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Abstract
Recurrent event data are common in survival and reliability studies, where a subject
experiences the same type of event repeatedly. There are situations, in which the event
of interest can be observed only if they belong to a window of observational range,
leading to double censoring of recurrent event times. In this paper, we study recurrent
event data subject to double censoring. We propose a proportional mean model for the
analysis of doubly censored recurrent event data based on the mean function of the
underlying recurrent event process. The estimators of the regression parameters and
the baseline mean function are derived and their asymptotic properties are studied. A
Monte Carlo simulation study is conducted to assess the finite sample behavior of the
proposed estimators. Finally, the procedures are illustrated using two real-life data sets,
one from a bladder cancer study and the other from a study on chronic granulomatous
disease.

Keywords Counting process · Double censoring · Recurrent events · Mean function

1 Introduction

Reliability and survival studies often involve events that can occur more than once per
subject, known as recurrent events. These types of outcomes are prevalent in various
fields, such as biology, medicine, reliability engineering, and social sciences. Medi-
cal examples of recurrent events include tumor recurrences, sequences of asthmatic
attacks, and multiple infection episodes. Recurrent events can also occur in other con-
texts, such as the recurrence of economic recessions, traffic accidents, or repeated
breakdowns of devices like mobile phones or computers (Du & Lv, 2022).
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Regression analysis methods for recurrent events can be classified into two cate-
gories: conditional methods and marginal techniques. Conditional methods involve
modeling the intensity or hazard rate function (Prentice et al., 1981; Andersen & Gill,
1982), while marginal techniques focus on mean functions or rate functions (Pepe &
Cai, 1993; Lawless & Nadeau, 1995; Lin et al., 2000). Marginal methods have the
advantage of providing an easier interpretation of the mean number of recurrent events
compared to the intensity of the event. Frailty models have been proposed for recurrent
event data by Zeng and Lin (2007) and Sankaran and Anisha (2011), while Kelly and
Lim (2000) provide a comparison of various approaches for recurrent event analysis.
A comprehensive review of recurrent event analysis is presented by Cook and Lawless
(2007). Su and Lin (2021) discussed a semiparametric rate model for recurrent event
data with multiple event types, that incorporates cyclic or periodic components.

In many survival studies, the lifetimes of patients can be accurately observed only
if it occurs within a window of observational time. The remaining lifetimes are only
known to be either left censored or right censored. The data so obtained are referred
to as doubly censored data. The analysis of doubly censored data has been studied by
several researchers. Pioneering works include Turnbull (1974), Chang (1990), and Gu
and Zhang (1993). Regression analysis for doubly censored data has been discussed
by Cai and Cheng (2004) and semiparametric transformation models for doubly cen-
sored data were studied by Shen (2011). Ji et al. (2012) proposed a quantile regression
method for doubly censored data. Proportional hazard models for the analysis of dou-
bly censored data with multiple modes of failure have been proposed by Sankaran and
Sreedevi (2016), while Shen and Chen (2018) and Shen (2022) introduced Aalen’s
linear model and the Cox–Aalen model for doubly censored data. Recently, Li et al.
(2020) presented a regression analysis method for multivariate doubly censored data
using flexible semiparametric transformation frailty models, and Choi et al. (2021)
proposed the Buckley–James method for an accelerated failure time model under
double random censoring. Additionally, Choi and Huang (2021) discussed nonpara-
metric maximum-likelihood estimation of semiparametric transformation models for
double censored data. A joint model for the birth distribution and lifetime distribution
in the context of heterogeneous survival data under double truncation is studied by
Dörre (2021).

While recurrent event times are often subject to right censoring, there are situations
where the data may also have other types of incomplete information. For instance,
recurrent event data with general interval censoring has been studied by Chen et al.
(2005) and Shen and Cook (2015). If the event of interest can occur more than once
per subject, and these event recurrences can be subjected to both left censoring and
right censoring, we obtain doubly censored recurrent event data. In such scenarios, the
recurrence of an event can only be observed within an observational window defined
by left and right censoring random variables, denoted as U and V , respectively.

Even though recurrent event data exposed to different types of censoring have been
studied, recurrent event data subject to double censoring has not been explored yet.
Thismotivates us to propose a semiparametric regressionmodel for the analysis of dou-
bly censored recurrent event data, based on marginal mean function of the cumulative
number of recurrent events. The mean function characterizes the subject’s recurrence
experience, and our proposed semiparametric regression model incorporates multi-
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plicative covariate effects on the marginal mean function under double censoring. The
effect of covariates on censoring randomvariables is alsomodeled usingmultiplicative
intensity models.

The paper is organized as follows. In Sect. 2, we introduce the model and develop
inference procedures to estimate regression parameters. The estimating equation
approach is employed in inference problems. Asymptotic properties of the proposed
estimators are discussed in detail. Estimation of the baseline cumulative mean func-
tion is also studied. A Monte Carlo simulation study is carried out in Sect. 3 to assess
the finite sample behavior of the proposed estimators. The model is then applied to
real-life data sets in Sect. 4. Finally, major conclusions of the study are presented in
Sect. 5.

