=1

si
)
.

Since this equality holds for n ≥ 3, we can see that the solution is ψ(t) = ct . Since
Var(Zi ) = 1,we have c = 1. Thus, fromTheorem2.1(d), it follows that Zi ∼ N (0, 1).

For the proof from (c) to (a), the case of n = 2 follows from Theorem 2.2(d). When
n ≥ 3, the independence between X and (X1 − X , . . . , Xn − X) implies that

E[X |X1 − X , . . . , Xn − X ] = E[X ] = μ,

which results in (b) and leads to (a).
The proof from (d) to (a) can be done by using the same arguments as in the proof

of Theorem 2.2(d).
For the proof from (e) to (a), we provide the proof given by Lukacs (1942). Let

Yi = Xi − μ and Y = n−1 ∑n
i=1 Yi . Note that

∑n
i=1(Xi − X)2 = ∑n

i=1(Yi − Y )2
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and X = Y + μ. Since
∑n

i=1(Yi − Y )2 and Y are independent, we have

E
[
es

∑n
i=1 Yi+t

∑n
i=1(Yi−Y )2

]
= E

[
es

∑n
i=1 Yi

]
E
[
et

∑n
i=1(Yi−Y )2

]
. (2.11)

For g(s) = E[esYi ], we can see that E[es
∑n

i=1 Yi ] = {g(s)}n . Differentiating (2.11)
with respect to t and putting t = 0 gives

E
[ n∑
i=1

(Yi − Y )2es
∑n

i=1 Yi
]

= {g(s)}nE
[ n∑
i=1

(Yi − Y )2
]

= (n − 1)σ 2{g(s)}n.
(2.12)

Noting that

n∑
i=1

(Yi − Y )2 =
n∑

i=1

Y 2
i − nY

2 = n − 1

n

n∑
i=1

Y 2
i − 1

n

n∑
i=1

n∑
j=1, j 	=i

YiY j ,

we can express (2.12) as

E

[{n − 1

n

n∑
i=1

Y 2
i − 1

n

n∑
i=1

n∑
j=1, j 	=i

YiY j

}
es

∑n
k=1 Yk

]
= (n − 1)σ 2{g(s)}n. (2.13)

Since Y1, . . . ,Yn are independently and identically distributed, the terms in LHS of
(2.13) are evaluated as

E

[ n∑
i=1

Y 2
i e

s
∑n

k=1 Yk

]
= nE

[
Y 2
1 e

s
∑n

k=1 Yk
]

= nE[Y 2
1 e

tY1]{g(s)}n−1

= ng′′(s){g(s)}n−1,

E

[ n∑
i=1

n∑
j=1, j 	=i

YiY j e
s
∑n

k=1 Yk
]

= n(n − 1)E
[
Y1Y2e

s(Y1+Y2)
]
{g(s)}n−2

= n(n − 1){g′(s)}2{g(s)}n−2.

Substituting these quantities into (2.13) yields

g′′(s)g(s) − {g′(s)}2 = σ 2{g(s)}2 or
d2

ds2
log g(s) = σ 2. (2.14)

Thus, from Theorem 2.1(d), it follows that Xi − μ ∼ N (0, σ 2), and one gets (a). For
the proof of (f) to (a), see Ruben (1974). ��

123



274 Japanese Journal of Statistics and Data Science (2024) 7:267–311

3 Applications to shrinkage estimation and goodness-of-fit test

We now provide two applications of the Stein identity to shrinkage estimation and
goodness-of-fit tests for normality.

3.1 Shrinkage estimation

The Stein identity is very powerful for deriving unbiased risk estimators of shrink-
age estimators. Let X1, . . . , X p be independent random variables such that Xi ∼
N (θi , σ

2), i = 1, . . . , p. Consider the problem of estimating θ = (θ1, . . . , θp)



simultaneously for known σ 2. When estimator θ̂ is evaluated with the risk function
relative to the quadratic loss ‖̂θ − θ‖2/σ 2 = (̂θ − θ)
(̂θ − θ)/σ 2, Stein (1956) estab-
lished the inadmissibility of X = (X1, . . . , X p)


 in the case of p ≥ 3, and James and
Stein (1961) suggested the shrinkage estimator

θ̂
JS = X − (p − 2)σ 2

‖X‖2 X .

The improvement over X was proved using a somewhat complicated properties of
noncentral chi-squares distribution. Stein (1973) provided a new technique based on
the Stein identity for the proof. Because of a simple integration-by-part, the Stein
identity enabled us to develop innovated results and great contributions to this research
area. The Stein identity was extended to the identity in the chi-square and Wishart
distributions and those identities were unified by Konno (2009) which enables us to
handle the high-dimensional cases. For some developments and extensions, see Berger
(1985), Brandwein and Strawderman (1990), Fourdrinier et al. (2018), Ghosh et al.
(2020), Tsukuma and Kubokawa (2020) andMaruyama et al. (2023) and the reference
therein.

Theorem 3.1 Let h(X) = (h1(X), . . . , h p(X))
, where hi (X) is differentiable and
satisfies E[|(Xi −θi )hi (X)|] < ∞ and E[|(∂/∂Xi )hi (X)|] < ∞. Then, the shrinkage
estimator θ̂ h = X − h(X) has the unbiased risk estimator

̂R(θ , θ̂ h) = p − 2∇
h(X) + {h(X)}
h(X)/σ 2 (3.1)

where ∇ = (∂/∂X1, . . . , ∂/∂X p)

. Especially, θ̂φ = X − W−1φ(W )X for W =

‖X‖2/σ 2 has the risk unbiased estimator

̂R(θ , θ̂φ) = p + {φ(W ) − (p − 2)}2 − (p − 2)2

W
− 4φ′(W ). (3.2)

Proof The risk function of θ̂ h is R(θ , θ̂ h) = p − 2E[(X − θ)
h(X)]/σ 2 +
E[{h(X)}
h(X)]/σ 2, and the Stein identity gives

E[(X − θ)
h(X)] =
p∑

i=1

E[(Xi − θi )hi (X)] =
p∑

i=1

E
[
σ 2 ∂

∂Xi
hi (X)

]
= σ 2E[∇
h(X)].

123



Japanese Journal of Statistics and Data Science (2024) 7:267–311 275

This provides the unbiased estimator of the risk function given in (3.1). (3.2) can be
derived from (3.1). ��

From (3.1) or (3.2), we can derive conditions on h(·) or φ(·) for improvement over
X . For example, Baranchik’s (1970) condition is (a) φ(w) is nondecreasing and (b)
0 ≤ φ(w) ≤ 2(p − 2).

The James–Stein estimator θ̂
JS

corresponds to the case of φ(w) = p − 2, and the
risk unbiased estimator suggests the equation

E[‖X − θ‖2] = E[‖̂θ JS − θ‖2] + E[‖X − θ̂
JS‖2],

which is interpreted as the Pythagorean triangle among X , θ and θ̂
JS
. Kubokawa

(1994) constructed a class of estimators improving on the James–Stein estimator. See
also Kubokawa (1991).

Theorem 3.2 The estimator θ̂φ = X − W−1φ(W )X improves on the James–Stein
estimator if (a) φ(w) is nondecreasing, and (b) limw→∞ φ(w) = p − 2 and

φ(w) ≥ φ0(w) ≡
∫ w

0 y p/2−1e−y/2dy∫ w

0 y p/2−2e−y/2dy
. (3.3)

Proof The risk difference is 	 = R(θ , θ̂
JS

) − R(θ , θ̂φ) = −E[{φ(W ) − (p −
2)}2/W ] + 4E[φ′(W )], and from condition (b), it is noted that

−{φ(W ) − (p − 2)}2 =
[
{φ(tW ) − (p − 2)}2

]∞
t=1

=
∫ ∞
1

{ d

dt
{φ(tW ) − (p − 2)}2

}
dt

= 2W
∫ ∞
1

{φ(tW ) − (p − 2)}φ′(tW )dt,

so that, after making the transformation, the first term is written as

−E
[
{φ(W ) − (p − 2)}2/W

]

= 2
∫ ∞

0

∫ ∞

1
{φ(tw) − (p − 2)}φ′(tw)dt f p(w, λ)dw, (3.4)

where f p(w, λ) denotes the density function of noncentral chi-square distributionwith
p degrees of freedom and noncentrality λ = ‖θ‖2/σ 2. Thus,

	 = 2
∫ ∞

0
φ′(w)

[
{φ(w) − (p − 2)}

∫ w

0

1

y
f p(y, λ)dy + 2 f p(w, λ)

]
dw.

Since φ′(w) ≥ 0 from condition (a), we have 	 ≥ 0 if φ(w) satisfies φ(w) ≥ φλ(w),
where

φλ(w) = p − 2 − 2 f p(w, λ)∫ w

0 y−1 f p(y, λ)dy
.
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We here show that φ0(w) ≥ φλ(w), which is written as

2 f p(w, λ)∫ w

0 y−1 f p(y, λ)dy
≥ 2 f p(w, 0)∫ w

0 y−1 f p(y, 0)dy
,

or
∫ w

0

f p(y, 0) f p(w, 0)

y

{ f p(w, λ)

f p(w, 0)
− f p(y, λ)

f p(y, 0)

}
dy ≥ 0.

Since the noncentral chi-squared distribution can be expressed as a mixtute of Poisson
and central chi-squared distributions, it is noted that

f p(y, λ) =
∞∑
k=0

Pλ(k)
1

�(p/2 + k)2p/2+k
y p/2+k−1e−y/2

for Pλ(k) = (λ/2)ke−λ/2/k!. Hence,

f p(y, λ)

f p(y, 0)
=

∞∑
k=0

Pλ(k)
�(p/2)

�(p/2 + k)

1

2k
yk

is increasing in y, so that for w > y,

f p(w, λ)

f p(w, 0)
− f p(y, λ)

f p(y, 0)
≥ 0,

which implies that φ0(w) ≥ φλ(w). Using integration by parts, we can see that

φ0(w) = p − 2 − 2w p/2−1e−w/2
∫ w

0 y p/2−2e−y/2dy
=

∫ w

0 y p/2−1e−y/2dy∫ w

0 y p/2−2e−y/2dy
,

which is given in (3.3). Hence, it is proved that 	 ≥ 0 under condition φ(w) ≥ φ0. ��
It is interesting to note that the estimator θ̂

GB = θ̂φ0 with φ0(W ) is the generalized
Bayes estimator against the prior distribution π(θ) = ‖θ‖2−p. Since φ0(w) satisfies
the above conditions (a), the generalized Bayes estimator θ̂φ0 improves on the James–
Stein estimator. It is also interesting to note that the prior distributionπ(θ) = ‖θ‖2−p is
a harmonic function, namely ∇
∇π(θ) = ∑p

i=1(∂
2/∂θ2i )‖θ‖2−p = 0. The positive-

part Stein estimator θ̂
S+ = max{1− (p − 2)/W , 0}X also satisfies the conditions (a)

and (b).
The risk performances of the shrinkage estimators θ̂

JS
, θ̂

S+
and θ̂

GB
, denoted by

JS, PS and GB, respectively, are investigated by simulation with 10, 000 replications
and the average values of the risks are reported in Table 1 for p = 6, σ 2 = 1
and θ = (k/3)I , k = 0, . . . , 9. As distributions of Xi ’s, we treat normal, double
exponential and t-distributions with 5 degrees of freedom. From Table 1, it is seen
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Table 1 Risks of three shrinkage estimators for p = 6 and θ = (k/3)I

k Normal distribution R(θ , X) = 6
0 1 2 3 4 5 6 7 8 9

JS 2.03 2.39 3.31 4.15 4.75 5.13 5.36 5.52 5.62 5.70

PS 1.35 1.84 2.94 4.01 4.72 5.12 5.36 5.52 5.62 5.70

GB 2.00 2.28 2.98 3.84 4.57 5.06 5.35 5.52 5.62 5.70

k t5 distribution R(θ , X) = 10
0 1 2 3 4 5 6 7 8 9

JS 4.92 5.28 6.10 6.99 7.70 8.23 8.61 8.88 9.07 9.21

PS 4.47 4.87 5.84 6.88 7.68 8.23 8.61 8.88 9.07 9.21

GB 4.98 5.24 5.92 6.78 7.58 8.18 8.60 8.88 9.07 9.21

k Double exponential distribution R(θ , X) = 12.0
0 1 2 3 4 5 6 7 8 9

JS 6.97 7.22 7.90 8.71 9.44 10.02 10.45 10.78 11.01 11.19

PS 6.40 6.77 7.66 8.63 9.42 10.01 10.45 10.78 11.01 11.19

GB 6.83 7.08 7.72 8.55 9.34 9.98 10.44 10.77 11.01 11.19

that the minimality of the three shrinkage estimators is robust for the t- and double
exponential distributions.