2 Model and inference procedures

Consider an event history study of some recurrent events that involve n independent
subjects. Let Ni (t) be the cumulative number of events that have occurred up to time
t , for 0 ≤ t ≤ t∗, i = 1, 2, . . . , n where t∗ denotes the length of the study. Let
Ti j be the recurrence times of the i th subject for j = 1, 2, . . . , mi ; i = 1, 2, . . . , n.
Assume that Ti j ’s are doubly censored by the random variablesUi and Vi ; specifically
left censored by Ui and right censored by Vi . This means that we can observe the
exact event recurrence time Ti j only when it falls within the observational window
[Ui , Vi ], where Ui < Vi , for i = 1, 2, . . . , n. If Ti j < Ui , the recurrence time
will be left-censored, and if Ti j > Vi , the recurrence time will be right-censored,
where Ui and Vi are always observed. Denote Xi j = min{max(Ti j , Ui ), Vi )} for
j = 1, 2, . . . , mi ; i = 1, 2, . . . , n. Let Zi be a p × 1 vector of covariates observed for
each subject i , and we assume independence between Ti and (Ui , Vi ) given Zi . Let
E(Ni (t)|Zi ) = μ(t |Zi ) be the mean function of Ni (t) conditional on Zi . We consider
the proportional mean model to specify the covariate effect on recurrence times, given
by

μ(t |Zi ) = μ0(t) exp(β
TZi ), (2.1)

where μ0(t) is the unspecified baseline mean function and β is the p × 1 vector of
regression parameters. Furthermore, the covariate Zi may also have an effect on the
censoring random variables Ui and Vi .

To model the covariate effect on censoring random variables, we assume that the
hazard rate function λ1(t) of Ui satisfies the proportional hazards (PH) model

λ1(t |Zi ) = λ10(t) exp(γ
TZi ), (2.2)

and due to the strict order restriction between the censoring variables Ui and Vi , the
hazard rate function λ2(t) of Vi is assumed to satisfy the proportional hazards (PH)
model (as discussed in Wang et al. (2010))

λ2(t |Ui ,Zi ) = I (t > Ui )λ20(t) exp(τ
TZi ), (2.3)
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where λ10(t) and λ20(t) are completely unspecified baseline hazard functions, and γ

and τ are p-dimensional vector of regression parameters.
Define δ1i j = I (Ti j ≤ Ui ), δ2i j = I (Ui < Ti j ≤ Vi ) and δ3i j = I (Ti j > Vi ),

where I (A) is the indicator function of set A.
Denote

N (1)
i (t) =

mi∑

j=1

I (Xi j ≤ t, δ1i j = 1) and N (2)
i (t) =

mi∑

j=1

I (Xi j ≤ t, δ3i j = 1).

be the number of left-censored recurrence times and right-censored recurrence times,
respectively, for i th individual. Then

E(d N (1)
i (t)|Zi ) = λ1(t |Zi ) and E(d N (2)

i (t)|Ui ,Zi ) = λ2(t |Ui ,Zi ).

Also denote N∗
i (t) = ∑mi

j=1 I (Xi j ≤ t) and Ni (t) = ∑mi
j=1 I (Ti j ≤ t). Note that

P(Xi j ≤ t ≤ Vi |Zi ) = P(Ui < t ≤ Vi |Zi ) · P(Ti j ≤ t |Zi ). (2.4)

Let W (t |Zi ) = P(U < t ≤ V |Zi ) = H̄(t |Zi ) − Ḡ(t |Zi ), where Ḡ(t |Zi ) = P(U >

t |Zi ) and H̄(t |Zi ) = P(V ≥ t |Ui ,Zi ). Now, using the probability statement in (2.4),
the consistent estimators of μ0(t) and β are obtained by solving the following two
estimating equations:

n∑

i=1

[N∗
i (t) − W (t |Zi )μ0(t) exp(β

TZi )] = 0 (2.5)

and

n∑

i=1

∫ yb

ya

Zi [N∗
i (t) − W (t |Zi )μ0(t) exp(β

TZi )]dk(t) = 0, (2.6)

where ya and yb are prespecified constants, such that P(Xi j ≤ ya) and P(Xi j ≥ yb)

are positive. Here, k(t) is a data-dependent weight function, and in practice, we use
k̂(t) = 1

N

∑n
i=1

∑mi
j=1 I (Xi j ≤ t), where N = ∑n

i=1 mi . Thus, k̂(t) is an increasing
weight function that uniformly converges to the deterministic function k(t) within the
interval t ∈ [ya, yb].

The quantity W (t |Zi ) in (2.5) and (2.6) is unknown. To estimate W (t |Z), we define
�10(t) = ∫ t

0 λ10(s)ds and �20(t) = ∫ t
0 λ20(s)ds as the cumulative hazard rate func-

tions of left censoring random variables U and right censoring random variables V ,
respectively. Then, the survival functions Ḡ(t |Z) and H̄(t |Z) are given by

Ḡ(t |Z) = exp(−�10(t)exp(γ
TZ))
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and

H̄(t |Z) = exp(−�20(t)exp(τ
TZ)).

To estimate γ , we consider the equation

0 = U1(γ ) =
n∑

i=1

∫ yb

ya

[
Zi −

∑n
i=1 I (Ui ≥ t) exp(γ TZi )Zi∑n

i=1 I (Ui ≥ t) exp(γ TZi )

]
d N (1)

i (t).

(2.7)

To estimate τ , we consider the equation

0 = U2(τ ) =
n∑

i=1

∫ yb

ya

[
Zi −

∑n
i=1 I (Vi ≥ t > Ui ) exp(τTZi )Zi∑n

i=1 I (Vi ≥ t > Ui ) exp(τTZi )

]
d N (2)

i (t).

(2.8)

Let γ̂ and τ̂ be the estimators of γ and τ given by U1(γ ) = 0 and U2(τ ) = 0. The
estimators of �10(t) and �20(t) are Breslow type estimators. That is, for �10(t), the
estimator is

�̂10(t) =
n∑

i=1

∫ t

0

I (Ui ≥ s)d N (1)
i (s)

∑n
i=1 I (Ui ≥ s) exp(γ̂ TZi )

. (2.9)

For �20(t), the estimator is given by

�̂20(t) =
n∑

i=1

∫ t

0

I (Vi ≥ s > Ui )d N (2)
i (s)

∑n
i=1 I (Vi ≥ s) exp(τ̂TZi )

. (2.10)

Then, the survival functions Ḡ(t |Z) and H̄(t |Z) can be estimated as Ḡn(t |Z) and
H̄n(t |Z), where

Ḡn(t |Z) = exp(−�̂10(t)exp(γ̂
TZ))

and

H̄n(t |Z) = exp(−�̂20(t)exp(τ̂
TZ)).

Now, by substituting W (t |Z) with W̄n(t |Z) = H̄n(t |Z) − Ḡn(t |Z) in estimating equa-
tions (2.5) and (2.6), one can estimate μ0(t) and β.

We can estimate the baseline mean function μ0(t) as

μ̂0(t) =
∑n

i=1 N∗
i (t)

∑n
i=1 W̄n(t |Zi )exp(β̂

T
Zi )

. (2.11)
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Remark 2.1 When covariates do not have effect on the censoring times U and V , a
simple estimate for W (t |Z) is proposed as W ∗

n (t) = 1
n

∑n
i=1 I (Ui < t ≤ Vi ). This

can be substituted in (2.5) and (2.6) and the estimators of μ0(t) and β can be obtained
by solving those equations. We can note that, when mi = 1 for all i , this situation
reduces to the model studied in Cai and Cheng (2004).

2.1 Asymptotic properties

We now discuss the asymptotic properties of the estimators of regression parameters.
We prove the consistency and asymptotic normality of the estimators of β, γ and τ .
To establish the asymptotic properties, we define the martingale

Mi (t) = Yi (t)[N∗
i (t) − μ0(t)W (t |Zi ) exp(β

TZi )], i = 1, 2, . . . , n, (2.12)

where Yi (t) represents the at-risk process, and we assume the following regularity
conditions, similar to those given in Liu et al. (2010) and Du and Lv (2022):

C1: {N∗
i (.), N (1)

i (.), N (2)
i (.), Yi (.),Zi , i = 1, 2, . . . , n} are independent and identi-

cally distributed, where Yi (t) is the at-risk process.
C2: N∗

i (.), N (1)
i (.) and N (2)

i (.) are bounded by constants.
C3: Zi , i = 1, 2, . . . , n are of bounded total variation on [0, t∗].
C4: The matrices B, P and A defined in Appendix are non-singular.

The consistency and asymptotic normality of γ̂ and τ̂ , the regression coefficients for
the left and right censoring times, respectively, are detailed in the Appendix.

Theorem 2.1 Under the regularity conditions C1–C4, the estimator β̂ is strongly con-
sistent and

√
n(β̂ −β) can be approximated by a p−variate normal distribution with

mean vector 0 and variance–covariance matrix given by �, where

� = 1

n
A−1

(∑n

i=1
�i�

T
i

)
A−1,

where A and �i are specified in Appendix in (A.7) and (A.9), respectively.