3.2 Goodness-of-fit tests for normality

Goodness-of-fit tests for normality have been studied in a lot of articles. For references
and explanations including omnibus test procedures, see Madansky (1988) and Thode
(2002). An idea of using the Stein identity for testing normality is interesting and
reasonable, because the Stein identity characterizes normal distributions. Henze and
Visagie (2020) and Betsch and Ebner (2020) constructed test statistics based on the
Stein identity.

Let X1, . . . , Xn be a random sample from a population with distribution function
F(·), where the mean and variance are denoted by E[Xi ] = μ and Var(Xi ) = σ 2. The
problem is to test the normality of the underlying distribution under the null hypothesis
H0 : F = N (μ, σ 2). From Theorem 2.1, the characterization of a normal distribution
of random variable X is

E
[( X − μ

σ
− t

)
et(X−μ)/σ

]
= 0,

and the sample counterpart of the LHS is expressed by wt/
√
n, where

wt = 1√
n

n∑
i=1

(
Yi − t

)
etYi ,

123



278 Japanese Journal of Statistics and Data Science (2024) 7:267–311

for Yi = (Xi − X)/S and S2 = n−1 ∑n
i=1(Xi − X)2. It is noted that wt is invariant

under the transformation of location and scale. Then, the normality can be tested
based on STt = |wt |. Since it depends on t , however, it is better to take a weighted L2

distance and integrate over t . Henze and Visagie (2020) considered the test statistic∫ ∞
−∞ w2

t K (t)dt for a weight function K (t) and suggested the use of K (t) = e−γ t2 for
positive γ . The resulting test statistic is

HVγ =
∫ ∞

−∞
w2
t e

−γ t2dt =
√

π

n
√

γ

n∑
i=1

n∑
j=1

(
YiY j − A2

i j

2γ
+ 1

2γ
+ A2

i j

4γ 2

)
eAi j /(4γ ),

where Ai j = Yi + Y j . Taking K (t) = 1 for −c < t < c and otherwise K (t) = 0 with
positive constant c, one gets another test statistic

ISTc =
∫ c

−c
w2
t dt

= 1

n

n∑
i=1

n∑
j=1

{
YiY j + c2

Ai j
(ecAi j − e−cAi j )

−
(
1 + 2

Ai j

)(
(c − A−1

i j )ecAi j + (c + A−1
i j )e−cAi j

)}
.

Based on wt , we also suggest the test statistic

MSTc = sup
−c<t<c

|wt |

for positive constant c.
The following lemma is helpful for investigating asymptotic properties of these test

statistics.

Lemma 3.1 Let Zi = (Xi − μ)/σ for i = 1, . . . , n. For g(t) = E[et Z1], let h0(t) =
g′(t) − tg(t), h1(t) = tg′(t) + (1 − t2)g(t) and h2(t) = tg′′(t) + (1 − t2)g′(t).
Assume that E[Z2

1e
t Z1 ] < ∞ for t around zero. Then, wt is approximated as wt =

Wn(t) + √
nh0(t) + op(1), where

Wn(t) = 1√
n

n∑
i=1

{
(Zi − t)et Zi − h0(t) − Zih1(t) − 1

2
(Z2

i − 1)h2(t)
}
. (3.5)

Proof Let Z = n−1 ∑n
i=1 Zi . Note that {1+(S/σ −1)}−1 = 1−(S/σ −1)+Op(n−1)

and S/σ − 1 = √
S2/σ 2 − 1 = 2−1(S2/σ 2 − 1) + Op(n−1). Then, (Xi − X)/S is

approximated as

Xi − X

S
= Zi − Z

1 + (S/σ − 1)
= (Zi − Z)

{
1 −

( S

σ
− 1

)
+ Op(n

−1
}
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= (Zi − Z)
{
1 − 1

2

( S2

σ 2 − 1
)}

+ Op(n
−1)

= (Zi − Z)
{
1 − 1

2n

n∑
j=1

(Z2
j − 1)

}
+ Op(n

−1).

Using this approximation, we evaluate wt as

wt = 1√
n

n∑
i=1

( Xi − X

S
− t

)
et(Xi−X)/S

= 1√
n

n∑
i=1

{
Zi − t − Z − Zi − Z

2n

n∑
j=1

(Z2
j − 1) + Op(n

−1)
}

× exp
[
t Zi − t Z − t

Zi − Z

2n

n∑
j=1

(Z2
j − 1) + Op(n

−1)
]
.

Since ex = 1 + x + O(x2) and Z = Op(1/
√
n), wt is approximated as

wt = 1√
n

n∑
i=1

{
Zi − t − Z − Zi

2n

n∑
j=1

(Z2
j − 1) + Op(n

−1)
}

×
{
1 − t Z − t

Zi

2n

n∑
j=1

(Z2
j − 1) + Op(n

−1)
}
et Zi

= 1√
n

n∑
i=1

[
Zi − t − Z − Zi

2n

n∑
j=1

(Z2
j − 1)

− t(Zi − t)
{
Z + Zi

2n

n∑
j=1

(Z2
j − 1)

}]
et Zi + op(1),

which can be rewritten as

wt = 1√
n

n∑
i=1

(Zi − t)et Zi − Z
1√
n

n∑
i=1

et Zi − 1

2n

n∑
j=1

(Z2
j − 1)

1√
n

n∑
i=1

Zie
t Zi

− t Z
1√
n

n∑
i=1

(Zi − t)et Zi − t

2n

n∑
j=1

(Z2
j − 1)

1√
n

n∑
i=1

Zi (Zi − t)et Zi + op(1).

Each term can be evaluated as

n−1/2
n∑

i=1

(Zi − t)et Zi = √
n{n−1

n∑
i=1

(Zi − t)et Zi − h0(t)} + √
nh0,
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Zn−1/2
n∑

i=1

et Zi = √
nZg(t) + op(1),

n−1
n∑
j=1

(Z2
j − 1)n−1/2

n∑
i=1

Zi e
t Zi = n−1/2

n∑
j=1

(Z2
j − 1)g′(t) + op(1),

Zn−1/2
n∑

i=1

(Zi − t)et Zi = √
nZ{g′(t) − tg(t)} + op(1),

n−1
n∑
j=1

(Z2
j − 1)n−1/2

n∑
i=1

Zi (Zi − t)et Zi = n−1/2
n∑
j=1

(Z2
j − 1){g′′(t) − tg′(t)} + op(1).

Thus, it can be verified that wt is approximated as wt = Wn + √
nh0(t) + op(1),

which proves Lemma 3.1 ��
From (3.5), the central limit theorem shows thatWn(t) is asymptotically distributed

as the normal distribution with mean zero and variance Var(Wn(t)) under the assump-
tion of E[Z4

1] < ∞, where the variance can be evaluated as

Var(Wn(t)) = E[(Z1 − t)2e2t Z1 ] − h0(t)
2 + h1(t)

2

+ 1

4
h2(t)

2(E[Z4
1] − 1) − 2h1(t)E[Z1(Z1 − t)et Z1 ]

− h2(t){E[Z2
1(Z1 − t)et Z1] − h0(t)} + h1(t)h2(t)E[Z3

1] + o(1).

Note that h1(t) = g(t) + th0(t) and h2(t) = 2tg(t) + h0(t) + th′
0(t). Under the

normality hypothesis H0, we have h0(t) = 0, h1(t) = g(t), h2(t) = 2tg(t) and
E[(Z1 − t)2e2t Z1 ] = (1 + t2)e2t

2
. Thus, the asymptotic variance of wt under the

normality is Var(Wn(t)) = V (t)2 + o(1), where

V (t)2 = (1 + t2)e2t
2 − (1 + 2t2)et

2
.

Henze and Visagie (2020) showed the consistency of HVγ , namely PF (HVγ >

d) → 1 as n → ∞ for positive constant d and non-normal distributions F . Using
Lemma 3.1, we can verify the consistency of ISTc and MSTc.

Theorem 3.3 Assume that E[Z4
1] < ∞. Then, the test statistics ISTc and MSTc are

consistent.

Proof Concerning the consistency of MSTc, it can be observed that for all t in the
interval (−c, c),

PF ( sup
−c<t<c

|wt | > d) ≥ PF (|wt | > d) = PF (wt > −d) + PF (wt > d)

= PF {Wn(t) < −√
nh0(t) − d + op(1)}

+ PF {Wn(t) > −√
nh0(t) + d + op(1)}.
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Note that Wn(t) converges in distribution to the normal distribution. When F is not a
normal distribution, from Theorem 2.1, there is some t0 in (−c, c) such that h0(t0) 	=
0. Hence, PF {Wn(t0) < −√

nh0(t0) − d + op(1)} → 1 when h0(t0) < 0, and
PF {Wn(t0) > −√

nh0(t0) + d + op(1)} → 1 when h0(t0) > 0. This shows the
consistency of MSTc.

For ISTc, it is observed that for large n,

PF
( ∫ c

−c
w2
t dt > d

)
= PF

( ∫ c

−c
Wn(t)

2dt

+ 2
√
n

∫ c

−c
Wn(t)h0(t)dt + n

∫ c

−c
h0(t)

2dt > d
)

+ o(1)

≥ PF
(

− 2
√
n
∣∣∣
∫ c

−c
Wn(t)h0(t)dt

∣∣∣ + n
∫ c

−c
h0(t)

2dt > d
)

+ o(1)

= PF
(∣∣∣

∫ c

−c
Wn(t)h0(t)dt

∣∣∣ <

√
n

2

( ∫ c

−c
h0(t)

2dt − d/n
))

+ o(1)

≥ 1 − E
[{ ∫ c

−c Wn(t)h0(t)dt
}2]

(n/2)(
∫ c
−c h0(t)

2dt − d/n)2
+ o(1).

From (3.5), we have
∫ c
−c Wn(t)h0(t)dt = n−1/2 ∑n

i=1 Y
∗
i for

Y ∗
i =

∫ c

−c
{(Zi − t)et Zi − h0(t)}h0(t)dt − Zi

∫ c

−c
h1(t)h0(t)dt − 1

2
(Z2

i − 1)

∫ c

−c
h2(t)h0(t)dt .