Theorem 2.2 Under the regularity conditions C1–C4,
√

n(μ̂0(t) − μ0(t)) converges
weakly to a zero-mean Gaussian process with covariance function at (s, t) given by

�(s, t) = E(�1(s)�1(t)),

where

�1(t) = M1(t)

n−1
∑n

i=1 Yi (t)W (t |Zi ) exp(βTZi )

−D(t,β)A−1
∫ yb

ya

(Z1 − Z̄(t))M1(t)dk(t),
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with

D(t,β) =
∑n

i=1 Yi (t)W (t |Zi )Ziμ0(t) exp(βTZi )∑n
i=1 Yi (t)W (t |Zi ) exp(βTZi )

. (2.13)

A consistent estimator of �(s, t) is given by

�̂(s, t) = 1

n

n∑

i=1

�̂i (s)�̂i (t),

where

�̂i (t) = M̂i (t)

n−1
n∑

i=1
Yi (t)W̄n(t |Zi ) exp(β̂

T
Zi )

− D̂(t, β̂) Â−1
∫ yb

ya

(Zi − Z̄(t))M̂i (t)dk̂(t),

with M̂i (t) and D̂(t, β̂) are obtained from (2.12) and (2.13), respectively, by replacing
all the unknown quantities with their corresponding sample estimators. The terms Z̄(t)
and Â−1 are defined in (A.4) and (A.10), respectively.

The proofs of the above theorems are given in Appendix. Note that the variance–
covariance matrix of the estimator of β does not yield to a closed form. In practice, one
can use bootstrap re-sampling technique to find the standard error of β̂. The confidence
intervals of β̂ can be constructed using the asymptotic normality of the estimator β̂.

3 Simulation study

A Monte Carlo simulation study is carried out to assess the finite sample behavior of
the proposed estimators.We consider two covariates Z1 and Z2, where Z1 is generated
from aBernoulli distributionwith a probability of success 0.5 and Z2 is generated from
a standard normal distribution. Based on these two covariates, under the proportional
hazard assumption, the left and right censoring timesU and V are generated separately,
and then, the recurrence times are simulated accordingly. The data generation for
(U , V ) is independent of the recurrence times, given (Z1, Z2).

Following (2.2) and (2.3), we consider three different combinations for modeling
the left and right censoring time. The left and right censoring times are assumed to
follow the following three models:

(i) A Gompertz proportional hazard model with baseline hazard function

λ10(t) = θ1 exp{α1t} and λ20(t) = θ2 exp{α2t},

where θ1 = 0.2, α1 = 0.1, θ2 = 0.1, and α2 = 0.1. We assume the regression
coefficients γ = τ = (1, 2)T.
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(ii) A Weibull proportional hazard model with with baseline hazard function

λ10(t) = θ1α1tα1−1 and λ20(t) = θ2α2tα2−1,

where θ1 = 0.2, α1 = 2, θ2 = 0.3, and α2 = 2.5. Here, γ = τ = (1.5, 1)T.
(iii) A baseline power model with baseline hazard function

λ10(t) = tα1 and λ20(t) = tα2 ,

where α1 = 1, and α2 = 2. In this case, γ = τ = (1, 2)T.

In all the cases, the left censoring times, U , take values in [0, 5]. To ensure a
sufficient follow-up time for every subject, right censoring times, V , are generated
between U + 5 and U + 20. The recurrence times follow a Gompertz proportional
hazards model:

λ(t |Z) = θ exp{αt} · exp{β1Z1 + β2Z2},

with θ = 0.1 and α = 0.1 and λ(t |Z) as the corresponding hazard rate function in
presence of covariates. We generate 1000 data samples of sizes n = 50, 100, and 200
each with different choices of β1 and β2. In our simulation, we do not fix the cen-
soring rates but rather consider random censoring proportions for different parameter
combinations. Various combinations of parameters result in different proportions for
left and right censoring times and varying levels of the average number of recurrences
per subject. For example, here is a summary of the censoring proportions observed
for some of the combinations in our study:

For Model (i) with a Gompertz proportional hazards model for left and right cen-
soring times, with β1 = 1.3 and β2 = 2, the average number of events per subject
is 21.14. The left censoring rate is found to be 8.91% of the total events, while the
right censoring rate is 35.75% of the total events. The double censored data have an
average of 11.48 events per subject. Under the same setting but with β1 = 0.2 and
β2 = 0.4, the average number of events per subject reduces to 4.18. In this case,
the left censoring rate is 10.47% and the right censoring rate is 25.49%. The double
censored data have an average of 2.17 events per subject.

Similarly, for Model (ii) with β1 = 1.5 and β2 = 1.9, the average number of events
per subject is 28.03. The left censoring rate is 10.56% and the right censoring rate is
8.51%. For the same model but with β1 = 0.2 and β2 = 0.4, the average number of
events per subject is 2.55. In this case, the left censoring rate is 9.94% and the right
censoring rate is 27.69%.

For Model (iii) with β1 = −0.5 and β2 = −1.0, the average number of events
per subject is 1.83. The left censoring rate is 11.19% and the right censoring rate is
31.60%. When considering β1 = 1.3 and β2 = 2.0, the average number of events
per subject is 24.66. The left censoring rate is 12.43% and the right censoring rate is
6.03%.