Since Y ∗
1 , . . . ,Y ∗

n are independently and identically distributed with zero mean and
a finite variance, it can be seen that E[{∫ c

−c Wn(t)h0(t)dt}2] converges to a positive

constant. Thus, it is concluded that PF

( ∫ c
−c w2

t dt > d
)

→ 1. ��

We investigate the performances of powers of the test statistics HVγ with γ = 3
given in Henze and Visagie (2020), ISTc with c = 1 and MSTc with c = 1. We also
treat the test statistic STt = wt/V (t) with t = 0.5, which converges in distribution to
N (0, 1) under H0. From the proof of Theorem 3.3, this test can be seen to be consistent
in the sense that PF (STt0 > d) → 1 for distributions with h0(t0) 	= 0 for t0 = 0.5. As
another competitor, we add the test statistic suggested by De Wet and Ventner (1972),
who modified the Shapiro–Francia (1972) and the Shapiro–Wilk (1965) test statistics,
as

DWV =
∑n

i=1 ai X(i)√∑n
i=1 a

2
i

√
nS2

, ai = 
−1
( i

n + 1

)
,

where X(1) ≤ · · · ≤ X(n) are order statistics of Xi ’s. The idea of this test is simple,
but powerful. When data are distributed as a normal distribution, the points (x(i), ai )
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Table 2 Power of the six tests for n = 50 and w = 0.2, 0.5, 0.8, 1.0

w M1 : Ex(1) M2 : DE(0, 2) M3 : mixed
0.0 0.2 0.5 0.8 1.0 0.2 0.5 0.8 1.0 0.2 0.5 0.8 1.0

ST0.5 5.0 6.0 43.0 93.7 97.0 9.2 31.9 36.6 36.7 5.4 11.4 33.4 37.4

HV3 5.0 6.0 34.6 87.2 92.6 10.9 41.6 48.8 49.3 5.6 11.6 34.5 39.0

IST1 5.0 5.9 35.4 90.1 95.1 10.7 40.7 47.9 48.2 5.5 11.1 33.7 38.4

MST1 5.0 6.0 33.0 81.7 87.1 10.6 42.2 49.8 50.3 5.7 11.3 34.3 39.0

DWV 5.0 5.5 35.1 95.8 99.7 10.6 49.1 62.8 63.8 5.5 11.2 40.3 48.2

are plotted on or near the line, so that DWV is close to one. Thus, H0 is rejected when
DWV is smaller than a critical value.

The powers of the five test statistics ST0.5, HV3, IST1, MST1 and DWV are inves-
tigated by simulation, where their critical values are adjusted so that their type I errors
are α = 5%. We consider the three alternative distributions

M1 : Xi = (1 − w)N (0, 1) + wEx(1),

M2 : Xi = (1 − w)N (0, 1) + wDE(0, 2),

M3 : Xi = (1 − w)N (0, 1) + wEx(1)/2 + wDE(0, 0.5)/2,

whereN (0, 1), Ex(1) and DE(0, σ ) denote randomvariables having standard normal
distributionN (0, 1), exponential distribution Ex(1) and double exponential distribu-
tion DE(0, σ ) with scale parameter σ , respectively.

The values of the powers for w = 0.2, 0.5, 0.8, 1.0 and n = 50 are obtained based
on simulation data with 10,000 replications by using the Ox by Doornik (2007) and
reported in Table 2. The model M1 has skewness, and the tests ST0.5 and DWV are
more powerful, but MST1 is less powerful. The model M2 has kurtosis, and the test
DWV is more powerful, but ST0.5 is less powerful. In the model M3 with mixed
distributions as an alternative, the test DWV is good, and the other four tests are
similarly performed. Through Table 2, it is seen that the performances of HV3 and
IST1 are not bad, but such tests based on moments are less powerful than DWV based
on quantiles.

4 Stein’s methods for normal approximations

An important application of the Stein identity is the normal approximation. This
approach is called Stein’s method, and it has been studied in the literature includ-
ing Ho and Chen (1978), Stein (1986), Goldstein and Reinert (1997), Shorack (2000),
Barbour and Chen (2005), Diaconis and Holmes (2004), Chen and Shao (2005), Chen
et al. (2011), Chen et al. (2013), Lehmann and Romano (2022) and the reference
therein. Of these, Chen et al. (2011) gives us a good explanation for the Stein method.
For instructive purposes, we here provide a simple introduction based on Chen et al.
(2011).
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4.1 A basic concept and a simplemethod

Let X1, . . . , Xn be independent random variables with E[Xi ] = 0 and Var(Xi ) = 1.
Let

X = 1√
n

n∑
i=1

Xi , ξi = Xi√
n

, X (i) = X − ξi and μk = 1

n

n∑
i=1

E[|Xi |k] for k = 1, 2, 3.

Note that X (i) is independent of ξi . Let Y be a random variable havingN (0, 1). Then,
we want to show that for any real z,

|P(X ≤ z) − 
(z)| = |E[I (X ≤ z)] − E[Y ≤ z]| → 0

as n → ∞.
For any nonnegative function h(·) satisfying E[h(X)] < ∞, in general, the solution

of the equation

h(x) − E[h(Y )] = f ′
h(x) − x fh(x) (4.1)

is given by

fh(x)=
∫ x

−∞
[h(y)−μh]φ(y)dy/φ(x)=−

∫ ∞

x
[h(y)−μh]φ(y)dy/φ(x), (4.2)

where μh = E[h(Y )] and φ(x) is the probability density function of N (0, 1). In
particular, for hz(x) = I (x ≤ z) − 
(z), the solution of the equation I (x ≤ z) −

(z) = f ′

z (x) − x fz(x) is written as

fz(x) =
∫ x

−∞
[I (y ≤ z) − 
(z)]φ(y)dy/φ(x)

=
{


(x)
(z)/φ(x), x ≤ z,

(z)
(x)/φ(x), x > z,

(4.3)

where 
(x) = 1 − 
(x). Then, we get the equality

E[I (X ≤ z) − 
(z)] = E[ f ′
z (X) − X fz(X)]. (4.4)

For the central limit theorem (CLT), it is sufficient to show that limn→∞ E[ f ′
z (X) −

X fz(X)] = 0. It is noted that the RHS of (4.4) is exactly zero from the Stein identity
if X ∼ N (0, 1). To this end, we prepare the following lemma.

Lemma 4.1 For any nonnegative function h(·) satisfying E[h(X)] < ∞, it holds that

E[ f ′
h(X) − X fh(X)] =

n∑
i=1

E
[
ξ2i

∫ 1

0
{ f ′

h(X
(i)) − f ′

h(X
(i) + uξi )}du

]
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+ 1

n

n∑
i=1

E[ f ′
h(X

(i) + ξi ) − f ′
h(X

(i))]. (4.5)

Proof The proof is from Chen et al. (2011). From the Taylor series expansion with
integral remainder, it follows that

fh(X
(i) + ξi ) = fh(X

(i)) +
∫ X (i)+ξi

X (i)
f ′
h(t)dt

= fh(X
(i)) + ξi

∫ 1

0
f ′
h(X

(i) + uξi )du. (4.6)

We first write E[X fh(X)] = ∑n
i=1 E[ξi fh(X (i) + ξi )]. From (4.6), E[ξi ] = 0 and

independence of X (i) and ξi , we observe that

E[ξi fh(X (i) + ξi )] = E
[
ξi fh(X

(i)) + ξ2i

∫ 1

0
f ′
h(X

(i) + uξi )du
]

= E
[
ξ2i

∫ 1

0
f ′
h(X

(i) + uξi )du
]
. (4.7)

Since E[ξ2i f ′
h(X

(i))] = E[ξ2i ]E[ f ′
h(X

(i))] = n−1E[ f ′
h(X

(i))], on the other hand, it
can be seen that

E[ f ′
h(X)] =

n∑
i=1

E[n−1 f ′
h(X

(i))] + 1

n

n∑
i=1

E[ f ′
h(X) − f ′

h(X
(i))]

=
n∑

i=1

E[ξ2i
∫ 1

0
f ′
h(X

(i))du] + 1

n

n∑
i=1

E[ f ′
h(X) − f ′

h(X
(i))]. (4.8)

Combining (4.7) and (4.8) yields (4.5) in Lemma 4.1. ��
Hereafter, we consider the specific function hz,α(x), defined by

hz,α(x) =
⎧⎨
⎩
1, x ≤ z,
1 + (z − x)/α, z < x ≤ z + α,

0, x > z + α,

for positive constant α. It is noted that hz,α(x) is absolutely continuous and bounded
as |hz,α(x)| ≤ 1. Let fz,α(x) be the function given in (4.2) for h(x) = hz,α(x).

Lemma 4.2 The function fz,α(x) satisfies that | fz,α(x)| ≤ √
π/2, | f ′

z,α(x)| ≤ 2 and

| f ′
z,α(w + x) − f ′

z,α(w)| ≤ x(
√

π/2 + 2|w|) + d(w, x), (4.9)

where d(w, x) = |hz,α(w + x) − hz,α(w)|.
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Proof For x > 0, from RHS of (4.2), it follows that

| fz,α(x)| ≤
∫ ∞

x
|hz,α(y) − μhz,α |φ(y)dy/φ(x) ≤ 1 − 
(x)

φ(x)
.

Since {1−
(x)}/φ(x) is decreasing, we have {1−
(x)}/φ(x) ≤ {1−
(0)}/φ(0) =√
π/2. For x < 0, it follows from (4.2) that

| fz,α(x)| =
∫ x

−∞
|hz,α(y) − μhz,α |φ(y)dy/φ(x) ≤ 
(x)

φ(x)
.

Since 
(x)/φ(x) is increasing, we have 
(x)/φ(x) ≤ 
(0)/φ(0) = √
π/2. Thus,

| fz,α(x)| ≤ √
π/2.

We next show that | f ′
z,α(x)| ≤ 2. Note that f ′

z,α(x) = x fz,α(x) + hz,α(y) − μhz,α .
For x > 0, it can be demonstrated that

x

x2 + 1
<

1 − 
(x)

φ(x)
<

1

x
,

which is called Mills’ ratio. Then from RHS of (4.2), it follows that

| f ′
z,α(x)| ≤ x | fz,α(x)| + |hz,α(y) − μhz,α | ≤ x

∫ ∞

x
φ(y)dy/φ(x) + 1

= x
1 − 
(x)

φ(x)
+ 1 < 2.

For x < 0, Mills’ ratio implies that

1 − 
(−x)

φ(x)
< −1

x
, or

1

x
<


(x)

φ(x)
,

namely we have x
(x)/φ(x) < 1. Then from RHS of (4.2), it follows that

| f ′
z,α(x)| ≤ x

∫ x

−∞
φ(y)dy/φ(x) + 1 = x


(x)

φ(x)
+ 1 < 2.

Thus, the inequality | f ′
z,α(x)| ≤ 2 is proved.