The absolute bias, mean squared error (MSE), and 95% coverage probability (CP)
of the regression parameters for all the above models are calculated. Since, for all
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Table 1 Absolute bias, MSE, and CP of β̂ for case (i)

β1 β2 n Absolute bias MSE 95 % CP

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

1.3 2 50 0.1114 0.1401 0.0297 0.0282 0.9470 0.9560

100 0.0977 0.1202 0.0189 0.0188 0.9580 0.9590

200 0.0812 0.1039 0.0135 0.0131 0.9610 0.9660

1.5 1.9 50 0.1451 0.1224 0.0427 0.0228 0.9360 0.9460

100 0.1390 0.1074 0.0295 0.0155 0.9380 0.9510

200 0.1299 0.0928 0.0213 0.0106 0.9410 0.9540

0.2 0.4 50 0.0299 0.0608 0.0252 0.0103 0.9460 0.9410

100 0.0287 0.0526 0.0094 0.0062 0.9480 0.9440

200 0.0215 0.0420 0.0056 0.0031 0.9540 0.9510

−0.5 -1 50 0.1205 0.2297 0.0505 0.0621 0.9510 0.9560

100 0.1110 0.2123 0.0274 0.0588 0.9540 0.9580

200 0.1003 0.2052 0.0216 0.0472 0.9660 0.9590

Table 2 Absolute bias, MSE, and CP of β̂ for case (ii)

β1 β2 n Absolute bias MSE 95 % CP

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

1.3 2 50 0.0759 0.2803 0.0387 0.1027 0.9410 0.9440

100 0.0579 0.2444 0.0174 0.0723 0.9430 0.9460

200 0.0430 0.2005 0.0096 0.0480 0.9470 0.9470

0.6 0.3 50 0.0544 0.0174 0.0330 0.0064 0.9360 0.9490

100 0.0505 0.0125 0.0179 0.0034 0.9470 0.9520

200 0.0438 0.0101 0.0096 0.0022 0.9540 0.9530

1.5 1.9 50 0.1166 0.2466 0.0459 0.0804 0.9410 0.9310

100 0.1050 0.2145 0.0240 0.0556 0.9460 0.9440

200 0.0828 0.1808 0.0139 0.0394 0.9560 0.9610

1.5 -2 50 0.1133 0.2543 0.0417 0.0856 0.9460 0.9320

100 0.0784 0.2001 0.0222 0.0485 0.9470 0.9390

200 0.0669 0.1731 0.0121 0.0355 0.9510 0.9450

choices of β1 and β2, the results are similar, we present the results for randomly
chosen four combinations of β1 and β2, for each model in Tables 1–3.

Tables 1–3 demonstrate that both absolute bias and MSE decrease as the sample
size increases, indicating the consistency of the proposed estimation procedure. Fur-
thermore, the coverage probability stabilizes near the chosen significance level. We
also note that the estimated baseline mean functions for different combinations are
of a similar nature. Therefore, we present only the estimated baseline mean functions
for case (i) with β1 = 1.5 and β2 = 1.9, for both the choices of W̄n(t | Z) and
W ∗

n (t | Z) in Fig. 1. In Fig. 1, the blue line represents the estimated values of μ0(t)
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Table 3 Absolute bias, MSE, and CP of β̂ for case (iii)

β1 β2 n Absolute bias MSE 95 % CP

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

1.3 2 50 0.1899 0.2059 0.0675 0.0848 0.9410 0.9400

100 0.1402 0.1890 0.0438 0.0596 0.9470 0.9480

200 0.1092 0.1471 0.0272 0.0437 0.9540 0.9560

1.5 1.9 50 0.1855 0.2245 0.0679 0.0641 0.9380 0.9340

100 0.1363 0.1555 0.0584 0.0486 0.9410 0.9390

200 0.1014 0.1189 0.0426 0.0365 0.9470 0.9450

0.3 0.5 50 0.0518 0.0364 0.0278 0.0083 0.9450 0.9410

100 0.0489 0.0237 0.0139 0.0038 0.9490 0.9440

200 0.0343 0.0153 0.0075 0.0029 0.9520 0.9480

−0.5 -1 50 0.0886 0.1545 0.0518 0.0471 0.9320 0.9450

100 0.0642 0.1287 0.0244 0.0414 0.9400 0.9510

200 0.0515 0.0896 0.0207 0.0362 0.9430 0.9540

using the weight function W̄n(t | Z), green line represents the estimated values of
μ0(t) using the weight function W ∗

n (t | Z), and the red line represents the true val-
ues. We can observe that toward the end of the follow-up times, the estimator slightly
overestimates the baseline mean function, for both choices of weight functions.

4 Data analysis

The inference procedure discussed in Sect. 2 is illustrated using two real-life data sets.

4.1 Multiple tumor recurrence data of bladder cancer patients

We apply the proposed methods to the multiple tumor recurrence data for patients
with bladder cancer given in Wei et al. (1989). These data were obtained in a random-
ized clinical trial conducted by the Veterans Administration Co-operative Urological
Research Group (VACURG) in which the patients with superficial bladder tumors
were randomly assigned to one of three treatments: thiotepa, pyridoxine, and placebo.
This data set is recently analyzed by Du and Lv (2022). The data are available in the
R package survival (Therneau, 2023). In this analysis, we consider the patients
treated with either placebo or thiotepa and having at least 1 month of follow-up, which
results in the analysis of 47 patients assigned to placebo and 38 patients assigned to
thiotepa. The right censoring times (V ) are taken as the maximum follow-up time
for each patient. Since the data are not doubly censored as such, we have chosen the
left censoring times (U ) randomly by observing the data. For patients with follow-up
time greater than 8 months, U is generated randomly as a time less than or equal to 8
months. For all other patients, a time less than or equal to its right censoring time is
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Fig. 1 Estimate of μ0(t) for case (i) with β1 = 1.5 and β2 = 1.9 for sample sizes 50, 100, and 200

randomly assigned as its left censoring time U . In the new data, 14 out of 112 events
were lost due to left censoring.

The main interest of this analysis is to study the influence of thiotepa on recurrence
frequency and the dependence of such recurrence rates on the size of initial tumors.
Therefore, the covariates considered are the treatment group (0—thiotepa; 1—placebo)
(Z1) and the number of initial tumors (Z2) for each of the patients. In these data, we
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Table 4 Estimates and SE of regression coefficients for the tumor recurrence data

Regression coefficient Estimate SE PWP-TT Model

Estimate SE

β1 0.4032 0.1267 0.3805 0.2066

β2 0.1422 0.0209 0.1682 0.0480

Fig. 2 Estimate of μ0(t) for the tumor recurrence data

have the left censoring times U and the right censoring times V are independent of
the covariate vector Z = (Z1, Z2).

The estimates of the model parameters, along with their corresponding standard
errors (SE), are provided in Table 4. We also obtain estimates using the Prentice,
Williams, and Peterson total time (PWP-TT) model (Prentice et al., 1981), which
only considers right censoring and was fitted to the original dataset. From Table 4,
it is evident that the estimates obtained from our proposed model align with those
from the PWP-TT model. This agreement demonstrates the significant reduction in
tumor recurrences for cancer patients with thiotepa treatment. The estimate ofμ0(t) is
depicted in Fig. 2, showing an increase in the baseline mean function after 46 months.

4.2 Study of gamma interferon in chronic granulomatous disease

We consider the Chronic Granulomatous Disease (CGD) data described in Fleming
and Harrington (1991) for illustration. The dataset is accessible within the R package
survival (Therneau, 2023). CGD refers to a set of inherited rare immune system
disorders characterized by recurrent pyogenic infections that typically appear early in
life and may lead to death in childhood. The efficacy of gamma interferon in reducing
the rate of serious infections in CGD patients was investigated in a double blinded
clinical trial in which patients were randomly assigned to receive either gamma inter-
feron or a placebo. Out of 128 patients enrolled, 63 were randomized into the gamma
interferon group and the rest to the placebo group. Among the placebo group, 30
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Table 5 Estimates and SE of regression coefficients for the CGD data

Regression coefficient Estimate SE PWP-TT Model

Estimate SE

β1 1.0546 0.3604 1.1222 0.2614

β2 −0.0369 0.0186 −0.0305 0.0131

Fig. 3 Estimate of μ0(t) for the CGD data

patients experienced at least one infection, while 14 patients in the gamma interferon
group encountered at least one infection.

We randomly chose left censoring times (U ) by observing the data, because the
data are not doubly censored as such. For patients having follow-up periods greater
than 200 days, the left censoring time is randomly selected to be less than or equal to
200 days. All other patient’s left censoring times are chosen randomly to be less than
or equal to their right censoring time. In the modified data, 20 out of 76 events were
lost due to left censoring. Several covariates were recorded, but we focus on two of
them, treatment group Z1, (Z1 = 0 for gamma interferon and Z1 = 1 for placebo) and
the patient’s age Z2. We can see that the left and right censoring times are independent
of the covariates for this data.

The estimates of the model parameters along with their standard errors (SE) are
presented in Table 5. We also calculate the estimates of regression parameters using
the PWP-TT model on the original data set, and the results are shown in Table 4. It is
evident that the estimates obtained from our proposed model are consistent with those
from the PWP-TT model. This shows that in people with CGD, gamma interferon
decreases infection recurrence. Additionally, as patients get older, the rate of severe
infections declines. The estimate of μ0(t) is plotted in Fig. 3.
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5 Conclusion

Recurrent event data subject to double censoring are often encountered in clinical
and other lifetime studies. In this article, we proposed a semiparametric regression
model for recurrent event data, which specifies the multiplicative covariate effect on
themarginalmean function under double censoring. The estimating equation approach
is employed for the estimation of regression parameters. Asymptotic properties of the
proposed estimates are discussed in detail. The results of the Monte Carlo simulation
study make sure that the procedures followed are efficient. The proposed method was
demonstrated on two real data sets: the multiple tumor recurrence data for bladder
cancer patients, and a study of gamma interferon in chronic granulomatous disease.