Finally, it is noted that f ′
z,α(w+ x)− f ′

z,α(w) = (w+ x) fz,α(w+ x)−w fz,α(w)+
hz,α(w + x) − hz,α(w). Since | f ′

z,α(x)| < 2, it can be observed that | fz,α(w + x) −
fz,α(w)| < 2|x |. Since | fz,α(x)| <

√
π/2, we have

| f ′
z,α(w + x) − f ′

z,α(w)|
≤ |x || fz,α(w + x)| + |w|{ fz,α(w + x) − fz,α(w)} + |hz,α(w + x) − hz,α(w)|
≤ |x |√π/2 + 2|w| + d(w, x),

which shows (4.9). ��
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We now show the central limit theorem using Lemmas 4.1 and 4.2. It is first noted
that for Y ∼ N (0, 1),

|P(X ≤ z) − 
(z)| = |E[hz,α(X)] − E[hz,α(Y )] + E[hz,α(Y )] − 
(z)|
≤ 	 + |
(z + α) − 
(z)|,

where	 = |E[hz,α(X)]−E[hz,α(Y )]|. Since |
(z+α)−
(z)| < α/
√
2π , we have

|P(X ≤ z) − 
(z)| ≤ 	 + α/
√
2π. (4.10)

From (4.1), (4.2) and Lemma 4.1, it follows that

	 =
n∑

i=1

E
[
ξ2i

∫ 1

0
{ f ′

z,α(X (i)) − f ′
z,α(X (i) + uξi )}du

]

+ 1

n

n∑
i=1

E[ f ′
z,α(X (i) + ξi ) − f ′

z,α(X (i))]. (4.11)

From (4.9) in Lemma 4.2, it can be seen that

| f ′
z,α(X (i) + ξi ) − f ′

z,α(X (i))| ≤ |ξi |(
√

π/2 + 2|X (i)|) + d(X (i), ξi ). (4.12)

Note that d(X (i), ξi ) = |ξi |/α and (E[|X (i)])2 ≤ E[(X (i))2] = (n − 1)/n < 1. Then,

1

n

n∑
i=1

E[ f ′
z,α(X (i) + ξi ) − f ′

z,α(X (i))] ≤ 1

n

n∑
i=1

E[|ξi |](
√

π/2 + 2 + 1/α)

=
{√

π/2 + 2√
n

+ 1

α
√
n

}∑n
i=1 E[|Xi |]

n
.

Similarly,

n∑
i=1

E
[
ξ2i

∫ 1

0
{ f ′

z,α(X (i)) − f ′
z,α(X (i) + uξi )}du

]

≤
{√

π/2 + 2√
n

+ 1

α
√
n

}∑n
i=1 E[|Xi |3]

n
.

Combining (4.10), (4.11) and these observations gives the following theorem.

Theorem 4.1 For X = ∑n
i=1 Xi/

√
n, it holds that

|P(X ≤ z) − 
(z)| ≤
{√

π/2 + 2√
n

+ 1

α
√
n

}
(μ1 + μ3) + α√

2π
. (4.13)
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Assume that
∑n

i=1 E[|Xi |3]/n converges to a positive constant. Let α = n−1/4. Then,
|P(X ≤ z) − 
(z)| → 0 as n → ∞.

The inequality in (4.17) is improved ifwe use the following concentration inequality
due to Chen et al. (2011).

Lemma 4.3 For any a and b satisfying a < b,

P(a ≤ X (i) ≤ b) ≤ √
2(b − a) + 2(

√
2 + 1)μ3√

n
. (4.14)

In the evaluation of E[d(X (i), ξi )] in (4.12), we can see that for ξi > 0,

E[d(X (i), ξi )|ξi ] ≤ E[I (z − ξi ≤ X (i) < z + α)|ξi ] = P(z − ξi ≤ X (i) < z + α)|ξi ).

From the inequality (4.14), it follows that for all ξi ,

E[d(X (i), ξi )|ξi ] ≤ √
2(|ξi | + α) + 2(

√
2 + 1)μ3√

n
,

which gives

E[| f ′
z,α(X (i)+ξi )− f ′

z,α(X (i))||ξi ]≤|ξi |(
√

π/2 + 2)+√
2(|ξi | + α)+ 2(

√
2 + 1)μ3√

n
.

Thus, the same arguments used above provide the inequality

|P(X ≤ z) − 
(z)| ≤ C(α)√
n

, (4.15)

where

C(α) = (
√

π/2 + 2 + √
2)(μ1 + μ3) + {√2nα + 2(

√
2 + 1)μ3}(1 + μ2) + α

√
n/(2π).

When α = 1/
√
n, we have

C(1/
√
n) = (

√
π/2 + 2 + √

2)(μ1 + μ3) + {√2 + 2(
√
2 + 1)μ3}(1 + μ2) + 1/

√
2π.

The inequality provides a Berry–Esseen-type bound.

4.2 Amethod based on the K-function

Another method based on the K-function is useful for evaluating E[ f ′
h(X)− X fh(X)]

for fh(·) in (4.2). Define Ki (t) by

Ki (t) = E[ξi {I (0 ≤ t ≤ ξi ) − I (ξi ≤ t < 0)}].
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It can be seen that Ki (t) ≥ 0 for t ∈ � and that

∫ ∞

−∞
Ki (t)dt = E[ξ2i ] and

∫ ∞

−∞
|t |Ki (t)dt = 1

2
E[|ξi |3].

Lemma 4.4 For fh(·) in (4.2), it holds that

E[ f ′
h(X) − X fh(X)] =

n∑
i=1

∫ ∞

−∞
E[ f ′

h(X) − f ′
h(X

(i) + t)]Ki (t)dt . (4.16)

Proof Since ξi and X (i) are independent and E[ξi ] = 0, it is observed that
E[X fh(X)] = ∑n

i=1 E[ξi fh(X)] = ∑n
i=1 E[ξi { fh(X)− f (X (i))}], which is rewritten

as

n∑
i=1

E
[
ξi

∫ ξi

0
f ′
h(X

(i) + t)dt
]

=
n∑

i=1

E
[ ∫ ∞

−∞
f ′
h(X

(i) + t)ξi {I (0 ≤ t ≤ ξi ) − I (ξi ≤ t < 0)}dt
]

=
n∑

i=1

E
[ ∫ ∞

−∞
f ′
h(X

(i) + t)Ki (t)dt
]
.

Since
∑n

i=1

∫ ∞
−∞ Ki (t)dt = ∑n

i=1 E[ξ2i ] = 1, we have E[ f ′
h(X)] = ∑n

i=1 E[∫ ∞
−∞ f ′

h
(X)Ki (t)dt]. Combining these observations gives the expression in (4.16). ��

We treat hz(x) = I (x ≤ z) − 
(z) and the function fz(x) given in (4.3). From
(4.1), it follows that

f ′
z (X) − f ′

z (X
(i) + t) = {X fz(X) − (X (i) + t) fz(X

(i) + t)}
+I (z − ξi ∨ t < X (i) < z − ξi ∧ t),

where a ∨ b = max(a, b) and a ∧ b = min(a, b). Similarly to Lemma 4.2, it can be
shown that

(w + u) fz(w + u) − (w + v) fz(w + v)

≤ |w|| fz(w + u) − fz(w + v)|
+ u fz(w + u) − v fz(w + v)

≤ (|w| + √
2π/4)(|u| + |v|),

because | fz(x)| ≤ √
2π/4. Thus,

E[X fz(X) − (X (i) + t) fz(X
(i) + t)|ξi ] ≤ 1 + (

√
2π/4)(|ξi | + t).
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From Lemma 4.3, it follows that

P(z − ξi ∨ t < X (i) < z − ξi ∧ t |xi ) ≤ √
2|ξi − t | + 2(

√
2 + 1)

μ3√
n
.

Hence from Lemma 4.4, we get

n∑
i=1

∫ ∞

−∞
E[ f ′

h(X) − f ′
h(X

(i) + t)]Ki (t)dt

≤
n∑

i=1

∫ ∞

−∞

{
(1 + √

2π/4 + √
2)(E[|ξi |] + |t |) + 2(

√
2 + 1)μ3√

n

}
Ki (t)dt,

which yields the following bound.

Theorem 4.2 For X = ∑n
i=1 Xi/

√
n, it holds that

|P(X ≤ z) − 
(z)|
≤ (1 + √

2 + √
2π/4)(μ1μ2 + μ3/2) + 2(1 + √

2)μ3√
n

. (4.17)

Chen and Shao (2001) derived amore refined concentration inequality and obtained
the improved bound given by

|P(X ≤ z) − 
(z)| ≤ 4.1(β2 + β3), (4.18)

where β2 = ∑n
i=1 E[ξ2i I (|ξi | > 1)] and β3 = ∑n

i=1 E[ξ3i I (|ξi | ≤ 1)]. This corre-
sponds to the Lindeberg’s condition. In fact, let X1, . . . , Xn be independent random
variables with E[Xi ] = 0 and Var(Xi ) = σ 2

i . Let Sn = ∑n
i=1 Xi and B2

n = ∑n
i=1 σ 2

i .
Then, ξi and X correspond to ξi = Xi/Bn and X = Sn/Bn . It is observed that for any
ε > 0,

β2 + β3 = 1

B2
n

n∑
i=1

E[X2
i I (|Xi | > Bn)] + 1

B3
n

n∑
i=1

E[X3
i I (|Xi | ≤ Bn)]

≤ 1

B2
n

n∑
i=1

E[X2
i I (|Xi | > Bn)] + 1

B3
n

n∑
i=1

BnE[X2
i I (εBn ≤ |Xi | ≤ Bn)]

+ 1

B3
n

n∑
i=1

εBnE[X2
i I (|Xi | ≤ εBn)]

≤ 1

B2
n

n∑
i=1

E[X2
i I (|Xi | > εBn)] + ε.
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Thus from (4.18), it follows that

|P(Sn/Bn ≤ z) − 
(z)| ≤ 4.1
{ 1

B2
n

n∑
i=1

E[X2
i I (|Xi | > εBn)] + ε

}
,

which converges to zero if the Lindeberg condition

lim
n→∞

1

B2
n

n∑
i=1

E[X2
i I (|Xi | > εBn)] = 0

is satisfied.

5 Stein-type identities in gamma and exponential distributions

5.1 Stein-type identities and characterization of gamma and exponential
distributions

We treat the gamma distribution Ga(α, β) with the density function

f (x |α, β) = 1

�(α)βα
xα−1e−x/β, x > 0,

where α and β are positive parameters. Hudson (1978) derived the Stein-type identity
in the gamma distribution, and Betsch and Ebner (2019) showed that the identity
characterizes the gamma distribution.

Theorem 5.1 Let X be a positive random variable with E[X ] = αβ and Var(X) =
αβ2. Then, the following four conditions are equivalent.

(a) X ∼ Ga(α, β).
(b) For any differentiable function h(·)withE[|Xh(X)|] < ∞ andE[|Xh′(X)|] < ∞,

it holds that

E[(X − αβ)h(X)] = βE[Xh′(X)]. (5.1)

(c) For real constant t with t < 1/β, it holds that

E[(X − αβ) exp{t X}] = tβE[X exp{t X}]. (5.2)

(d) g(t) = E[exp{t X}] satisfies the differential equation

d

dt
log{g(t)} = αβ

1 − tβ
or

d2

dt2
log{g(t)} = αβ2

(1 − tβ)2
. (5.3)
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Proof For the proof from (a) to (b), the identity (5.1) can be derived by integration by
parts, because β(d/dx) f (x |α, β) = −(x − αβ) f (x |α, β). We here provide another
approach. Making the transformation y = x/β gives the expression

E[h(X)] =
∫ ∞

0
h(x)

1

�(α)βα
xα−1e−x/βdx =

∫ ∞

0
h(β y)

1

�(α)
xα−1e−ydy.

Differentiating both sides with respect to β, we have

∫ ∞

0
h(x)

( x

β2 − α

β

) 1

�(α)βα
xα−1e−x/βdx =

∫ ∞

0
yh′(β y) 1

�(α)
xα−1e−ydy

=
∫ ∞

0

x

β
h′(x) 1

�(α)βα
xα−1e−x/βdx,

which leads to (5.1). Clearly, one gets (c) from (b). For the proof from (c) to (d), the
identity (5.2) is written as g′(t) − αβg(t) = tβg′(t), which is expressed as (5.3). For
the proof from (d) to (a), the solution of the differential equation in (5.3) is log g(t) =
−α log(1 − tβ), namely g(t) = (1 − tβ)−α , which implies that X ∼ Ga(α, β). ��

Wehere provide some conditions for characterizing gammadistributions. Condition
(c) in Theorem 5.2 is due to Lukacs (1955). See also Kagan et al. (1973) and Kotz
(1974).

Theorem 5.2 Assume that independent positive random variables X1 and X2 are iden-
tically distributed with E[Xi ] = αβ and Var(Xi ) = αβ2. Then the following three are
equivalent.

(a) Xi ∼ Ga(α, β) for i = 1, 2.
(b) X1 + X2 ∼ Ga(2α, β).
(c) X1 + X2 and X1/(X1 + X2) are independent.

Proof Since one gets clearly (b) and (c) from (a), it is sufficient to demonstrate the
opposite directions. For the proof from (b) to (a), the condition in (b) and Theo-
rem 5.1(c) implies that

E[(X1+X2−2αβ) exp{t(X1+X2)}]=βtE[(X1+X2) exp{t(X1+X2)}]. (5.4)

From the independence of X1 and X2, equality (5.4) is rewritten as

E[(X1 − αβ) exp{t X1}]E[exp{t X2}] = βtE[X1 exp{t X1}]E[exp{t X2}],

which, from Theorem 5.1, shows that Xi ∼ Ga(α, β).
The proof from (c) to (a) can be done along with the proof of Lukacs (1955). From

the independence of X1 + X2 and X1/(X1 + X2), it follows that

E
[
exp

{
s(X1 + X2) + t

X1

X1 + X2

}]
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= E[exp{s(X1 + X2)}]E
[
exp

{
t

X1

X1 + X2

}]
. (5.5)

Differentiating both sides twise with respect to s and t and putting t = 0, we have

E
[
X2
1 exp

{
s(X1 + X2)

}]

= E[(X1 + X2)
2 exp{s(X1 + X2)}]E

[( X1

X1 + X2

)2]
. (5.6)

Let a = E[X2
1/(X1 + X2)

2] and g(s) = E[exp{sX1}]. Then,

E[(X1 + X2)
2 exp{s(X1 + X2)}] = E[(X2

1 + X2
2 + 2X1X2) exp{s(X1 + X2)}]

= 2g′′(s)g(s) + 2{g′(s)}2,

which rewrite (5.6) as

g′′(s)g(s) = 2a[g′′(s)g(s) + {g′(s)}2] or (1 − 2a)g′′(s)g(s) = {g′(s)}2. (5.7)

Let ψ(s) = g′(s)/g(s), and we have ψ ′(s) = g′′(s)/g(s) − {ψ(s)}2. The equality
(5.7) is expressed as

(1 − 2a)[ψ ′(s) + {ψ(s)}2] = {ψ(s)}2 or (1 − 2a)ψ ′(s) = 2a{ψ(s)}2.

The solution of the differential equation is

− 1

ψ(s)
= 2a

1 − 2a
s − c0 or ψ(s) = 1

c0 − bs

for b = 2a/(1 − 2a) and constant c0. Since ψ(s) = (d/ds) log g(s), we have

log g(s) = −1

b
log(c0 − bs) + log c1 or g(s) = c1

(c0 − bs)1/b
.

Since g(0) = 1, g′(0) = αβ and g′′(0) = αβ(1 + β), constants satisfy c1/c
1/b
0 = 1,

c1/c
1+1/b
0 = αβ and c1(1 + b)/c2+1/b

0 = α(α + 1)β2, which gives c0 = (αβ)−1,
c1 = (αβ)−α and b = 1/α. This yields g(s) = (1 − βs)−α , which means that
Xi ∼ Ga(α, β) for i = 1, 2. ��

Condition (b) can be easily extended to the case of a sample with size n. Such an
extension of condition (c) was done by Khatri and Rao (1968).

The exponential distribution Ex(λ) corresponds to the case of α = 1 and β = 1/λ.
The characterization problem of the exponential distribution has been studied in the
literature. Of these, Shanbhag (1970a) showed that memoryless property characterizes
the exponential distribution: X ∼ Ex(λ) if and only if for any x, y > 0,

P(X > x + y|X > y) = P(X > x) or P(X > x + y) = P(X > x)P(X > y).
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In fact, log P(X > x + y) = log P(X > x) + log P(X > y) implies that log P(X >

x) = −cx for c > 0, namely P(X > x) = exp(−cx), which means that X has an
exponential distribution. For independently and identically distributed positive random
variables X1 and X2, Ferguson (1964) proved that Xi has an exponential distribution
if and only if min(X1, X2) is independent of X1 − X2.

5.2 Shrinkage estimation

The Stein identity is useful for obtaining improved shrinkage estimators in simul-
taneous estimation in gamma distributions. Let X1, . . . , X p be independent random
variables such that Xi ∼ Ga(αi , βi ), i = 1, . . . , p. We first consider the simulta-
neous estimation of α = (α1, . . . , αp)


 in the case of β1 = · · · = βp = 1. When
estimator α̂ = (̂α1, . . . , α̂p)


 is evaluated by the risk relative to the quadratic loss∑p
i=1(̂αi − αi )

2, Hudson (1978) suggested the shrinkage estimator

α̂S
i = Xi − p − 2∑p

j=1(log X j )2
log Xi . (5.8)

Theorem 5.3 For p ≥ 3, the risk functions have the relation

E[‖X − α‖2] = E[‖α̂S − α‖2] + E[‖X − α̂S‖2],
which is interpreted as the Pythagorean triangle among X , α and α̂S.

Proof The estimator in (5.8) has the risk

E[‖α̂S − α‖2] = E[‖X − α‖2] − 2
p∑

i=1

E
[
(Xi − αi )

p − 2∑p
j=1(log X j )2

log Xi

]

+E
[ (p − 2)2∑p

j=1(log X j )2

]
.

The Stein-type identity in (5.1) gives E[(Xi − αi )h(Xi )] = E[Xih′(Xi )] for

h(Xi ) = p − 2∑p
j=1(log X j )2

log Xi .

Noting that

Xi
∂h(Xi )

∂Xi
= p − 2∑p

j=1(log X j )2
− 2(p − 2)(log Xi )

2

{∑p
j=1(log X j )2}2

,

we can see that

p∑
i=1

Xi
∂h(Xi )

∂Xi
= (p − 2)p∑p

j=1(log X j )2
− 2(p − 2)

∑p
i=1(log Xi )

2

{∑p
j=1(log X j )2}2

= (p − 2)2∑p
j=1(log X j )2

.
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Table 3 Risks of the estimators X and α̂S for p = 3, 6 and α = (k/3)I

k p = 3
1 2 3 4 5 6 7 8 9 10

X 1.00 2.00 2.98 4.01 4.99 6.00 6.98 8.02 9.00 9.96

α̂S 0.94 1.61 2.16 2.92 3.87 5.03 6.23 7.44 8.57 9.63

k p = 6
1 2 3 4 5 6 7 8 9 10

X 2.01 3.99 5.99 7.96 10.0 12.0 14.3 16.0 18.3 20.0

α̂S 1.74 2.79 3.21 3.77 5.30 7.59 10.3 13.0 15.5 17.9

Thus,

p∑
i=1

E
[
(Xi − αi )

p − 2∑p
j=1(log X j )2

log Xi

]
= E

[ (p − 2)2∑p
j=1(log X j )2

]
,

which is used to rewrite the risk as

E[‖α̂S − α‖2] = E[‖X − α‖2] − E
[ (p − 2)2∑p

j=1(log X j )2

]
.

This shows that the estimator α̂S improves on X for p ≥ 3. Since (p − 2)2/∑p
j=1(log X j )

2 = ‖X − α̂S‖2, the above risk function expresses the Pythagorean
triangle. ��

The risk performances of the estimators X and α̂S are investigated by simulation
with 10, 000 replications and the average values of the risks are reported in Table 3 for
p = 3, 6, β = 1 and α = (k/3)I , k = 1, . . . , 10. Table 3 shows that the improvement
of the shrinkage estimator α̂S over X is significant in the case of p = 6.

We next consider the simultaneous estimation of β = (β1, . . . , βp) for known
common α1 = · · · = αp = α, where estimator β̂ = (β̂1, . . . , β̂p) is evaluated by
the risk relative to the quadratic loss

∑p
i=1(β̂i − βi )

2. This estimation problem was
studied by Berger (1980), Das Gupta (1986) and others. Das Gupta (1986) suggested

the shrinkage estimator β̂
S = (β̂S

1 , . . . , β̂S
p) with

β̂S
i = 1

α + 1
Xi + cV , V =

( p∏
j=1

X j

)1/p
, (5.9)

and derived a condition for improving on β̂0 = X/(α + 1).

Theorem 5.4 When p ≥ 2, the estimator β̂
S
improves on β̂0 relative to the quadratic

loss if

0 < c ≤ 2(p − 1)

(α + 1)(α p + 1)
.
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Table 4 Risks of the estimators β̂0 and β̂
S
for p = 2, 6, α = 1 and β = (k/3)I

k p = 2
1 2 3 4 5 6 7 8 9 10

β̂0 0.11 0.45 1.00 1.78 2.78 4.01 5.44 7.10 8.99 11.15

β̂
S

0.10 0.41 0.93 1.65 2.57 3.71 5.03 6.55 8.29 10.33

k p = 6
1 2 3 4 5 6 7 8 9 10

β̂0 0.33 1.33 3.00 5.34 8.35 12.0 16.3 21.3 27.0 33.3

β̂
S

0.25 1.00 2.24 4.01 6.26 8.99 12.2 15.9 20.2 25.0

Proof The risk function of the estimator (5.9) is

E[‖β̂S − β‖2] = E[‖β̂0 − β‖2] + 2
p∑

i=1

E
[( Xi

α + 1
− βi

)
cV

]
+ pE[c2V 2].

The Stein-type identity in (5.1) gives

E[XiV ] = βiE
[
αV + Xi

∂V

∂Xi

]
= βi

α p + 1

p
E[V ],

because ∂V /∂Xi = V /(pXi ). Thus, the risk difference is written as

	 = E[‖β̂S − β‖2] − E[‖β̂0 − β‖2] =
p∑

i=1

E
[
2

c

α + 1
V Xi − 2

cp

α p + 1
V Xi + pc2V 2

]

= cE
[

− 2
(p − 1)p

(α + 1)(α p + 1)
XV + pcV 2

]
≤ cE

[
− 2

(p − 1)p

(α + 1)(α p + 1)
V 2 + pcV 2

]
,

because X ≥ V . This shows that 	 ≤ 0 under the condition in Theorem 5.4. ��
The risk performances of the estimators β̂0 and β̂

S
are investigated by simulation

with 10, 000 replications and the average values of the risks are reported in Table 4 for
p = 2, 6, α = 1 and β = (k/3)I , k = 1, . . . , 10. From the table, the improvement of

the shrinkage estimator β̂
S
over β̂0 is numerically confirmed.