Several open problems remain to be addressed in the analysis of recurrent event data
subject to double censoring. In this article, we considered time-independent covari-
ates. However, recurrent event data often involve time-dependent covariates as well.
Miloslavsky et al. (2004) proposed an inverse probability of censoring weighted esti-
mator for the regression parameters in the Andersen–Gill model for recurrent event
data in the presence of time-dependent covariates and dependent censoring. Analysis
of multivariate recurrent data in the presence of time-dependent covariates was studied
by Sun et al. (2009) and Zhao et al. (2012). Regression analysis of recurrent event data
with time-dependent covariates and informative censoring was studied by Huang et al.
(2010) which allows correlations between censoring times and recurrent event process
via frailty. Therefore, it is of interest to develop methods for the regression analysis
of doubly censored recurrent events in the presence of time-dependent covariates, and
work in this direction will be studied separately.

In the analysis of recurrent event data, two common time scales are often employed:
the total time and the time since the last event (gap time). Recurrent event data subject
to double censoring can be modeled using the gap times between recurrent events.
A semiparametric transformation model can be developed for such data type, which
include proportional hazards and proportional odds models as special cases. Further,
one can develop inference procedures for doubly censored recurrent event data with
multiplemodes of recurrence. Themodeling and analysis of doubly censored recurrent
event data using frailty models is not yet discussed in literature. These problems are
under investigation and will be reported in separate studies.
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Appendix

A: Proofs of results in Sect. 2.1

We make use of the results in Cai and Cheng (2004), for doubly censored data in a
non-recurrent setup to prove the theorems stated in Sect. 2.1. Sun and Wei (2000)
proved the asymptotic results of the estimators of regression parameters of panel
count data with covariate-dependent observation and censoring times, in a similar
way. Furthermore, the consistency and asymptotic normality of γ̂ and τ̂ , which are the
regression coefficients in a proportional hazard model, have already been established
in the literature and are stated below.

Theorem A.1 Under the regularity conditions C1–C4, the estimator γ̂ is consistent.
Further,

√
n(γ̂ − γ ) can be approximated by a p−variate normal distribution with

mean vector 0 and variance–covariance matrix given by

B−1(γ )

(
n∑

i=1

di (γ )dT
i (γ )

)
B−1(γ )

where

B(γ ) = −∂U1(γ )

∂γ

and

di (γ ) =
∫ yb

ya

⎡

⎢⎢⎣Zi −

n∑
i=1

I (Ui ≥ t) exp(γ TZi )Zi

n∑
i=1

I (Ui ≥ t) exp(γ TZi )

⎤

⎥⎥⎦

⎡

⎢⎢⎣d N (1)
i (t) − I (Ui ≥ t) exp(γ TZi )

n∑
i=1

I (Ui ≥ t) exp(γ TZi )

d N̄1(t)

⎤

⎥⎥⎦ (5.1)

with N̄1(t) =
n∑

i=1
N (1)

i (t).

Theorem A.2 Under the regularity conditions C1–C4, the estimator τ̂ is consistent.
Also,

√
n(τ̂ − τ ) can be approximated by a p−variate normal distribution with mean

vector 0 and variance–covariance matrix given by

P−1(τ )

(
n∑

i=1

ei (τ )eT
i (τ )

)
P−1(τ )

123



198 Japanese Journal of Statistics and Data Science (2024) 7:183–202

where

P(τ ) = −∂U2(τ )

∂τ

and

ei (τ ) =
∫ yb

ya

⎡

⎢⎢⎢⎣Zi −

n∑
i=1

I (Vi ≥ t) exp(τTZi )Zi

∑n
i=1 I (Vi ≥ t) exp(τTZi )

⎤

⎥⎥⎥⎦

[
d N (2)

i (t) − I (Vi ≥ t) exp(τTZi )∑n
i=1 I (Vi ≥ t) exp(τTZi )

d N̄2(t)

]

(A.1)

with N̄2(t) =
n∑

i=1
N (2)

i (t) (see Lawless and Nadeau (1995)).