5.3 Goodness-of-fit tests for exponentiality

We consider to construct a statistic for testing exponentiality using the Stein identity.
Goodness-of-fit tests for exponentiality have been studied in the literature. For some
good reviews, see Henze and Meintanis (2005) and Ossai et al. (2022). The idea of
constructing test statistics for exponentiality based on the Stein identity appears in
Betsch and Ebner (2019) and Henze et al. (2012).
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Let X1, . . . , Xn be a positive random sample from a distribution function F(·)
with E[Xi ] = σ . Consider the problem of testing the exponentiality of the underlying
distribution H0 : F = Ex(1/σ) = Ga(1, σ ). From Theorem 5.1, the characterization
of exponential distributions is

E
[
{(1 − t)X/σ − 1}et X/σ

]
= 0,

and the sample counterpart is wt/
√
n, where

wt = 1√
n

n∑
i=1

{(1 − t)Yi − 1}etYi (5.10)

for Yi = Xi/X . It is noted thatwt is invariant under the transformation of scale. Henze
et al. (2012) suggested a couple of test statistics based on wt , one of which is

HMEγ =
∫ 0

−∞
w2
t e

γ tdt = 1

n

n∑
i=1

n∑
j=1

{ Bi j − Ai j + 1

Ai j + γ
+ 2Bi j − Ai j

(Ai j + γ )2
+ 2Bi j

(Ai j + γ )3

}
,

where Ai j = Yi+Y j and Bi j = YiY j . Similarly to the problem of testing normality, we

can consider the test statistics IST+
c = ∫ c

0 w2
t dt , IST

−
c = ∫ 0

−c w2
t dt , ISTc = ∫ c

−c w2
t dt

and MSTc = sup−c<t<c |wt | for positive constant c, where

IST+
c = 1

n

n∑
i=1

n∑
j=1

[{
c
(
c − 2 − 2

Ai j

)
ecAi j −

(
1 + 2

Ai j
+ 2

A2
i j

)
(1 − ecAi j )

} Bi j
Ai j

+ (c − 1)ecAi j + 1
]
,

IST−
c = 1

n

n∑
i=1

n∑
j=1

[{
− c

(
c + 2 + 2

Ai j

)
e−cAi j +

(
1 + 2

Ai j
+ 2

A2
i j

)
(1 − e−cAi j )

} Bi j
Ai j

+ (c + 1)e−cAi j − 1
]
,

ISTc = 1

n

n∑
i=1

n∑
j=1

[{(
c2 + 1 + 2

Ai j
+ 2

A2
i j

)
(ecAi j − e−cAi j )

− 2c

Ai j

(
1 + 1

Ai j

)
(ecAi j + e−cAi j )

} Bi j
Ai j

− ecAi j + e−cAi j + c(ecAi j + e−cAi j )
]
.

The following lemma is helpful for investigating asymptotic properties of these test
statistics.

Lemma 5.1 Let Zi = Xi/σ for i = 1, . . . , n. Let h0(t) = E[{(1 − t)Z1 − 1}et Z1]
and h1(t) = (1 − 2t)E[Z1et Z1 ] + t(1 − t)E[Z2

1e
t Z1 ]. Then, wt is approximated as
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wt = Wn(t) + √
nh0(t) + op(1), where

Wn(t) = 1√
n

n∑
i=1

[
{(1 − t)Zi − 1}et Zi − h0(t) − (Zi − 1)h1(t)

]
. (5.11)

Proof Letting Z = n−1 ∑n
i=1 Zi , we rewrite wt as

wt = 1√
n

n∑
i=1

{(1 − t)Zi/Z − 1}et Zi /Z .

Since Zi/Z = Zi/{1+ (Z − 1)} = 1− (Z − 1) + Op(n−1), wt can be approximated
as

wt = 1√
n

n∑
i=1

{(1 − t)Zi − (1 − t)(Z − 1)Zi − 1 + Op(n
−1)}et Zi−t(Z−1)Zi+Op(n−1)

= 1√
n

n∑
i=1

{(1 − t)Zi − 1 − (1 − t)(Z − 1)Zi }{1 − t(Z − 1)Zi }et Zi + op(1)

= 1√
n

n∑
i=1

{
(1 − t)Zi − 1 − (1 − 2t)(Z − 1)Zi − t(1 − t)(Z − 1)Z2

i

}
et Zi + op(1),

which leads to the approximation wt = Wn + √
nh0(t) + op(1). Hence, Lemma 5.1

is proved. ��
From (5.11), the central limit theorem shows that Wn(t) is asymptotically dis-

tributed as the normal distribution with mean zero and variance Var(Wn(t)) under the
assumption of E[Z2

1e
2t Z1 ] < ∞, where the variance can be evaluated as

Var(Wn(t)) = E[{(1 − t)Z1 − 1}2e2t Z1] − h0(t)
2 + h1(t)

2(E[Z2
1] − 1)

− 2h1(t)E[(Z1 − 1){(1 − t)Z1 − 1}et Z1 ] + o(1).

Note that h0(t) = (1−t)g′(t)−g(t) for g(t) = E[et Z1 ]. Then, h1(t) = (1−2t)g′(t)+
t(1 − t)g′′(t) = th′

0(t) + {h0(t) + g(t)}/(1 − t) and

E[(Z1 − 1){(1 − t)Z1 − 1}et Z1] = h′
0(t) + t

1 − t
h0(t) + 1

1 − t
g(t).

Under the exponentiality hypothesis H0, we have g(t) = 1/(1 − t), h0(t) = 0,
h1(t) = g(t)/(1 − t) = 1/(1 − t)2 and E[Z2

1] = 2. Also note that

E[{(1 − t)Z1 − 1}2e2t Z1 ] = (1 − t)2E[Z2
1e

2t Z1 ] − 2(1 − t)E[Z1e
2t Z1 ] + E[e2t Z1]

= 2(1 − t)2

(1 − 2t)3
− 2

1 − t

(1 − 2t)2
+ 1

1 − 2t
= (1 − t)2 + t2

(1 − 2t)3
.
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Thus, the asymptotic variance ofwt under the exponentiality is Var(Wn(t)) = V (t)2+
o(1), where

V (t)2 = (1 − t)2 + t2

(1 − 2t)3
− 1

(1 − t)4

for 0 < t < 1/2.
Henze et al. (2012) showed the consistency of HMEγ . Using Lemma 5.1 and the

same arguments as in the proof of Theorem 3.3, we can verify the consistency of the
suggested test statistics.

Theorem 5.5 Assume that E[Z2
1e

t Z1 ] < ∞ for t around zero. Then, the test statistics
IST+

c , IST
−
c , ISTc and MSTc given below (5.10) are consistent.

We investigate the performances of powers of the suggested estimators IST+
c , IST

−
c ,

ISTc andMSTc = sup−c<t<c |wt | for c = 0.1.As competitors, we treat the test HMEγ

of Henze et al. (2012) for γ = 1 and two more simple test statistics. One of them is
the Cox and Oakes (1984) test

CO =
√
6√
nπ

{
n +

n∑
i=1

(
1 − Xi

X

)
log

( Xi

X

)}
,

and the hypothesis H0 is rejected when |CO| > zα/2. Another test is based on the

coefficient of variation HS = nS2/X
2
, given in Hahn and Shapiro (1967), and the

hypothesis H0 is rejected when HS < χ2
n−1,1−α/2 or HS > χ2

n−1,α/2. This is also
derived from a likelihood ratio for testing the homogeneity H∗

0 : λ1 = · · · = λn for
Xi ∼ Ex(λi ), and the null hypothesis H∗

0 is rejected when HS > χ2
n−1,α .

The powers of those test statistics are examined by simulation with 10,000 repli-
cation. For n = 50, we adjust the type-I errors before calculating their powers under
the following three alternatives for w = 0.2, 0.5, 0.8, 1.0.

M1 : Xi = (1 − w)Ex(1) + wGa(1.2, 0.8),

M2 : Xi = (1 − w)Ex(1) + wLogN (0, 1),

M3 : Xi = (1 − w)Ex(1) + w I nvG(1, 1),

where Ex(1),Ga(a, b), LogN (0, 1) and I nvG(0, 1) denote random variables having
exponential distribution Ex(1), gamma distribution Ga(a, b), log normal distribution
LogN (0, 1) and inverse Gaussian distribution I nvG(1, 1), respectively. The values
of their powers are reported in Table 5. From the table, it is observed that the tests
IST0.1, HME1 and CO are more powerful for w = 0.2, 0.5 and 0.8 in M1, M2 and
M3. In the case of w = 1, the test IST0.1 is most powerful for Ga(1.2, 0.8), the tests
IST+

0.1, IST
−
0.1, MST0.1 and HS are more powerful for LN (0, 1) and the tests IST0.1,

HME1 and CO are more powerful for I nvG. Overall, the tests IST0.1, HME1 and CO
have similar performances and the tests IST+

0.1, IST
−
0.1, MST0.1 and HS are similarly

performed.
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Table 5 Power of the five tests for n = 50 and w = 0.2, 0.5, 0.8, 1.0

w M1 : Ga(1.2, 0.8) M2 : LogN (0, 1) M3 : I nvG(1, 1)
0.0 0.2 0.5 0.8 1.0 0.2 0.5 0.8 1.0 0.2 0.5 0.8 1.0

IST+
0.1 5.0 34.4 71.7 24.3 4.9 25.1 33.7 24.2 34.9 19.0 62.5 33.0 12.3

IST−
0.1 5.0 50.5 84.8 38.8 8.1 39.4 44.5 24.8 32.3 28.4 75.2 43.3 12.9

IST0.1 5.0 88.4 98.9 79.7 22.8 77.7 78.6 37.1 7.2 69.5 98.2 87.7 35.5

MST0.1 5.0 32.2 69.2 22.4 4.5 24.0 32.8 24.2 35.1 16.7 59.0 30.2 11.9

HME1 5.0 84.0 97.9 72.3 14.2 76.3 85.0 49.2 18.3 64.6 98.5 93.1 40.7

HS 5.0 53.3 86.1 41.3 9.9 41.9 46.0 26.2 32.3 31.1 76.3 44.5 14.0

CO 5.0 86.1 98.4 76.0 14.3 79.7 80.7 43.4 14.6 70.2 98.9 90.6 41.9

6 Stein-type identities in Poisson and negative binomial distributions

6.1 Stein-type identity in Poisson distributions

In the Poisson distribution Po(λ), Hudson (1978) provided the Stein-type identity,
which is also characterizes the Poisson distribution as seen below.

Theorem 6.1 Let X be a non-negative and discrete random variable with E[X ] = λ.
Then, the following four conditions are equivalent.

(a) X ∼ Po(λ).
(b) For any function h(·) with E[|Xh(X)|] < ∞, it holds that

E[λh(X)] = E[Xh(X − 1)] or E[Xh(X)] = E[λh(X + 1)] (6.1)

(c) For any real constant t , it holds that

E[(X − λet )et X ] = 0. (6.2)

(d) g(t) = E[exp{t X}] satisfies the differential equation
d

dt
log{g(t)} = λet . (6.3)

Proof For the proof from (a) to (b), it is noted that

λ
λx

x ! e
−λ = (x + 1)

λx+1

(x + 1)!e
−λ,

which produces the identity (6.1). Clearly, one gets (c) from (b). For the proof from
(c) to (d), the identity (6.2) is written as g′(t) = λet g(t), which is given in (6.3).
For the proof from (d) to (a), the solution of the differential equation in (6.3) is
g(t) = exp{λ(et − 1)}, which implies that X ∼ Po(λ). ��
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The characterization of the Poisson distribution has been studied in a lot of papers.
A feature of this distribution is that the sample mean and the unbiased sample vari-
ance have the same expectation. Shanbhag (1970b) derived the related condition for
characterizing the Poisson distribution.

Theorem 6.2 Assume that nonnegative and discrete random variables X1 and X2 are
independently and identically distributed. Then, the following three conditions are
equivalent.

(a) Xi ∼ Po(λ) for i = 1, 2.
(b) X1 + X2 ∼ Po(2λ).
(c) The conditional expectation of (X1 − X2)

2 given X1 + X2 is equal to X1 + X2,
namely E[(X1 − X2)

2|X1 + X2] = X1 + X2.

Proof The proof from (a) to (b) is trivial. For the proof from (b) to (a), from Theo-
rem 6.1, we have

E[(X1 + X2 − 2λet )et(X1+X2)] = 0,

which easily leads to

2E[(X1 − λet )et X1 ]E[et X2 ] = 0.

Thus, we get (a) by using Theorem 6.1 again.
For the proof from (a) to (c), it is noted that E[(X1−X2)

2] = 2λ and E[X1+X2] =
2λ, namely

E[(X1 − X2)
2 − (X1 + X2)] = 0.

Since X1 + X2 is complete and sufficient, from E[E[(X1 − X2)
2|X1 + X2] − (X1 +

X2)] = 0, it follows that E[(X1 − X2)
2|X1 + X2] − (X1 + X2) = 0, and we get (c).

For the proof from (c) to (a), it is noted that condition (c) implies

E[(X1 − X2)
2et(X1+X2)] = E[(X1 + X2)e

t(X1+X2)]. (6.4)

It is observed that

E[(X1 − X2)
2et(X1+X2)] = E[(X2

1 + X2
2 − 2X1X2)e

t(X1+X2)]
= 2E[X2

1e
t X1 ]E[et X2 ] − 2E[X1e

t X1 ]E[X2e
t X2 ],

E[(X1 + X2)e
t(X1+X2)] = 2E[X1e

t X1 ]E[et X2 ].

Then from (6.4), for g(t) = E[et X1 ], we have

g′′(t)g(t) − {g′(t)}2 = g′(t)g(t) or
g′′(t)g(t) − {g′(t)}2

{g(t)}2 = g′(t)
g(t)

.
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Letψ(t) = g′(t)/g(t), and this equality is expressed asψ ′(t) = ψ(t). The solution of
this differential equation is logψ(t) = t + log c0, namely ψ(t) = c0et . This implies
that log g(t) = c0et + log c1, or g(t) = c1 exp{c0et }. Since g(0) = c1ec0 = 1 or
c1 = e−c0 , we get g(t) = exp{c0(et − 1)}, which leads to the Poisson distribution. ��

Theorem 6.2 can be extended to the case of a random sample with size n, where
condition (c) is replaced by E[(n − 1)−1 ∑n

i=1(Xi − X)2|X ] = X .

6.2 Two applications of the Stein-type identity in Poisson distributions

We here provide two applications of the Stein-type identity in Poisson distributions.
One of them is to obtain improved shrinkage estimators in simultaneous estimation
in Poisson distributions. Let X1, . . . , X p be independent random variables such that
Xi ∼ Po(λi ), i = 1, . . . , p. Consider the problem of simultaneously estimating
λ = (λ1, . . . , λp) relative to the loss

∑p
i=1(λ̂i −λi )

2/λi . Clevenson and Zidek (1975)
constructed a class of estimators improving on X , given by λ̂φ = (λ̂φ,1, . . . , λ̂φ,p)

for

λ̂φ,i = Xi − φ(Z)

Z + p − 1
Xi , Z =

p∑
j=1

X j . (6.5)

Theorem 6.3 The unbiased risk estimator of the shrinkage estimator λ̂φ is

̂R(λ, λ̂φ) = p − 2Z

Z + p − 1
{φ(Z + 1) − φ(Z)} − 2(p − 1)φ(Z + 1)

Z + p − 1
+ φ2(Z + 1)

Z + p
.

Thus, for p ≥ 2, λ̂φ improves on X if φ(·) satisfies the conditions (a) φ(z) is nonde-
creasing in z, and (b) 0 ≤ φ(z) ≤ 2(p − 1).

Proof The risk function of λ̂φ is

R(λ, λ̂φ) = p − 2
p∑

i=1

E
[( Xi

λi
− 1

) Xiφ(Z)

Z + p − 1

]
+

p∑
i=1

E
[ X2

i

λi

φ2(Z)

(Z + p − 1)2

]
.

From the Stein identity in Theorem 6.1, we use the identity E[(Xi/λi )h(Xi )] =
E[h(Xi + 1)] to write

p∑
i=1

E
[ Xi

λi

Xiφ(Z)

Z + p − 1

]
=

p∑
i=1

E
[ (Xi + 1)φ(Z + 1)

Z + p

]
= E[φ(Z + 1)],

p∑
i=1

E
[ X2

i

λi

φ2(Z)

(Z + p − 1)2

]
=

p∑
i=1

E
[ (Xi + 1)φ2(Z + 1)

(Z + p)2

]
= E

[φ2(Z + 1)

Z + p

]
.

These observations give the expression in the unbiased risk estimator. ��
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In the case of φ(z) = p−1, the estimator λ̂
S = X−(p−1)(Z+ p−1)−1X has the

risk unbiased estimator R̂(λ, λ̂
S
) = p− (p− 1)2(Z + p+ 1)/{(Z + p− 1)(Z + p)}.

Clevenson and Zidek (1975) showed that the Bayes estimator λ̂
GB = X − (p − 1 +

β)(Z + p − 1 + β)−1X satisfies the conditions of Theorem 6.3 for 0 ≤ β ≤ p − 1
and it is admissible for β > 1. Numerical investigation of the estimator λ̂

CZ
is given

in Table 7.
We next consider to derive goodness-of fit test statistics for Poissonity based on

the Stein identity. The problem of testing Poissonity has been studied in the literature,
and one can see Mijburgh and Visagie (2020) for an overview.

Let X1, . . . , Xn be a discrete and nonnegative random sample from a population
with distribution function F(·)with mean E[Xi ] = λ. Consider the problem of testing
the Poissonity of the underlying distribution H0 : F = Po(λ). From Theorem 6.1,
the characterization of the Poisson distribution is

E
[
(X − λet )et X

]
= 0,

and the sample counterpart is wt/
√
n, where

wt = 1√
n

n∑
i=1

(Xi − Xet )et Xi . (6.6)

The idea of Henze et al. (2012) is used to construct the test statistic

BHTγ =
∫ 0

−∞
w2
t e

γ tdt = 1

n1

n∑
i=1

n∑
j=1

{ Bi j
Ai j + γ

− X Ai j

Ai j + 1γ

+ X
2

Ai j + 2 + γ

}

for Ai j = Xi + X j , Bi j = Ai X j and positive constant γ . This was suggested by
Treutler (1995) and the related test was proposed by Baringhaus and Henze (1992).
For other test statistics, see Gürtler and Henze (2000). Similarly to the problem of
testing exponentiality, we can consider the test statistics

ISTc =
∫ 0

−c
w2
t e

tdt = 1

n

n∑
i=1

n∑
j=1

{ Bi j
Ai j + 1

(1 − e−cAi j ) − X Ai j

Ai j + 2
(1 − e−cAi j−2c)

+ X
2

Ai j + 3
(1 − e−cAi j−3c)

}
,

and MSTc = sup−c<t<0 |wt | for positive constant c.
It is observed that wt can be approximated as

wt = 1√
n

n∑
i=1

(Xi − λet )et Xi − (X − λet )
1√
n

n∑
i=1

et Xi
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= √
n
{1
n

n∑
i=1

(Xi − λet )et Xi − h0(t)
}

+ √
nh0(t) + √

n(X − λ)et g(t) + op(1),

where h0(t) = E[(X1 − λet )et X1 ] and g(t) = E[et X1 ]. This gives the following
lemma.

Lemma 6.1 wt is approximated as wt = Wn(t) + √
nh0(t) + op(1), where

Wn(t) = 1√
n

n∑
i=1

{
(Xi − λet )et Xi − h0(t) − (Xi − λ)et g(t)

}
. (6.7)

From the central limit theorem, it follows that Wn(t) converges in distribution to
the normal distribution with mean zero and the variance

Var(Wn(t)) = E[(X1 − λet )2e2t X1 ] − h0(t)
2 + (E[X2

1] − λ2)e2t g(t)2

− 2{E[X1(X1 − λet )et X1 ] − λh0(t)}et g(t) + o(1).

Since h0(t) = g′(t) − λet g(t), we have h′
0(t) = g′′(t) − λet g′(t) − λet g(t), so that

E[X1(X1−λet )et X1 ] = g′′(t)−λet g′(t) = h′
0(t)+λet g(t). Under the null hypothesis

H0 of Poissonity, it can be seen that g(t) = exp{λ(et − 1)}, h0(t) = 0 and

E[(X1 − λet )2e2t X1 ] = λ{λ(et − 1)2 + 1}e2t exp{λ(e2t − 1)},

so that Var(Wn(t)) = V (t)2 + o(1), where

V (t)2 = λe2t
[
{λ(et − 1)2 + 1} exp{λ(e2t − 1)} − exp{2λ(et − 1)}

]
.

Using Lemma 6.1 and the same arguments as in the proof of Theorem 3.3, we can
verify the consistency of the suggested test statistics.

Theorem 6.4 Assume that E[X2
1e

t X1 ] < ∞ for t around zero. Then, the test statistics
BHTγ , ISTc and MSTc given below (6.6) are consistent.

We investigate the performances of powers of the test statistics BHTγ for γ = 1,
ISTc for c = 1 and MSTc for c = 1. As a competitor, we employ the test based on
Fisher’s index, given by FI = (n − 1)S2/X . The null hypothesis H0 is rejected when
FI > χ2

n−1,1−α/2 or FI > χ2
n−1,α/2. The simulation experiments are conducted under

the following two alternatives for α = 0, 2, 3, 4, 5 and λ = 1, 3.