Proof of Theorem 2.1

Proof Substituting (2.5) in (2.6) , followed by simple algebraic manipulation, yields

U (β) =
n∑

i=1

∫ yb

ya

N∗
i (t)[Zi − Z̄(t)]dk(t) = 0, (A.3)

where

Z̄(t) =
∑n

i=1 Yi (t) exp(βTZi )Zi∑n
i=1 Yi (t) exp(βTZi )

. (A.4)

Now, using the idea discussed in Du and Lv (2022), U (β) can be written as

U (β) =
n∑

i=1

∫ yb

ya

[Zi − Z̄(t)]Mi (t)dk(t) = 0. (A.5)

Using the Taylor expansion ofU (β) around β0, where β0 is the true value of β, yields

√
n(β̂ − β0) = √

n A−1U (β0) + op(1), (A.6)

where

A = E

( ∫ yb

ya

(Zi − z̄(t))T(Zi − z(t))μ0(t) exp(β
TZi )W (t |Zi )dk(t)

)
, (A.7)

with z̄(t) as the limit of Z̄(t) (Du & Lv, 2022). Further, note that, supt |�̂l(t |Z) −
�l(t |Z)| → 0 for l = 1, 2, almost surely (see Lawless (2011)). Then, it is easy to
follow that supt |Ḡn(t |Z) − Ḡ(t |Z)| → 0 and supt |H̄n(t |Z) − H̄(t |Z)| → 0 almost
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surely. Thus, supt |W̄n(t |Z) − W̄ (t |Z)| → 0 almost surely. Along with this, using
the arguments similar to that of Lin et al. (2000), it follows that

√
n(β̂ − β) can be

approximated by a p−variate normal distribution with mean vector 0 and variance–
covariance matrix given by �, where

� = 1

n
A−1

(
n∑

i=1

�i�
T
i

)
A−1 (A.8)

with

�i =
∫ yb

ya

(Zi − z̄(t))

⎡

⎣
mi∑

j=1

I (Xi j ≤ t ≤ Ui ) − W (t |Zi )μ0(t) exp(β
TZi )

⎤

⎦ dk(t).

(A.9)

Now, a consistent estimator of � is given by 1
n Â−1

(∑n
i=1 �̂i �̂

T
i

)
Â−1, where �̂i is

obtained by replacing all the theoretical quantities in �i with their estimates and

Â−1 = 1

n

n∑

i=1

∫ yb

ya

(Zi − z̄(t))T(Zi − z̄(t))μ̂0(t) exp(β̂
T
Zi )W̄ (t |Zi )dk(t).

(A.10)

Similar results are derived in Cai and Cheng (2004) for double censoring data in a
non-recurrent scenario. �	

Proof of Theorem 2.2

Proof We first write

μ̂0(t) − μ0(t) = (μ̂0(t, β̂) − μ̂0(t,β0)) + (μ̂0(t,β0) − μ0(t)). (A.11)

Using Taylor series expansion of μ̂0(t) in β0, the first term on the right side of A.11,
equals to

√
n(μ̂0(t, β̂) − μ̂0(t,β0)) = ∂μ̂0(t,β0)

∂βT

√
n(β̂ − β0) + op(1). (A.12)

By the uniform strong law of large numbers and Lemma 1 of Lin et al. (2000), we
obtain

sup
0≤t≤t∗

∥∥∥∥
∂μ̂0(t,β0)

∂βT + D(t,β0)

∥∥∥∥ → 0
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almost surely, where D(t,β0) is given in Theorem 2.2. Also, we have

sup
t

∥∥W̄n(t |Z) − W (t |Z)
∥∥ → 0

almost surely. From (A.6)

√
n(β̂ − β0) = √

n A−1U (β0) + op(1)

= A−1√n
n∑

i=1

∫ yb

ya

Yi (t){Zi − Z̄(t)}Mi (t)dk(t) + op(1).

(A.13)

Therefore, by (A.11)–(A.13), we get

√
n{μ̂0(t, β̂) − μ̂0(t,β0)}

= −D(t;β0)A−1√n
n∑

i=1

∫ yb

ya

Yi (t){Zi − Z̄(t)}Mi (t)dk(t) + op(1), (A.14)

In addition, for 0 ≤ t ≤ τ
′

√
n{μ̂0(t;β0) − μ0(t)} = n−1/2

n∑

i=1

Mi (t;β0)

n−1
∑n

i=1 Yi (t) exp(βTZi )
. (A.15)

Hence, Lemma 1 of Lin et al. (2000) implies that uniformly in t

√
n{μ̂0(t;β0) − μ0(t)} = n−1/2

n∑

i=1

Mi (t;β0)

E
[
Yi (t) exp(βTZi )

] + op(1). (A.16)

Finally, it follows from (A.11)–(A.16) that:

√
n{μ̂0(t; β̂) − μ0(t)} = √

n
n∑

i=1

ψi (t) + op(1) (A.17)

uniformly in t ,whereψi (t) is defined inTheorem2.2.Hence, for each t ,
√

n{μ̂0(t; β̂)−
μ0(t)} follows an asymptotic behavior similar to a sum of independent and identically
distributed mean-zero variables. By employing the multivariate central limit theorem,
this expression converges, in finite-dimensional distribution, to a zero-mean Gaussian
process. Utilizing modern empirical process theory, as described in Lin et al. (2000),
we can ascertain that ψi (t) is a tight function. Consequently,

√
n{μ̂0(t; β̂) − μ0(t)}

is also a tight function and weakly converges to a mean-zero Gaussian process, with
a covariance function �(s, t) = E(�1(s)�1(t)) at (s, t) . �	
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