M1 : Xi = Po(λ) + αNbin(10, 10/10.2),

M2 : Xi = Po(λ) + αPo(0.2),

M3 : Xi = Po(λ) + αBin(10, 0.1),

where Po(λ), Po(0.2), Nbin(10, 10/10.2) and Bin(10, 0.1) denote independent
random variables having Poisson distributions Po(λ), Po(1.5), negative binomial
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Table 6 Sizes and powers of the four tests for n = 50 and α = 0, 2, 3, 4, 5

α M1 (λ = 1) M1 (λ = 3)
0 2 3 4 5 0 2 3 4 5

BHT1 3.7 38.8 83.2 97.2 99.5 4.9 9.1 24.9 52.8 79.3

IST1 4.1 39.8 85.2 97.7 99.7 4.8 9.4 26.1 54.3 80.3

MST1 3.9 40.4 85.9 98.1 99.8 4.3 10.5 30.5 64.7 85.6

FI 4.8 27.0 77.5 97.8 99.9 3.9 9.0 30.8 67.9 88.2

α M2 (λ = 1) M2 (λ = 3)
0 2 3 4 5 0 2 3 4 5

BHT1 5.4 36.5 82.1 97.0 99.7 4.9 9.6 27.2 56.7 79.9

IST1 5.1 38.1 83.8 97.5 99.7 5.1 9.9 27.8 58.4 81.2

MST1 5.4 38.4 84.6 97.9 99.7 5.2 9.9 32.2 64.6 87.3

FI 5.6 27.3 77.6 97.4 99.9 5.1 9.3 31.8 69.5 89.6

α M3 (λ = 1) M3 (λ = 3)
0 2 3 4 5 0 2 3 4 5

BHT1 3.7 86.5 99.9 100 100 4.9 32.2 87.7 99.3 100

IST1 4.1 87.9 99.9 100 100 4.8 33.5 88.7 99.3 100

MST1 3.9 88.4 99.9 100 100 4.3 41.0 92.7 100 100

FI 4.8 59.5 98.5 100 100 3.9 29.5 87.3 99.6 100

distribution Nbin(10, 10/10.2) and binomial distribution Bin(10, 0.1), respectively.
It is here noted that the type-I errors of the tests depend on the unknown parameter
λ. To fix this problem, the parametric bootstrap method is useful for critical values
of the tests. For example, we explain how to obtain the critical value of BHTγ in
model M2. We first generate K samples of size n from M2 and each sample con-
sists of u1, . . . , un from Po(λ) and v1, . . . , vn from Po(0.2) for K = 1, 000 and
n = 50. Then, we generate the B bootstrap samples (u(b)

1 , . . . , u(b)
n ), b = 1, . . . , B

from Po(u) for u = ∑n
i=1 ui/n and calculate the value of BHT(b)

γ for b = 1, . . . , B
and B = 1, 000. We obtain the critical value qBHT of the test BHTγ as an upper 5%

quantile of the histogram of BHT(b)
γ ’s. We then calculate K values of BHTγ based on

xi = ui +αvi for i = 1, . . . , n and count the number such that BHTγ > qBHT. In this
way, we can obtain approximated values of the size and the power of the test BHTγ .
These values are reported in Table 6.

From the table, the sizes of the tests have small variations for n = 50, B = 1, 000
and K = 1, 000 and the variations will lower for large n, B and K . The tests BHT1,
IST1 and MST1 have similar performances in the powers and are more powerful than
FI in the case of λ = 1 for M1, M2 and M3. In the case of λ = 3, the test MST1 is
more powerful than BHT1 and IST1 and FI is more powerful for α = 4, 5 in M1 and
M2.
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6.3 Stein-type identity in negative binomial distributions

Consider the negative binomial distribution Nbin(α, p) with the probability function

f (x |α, p) = �(x + α)

�(α)x ! qx pα, q = 1 − p,

where α > 0 and 0 < p < 1. Although α is a natural number in the negative binomial
distribution, we here treat α as a positive real number. Hudson (1978) provided the
Stein-type identity, which is also characterizes the negative binomial distribution as
seen below.

Theorem 6.5 Let X be a non-negative and discrete variable. Then, the following four
conditions are equivalent.

(a) X ∼ Nbin(α, p).
(b) For any function h(·) with E[|Xh(X)|] < ∞, it holds that

E[Xh(X)] = qE[(X + α)h(X + 1)]. (6.8)

(c) For any real constant t , it holds that

E[Xet X ] = qE[(X + α)et(X+1)]. (6.9)

(d) g(t) = E[exp{t X}] satisfies the differential equation

d

dt
log{g(t)} = αqet

1 − qet
. (6.10)

Proof For the proof from (a) to (b), it is noted that

x
�(x + α)

�(α)x ! qx pα = q(x − 1 + α)
�(x − 1 + α)

�(α)(x − 1)! q
x−1 pa,

which shows the identity (6.8). Clearly, one gets (c) from (b). For the proof from (c)
to (d), the identity (6.9) is written as g′(t) = q{g′(t) + αg(t)}et , which is (6.10).
For the proof from (d) to (a), the solution of the differential equation in (6.10) is
log g(t) = α log p − α log(1 − qet ), namely, g(t) = pα/(1 − qet )α , which implies
that X ∼ Nbin(α, p). ��
Theorem 6.6 Assume that nonnegative and discrete random variables X1 and X2 are
independently and identically distributed with E[|X |et X ] < ∞. The following two are
equivalent.

(a) Xi ∼ Nbin(α, p) for i = 1, 2.
(b) X1 + X2 ∼ Nbin(2α, p).
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Proof It is easy to see (b) from (a). For the proof from (b) to (a), from Theorem 6.5,
it follows that

E[(X1 + X2)e
t(X1+X2)] = qE[(X1 + X2 + 2α)et(X1+X2)].

This equality leads to

2E[X1e
t X1 ]E[et X2 ] = 2qE[(X1 + α)et X1 ]E[et X2 ],

which, from Theorem 6.5, shows (a). ��
We briefly describe the Stein problem of simultaneous estimation of means of k

negative binomial distributions. This is due to Tsui (1984). Let X1, . . . , X p be inde-
pendent random variables such that Xi ∼ Nbin(αi , ηi ) for i = 1, . . . , p. The mean of
Xi is denoted by θi = αi (1−ηi )/ηi . Let X = (X1, . . . , X p) and θ = (θ1, . . . , θp), and
we consider the estimation of θ for known αi ’s relative to the loss

∑p
i=1(θ̂i − θi )

2/θi .
Tsui (1984) suggested the shrinkage estimator θ̂φ = (θ̂φ,1, . . . , θ̂φ,p), where

θ̂φ,i = Xi − φ(Z)

Z + p − 1
Xi ,

for Z = ∑p
i=1 Xi and nonnegative function φ(·). Let 	 = R(θ , θ̂φ) − R(θ , X). The

conditions on φ(·) for improving on X was derived by Tsui (1984).

Theorem 6.7 The risk difference 	 is decomposed as 	 = 	1 + 	2, where

	1 = E
[ (Z + p)φ2(Z + 1)

(Z + p)2
− 2

(Z + p)φ(Z + 1)

Z + p
+ 2

Zφ(Z)

Z + p − 1

]
,

	2 =
p∑

i=1

E
[ Xi

αi

{ (Xi + 1)φ(Z + 1)

Z + p

(φ(Z + 1)

Z + p
− 2

)
+ Xiφ(Z)

Z + p − 1

(
2 − φ(Z)

Z + p − 1

)}]
.

Then, it holds that 	 ≤ 0 if the following conditions are satisfied. (a) φ(z) is nonde-
creasing, (b) 0 < φ(z) ≤ 2(p − 1) and (c) φ(z)/z is nonincreasing.

Proof More generally, we consider the estimator θ̂i = Xi + fi (X). Let ei be a p-
variate vector whose i-th coordinate is one and whose other coordinates are zero.
Note that αi/θi = 1/qi −1 and E[h(Xi )/qi ] = E[(Xi +αi )h(Xi +1)/(Xi +1)] from
Theorem 6.5. Then,

	 = R(θ , θ̂) − R(θ , X) =
p∑

i=1

E[ f 2i (X)/θi + 2Xi fi (X)/θi − 2 fi (X)]

=
p∑

i=1

E

[
− f 2i (X)

αi
− 2

Xi fi (X)

αi
− 2 fi (X) + f 2i (X)

αi qi
+ 2Xi fi (X)

αi qi

]
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Table 7 Risks of X and θ̂
CZ

for p = 6 and θik = k/2

k Poisson distribution Po(θ)

1 2 3 4 5 6 7 8 9 10

X 5.98 6.01 6.00 5.99 5.99 6.01 5.98 5.98 6.00 6.00

θ̂
CZ

2.33 3.38 3.98 4.36 4.63 4.83 4.96 5.07 5.17 5.24

k Geometric distribution Geo(θ)

1 2 3 4 5 6 7 8 9 10

X 9.02 12.05 14.89 18.06 21.03 23.94 26.92 29.83 32.94 35.96

θ̂
CZ

3.32 6.21 8.99 11.96 14.84 17.68 20.58 23.44 26.46 29.42

k Negative binomial distribution Nbin(5, θ)

1 2 3 4 5 6 7 8 9 10

X 6.60 7.17 7.80 8.41 8.99 9.58 10.17 10.80 11.42 12.00

θ̂
CZ

2.51 3.89 4.93 5.80 6.56 7.28 7.98 8.66 9.32 9.97

=
p∑

i=1

E

[
− f 2i (X)

αi
− 2

Xi fi (X)

αi
− 2 fi (X)

+ (Xi + α) f 2i (X + ei )

αi (Xi + 1)
+ 2(Xi + αi ) fi (X + ei )

αi

]

= 	1 + 	2,

where

	1 =
p∑

i=1

E

[
Xi f 2i (X + ei )

Xi + 1
+ 2 fi (X + ei ) − 2 fi (X)

]
,

	2 =
p∑

i=1

E

[
Xi f 2i (X + ei )

αi (Xi + 1)
− f 2i (X)

αi
+ 2

Xi fi (X + ei )
αi

− 2
Xi fi (x)

αi

]
.

Substituting fi (X) = −Xiφ(Z)/(Z + p − 1) yields the expressions in Theorem 6.7.
It can be easily checked that 	1 ≤ 0 and 	2 ≤ 0 under the conditions (a), (b) and (c).

��
We investigate the risk performances of the estimators X and θ̂

CZ
under the

three distributions of Xi : the Poisson distribution Po(θi ), geometric distribution
Geo(1/(θi + 1)) and negative binomial distribution Nbin(5, 5/(θi + 5). The sim-
ulation experiment has been conducted with p = 6 and θi = k/2 for i = 1, . . . , p and
k = 1, . . . , 10, and the average losses based on simulation with 10,000 replications

are reported Table 7. From Table 7, it is seen that the improvements of θ̂
CZ

and θ̂
TS

over X are significant and robust in the Poisson, geometric and negative binomial
distributions.
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7 Concluding remarks

We conclude the paper with some remarks and extensions. Through the paper, we
have used the moment-generating functions for characterizing and testing the normal,
exponential and Poisson distributions. As well known, however, the use of themoment
generating functions is limited to the existenceof their expectations. To avoid this point,
it may be better to use the characteristic functions, and the results given in the paper
can be extended to the arguments based on the characteristic functions.

The test of normality has been treated in Sect. 3.2 in the uni-variate case. For
testing multivariate normal distributions, Ebner (2021) provided a test statistic based
on the Steinmethod.Many other statistics for testingmultivariate-normality have been
suggested in the literature. For example, see Mardia (1970), Mecklin and Mundfrom
(2004) and Ebner and Henze (2020).

Although the Stein method in this paper is limited to normal distributions, Ley and
Swan (2013) suggested the general density approach which is applicable to general
distributions. Barbour (1988) and Götze (1991) introduced the generator approach
which can adapt the method to many other distributions. For the details, see Reinert
(2005).

Finally, we give some recent developments related to the Steinmethod. Betsch et al.
(2021) suggested new techniques based on the Steinmethod for estimating parameters.
In addition, Betsch et al. (2022) discussed the estimation of parameters in negative-
binomial distributions and the test of Poissonity based on the Steinmethod. Betsch and
Ebner (2021) provided characterization of continuous distributions based on indicator
functions, and Betsch et al. (2022) applied a similar argument to discrete distributions.
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