
Japanese Journal of Statistics and Data Science (2024) 7:507–535
https://doi.org/10.1007/s42081-023-00231-0

ORIG INAL PAPER

Stein Estimation and Statistical Shrinkage Methods

Stein-rule M-estimation in sparse partially linear models

Enayetur Raheem1 · S. Ejaz Ahmed2 · Shuangzhe Liu3

Received: 4 August 2023 / Revised: 3 November 2023 / Accepted: 5 November 2023 /
Published online: 23 December 2023
© The Author(s) under exclusive licence to Japanese Federation of Statistical Science Associations 2023

Abstract
We propose and investigate the statistical properties of shrinkage M-estimators based
on Stein-rule estimation for partially linear models under the assumption of sparsity.
We are mainly interested in estimating regression coefficients parameter sub-vector
with strong signals when the sparsity assumption may or may not hold. Thus, we
consider two models, one including all the predictors, leading to a full (unrestricted,
or over-fitted) model estimation; and the other with only a few influential predictors,
resulting in a submodel (restricted, or under-fitted model) estimation problem. Gen-
erally speaking, submodel estimators perform better than full model estimators, when
the assumption of sparsity is nearly correct. However, a small departure from this
assumption makes submodel estimators biased and inefficient, questioning its appli-
cability for practical reason. On the other hand, the full model estimators may not be
desirable due to interpretability and higher estimation errors, specially when a large
number of predictors are included in the model. For this reason, we propose shrinkage
strategies which combine both full model and submodel estimators in an optimal way.
The asymptotic properties of the suggested estimators have been studied both analyt-
ically and numerically. The asymptotic bias and risk of the estimators are derived in
closed form. In addition, a simulation study is conducted to examine the performance
of the estimators in practical settings when sparsity assumption may or may not hold.
Our simulation results consolidate the theoretical properties of the estimators.
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1 Introduction

We study robust shrinkage M-estimation in partially linear models (PLM) with a
scaled error term. Ahmed et al. (2006) considered robust shrinkage-estimation of
regression parameters when it is a priori suspected that the regression parameters could
be restricted to a linear subspace. They studied the asymptotic properties of variants of
Stein-ruleM-estimators. For some insights on shrinkage estimation strategies, we refer
to Ahmed and Fallahpour (2012), Ahmed and Raheem (2012), Raheem et al. (2012),
Ahmed (2014), Ma et al. (2014), Ahmed et al. (2016), Sun et al. (2020) and Opoku
et al. (2021). Recently, Ahmed et al. (2023) extended shrinkage strategies to high-
dimension when the sparsity assumption cannot be judiciously justified. Maruyama
et al. (2023) presented both classical and recent shrinkage estimation developments
including results of admissibility of generalized Bayes estimators in the presence of a
nuisance scale parameter.

Application of robust statistical techniques, including M-estimation and related
approaches, to address modeling and prediction challenges are found in various
domains, e.g. industrial data modeling (Zhou et al., 2020), disease incidence pre-
diction (Susanti et al., 2020), and ratio-type estimation (Rather et al., 2022). These
techniques are valuable for handling data imperfections, outliers, and non-normality.

Related works also include those by Arashi et al. (2014). They discussed the
improvement of preliminary tests and Stein-rule Liu estimators specifically tailored
for the ill-conditioned elliptical linear regression model. The authors focused on
addressing the challenges posed bydata that exhibitmulticollinearity or non-normality,
providing more accurate estimations in such scenarios. Norouzirad and Arashi (2019)
discussed the use of preliminary tests and Stein-type shrinkage ridge estimators in the
context of robust regression. They explored methods for improving the robustness and
accuracy of regression models, particularly when dealing with outliers or influential
data points. Recently, Shih et al. (2021) proposed a robust ridge M-estimators, incor-
porating pretests and Stein-rule shrinkage techniques for estimating the intercept term
in regression models. They aimed to enhance the robustness of ridge regression when
dealing with outliers and influential observations. On the other hand, in addition to the
original results onHuber typeM-estimation, a review of recent results and applications
was given by e.g. Farcomeni and Ventura (2012).

Generally speaking, a PLM is more flexible than a linear model since it includes a
nonlinear component along with the linear components. A PLM may provide a better
alternative to the classical linear regression model in a situation where one or more
predictors have nonlinear relationship with the response variable. Robust regression
models are designed to overcome some of the limitations of classical linear regression
in a host of scenarios. For example, least squares regression is highly sensitive to
outliers, and is subject to underlying assumptions. Any violation of these assumptions
may have serious impact on the validity of the fitted model.
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In this paper, we extend the available works to a PLM, and develop shrinkage M-
estimators. We construct shrinkage M-estimators of regression parameters under the
sparsity assumption. Our analytical and numerical results establish the superiority of
shrinkage M-estimators over full model and submodel M-estimators. We focus on
shrinkageM-estimation of regression coefficients in a PLMwhen sparsity assumption
may or may not hold. In our setup, the nonparametric part is estimated by the kernel-
based method.

1.1 Statement of the problem

Consider a PLM of the form

Y = Xβ + g(T ) + σ e, (1.1)

where Y = (y1, y2, . . . , yn)� is an n-response vector, X = (x�
1 , x�

2 , . . . , x�
n )� is

the n × p design matrix with xi ’s as known row p-vectors, β = (β1, β2, . . . , βp)
�

is the p-vector of regression parameters, g(T ) = (g(t1), g(t2), . . . , g(tn))� is an
unknown real-valued function, e = (e1, e2, . . . , en)� is the n-vector of random errors
with mean E(e) = 0, ei ’s are independent and identically distributed (iid) random
variables having a continuous distribution, F , free from any unknown scale parameter
σ > 0, where the ()� denotes transpose of a vector or a matrix. In passing, we would
like to remark here that without loss of generality the intercept term is not included in
establishing the asymptotic properties of the estimators.

Under the assumption of the sparsity, the data matrix X can be partitioned as
X = (X1 : X2) with β = (β�

1 ,β�
2 )�, where X1 and X2 are n × p1 and n × p2

submatrices of predictors with strong signals and no signals, respectively. Thus, the
model can be rewritten as

Y = X1β1 + X2β2 + g(T ) + σ e, p = p1 + p2 < n.

Under the assumption of sparsity, that is, β2 = 0, then we have the submodel,
under-fitted or restricted model as follows:

Y = X1β1 + g(T ) + σ e, p1 < n,

and the remaining discussion follows.
In practice, the submodel can be readily obtained by applying a suitable variable

selection method to full model. We are primarily interested in estimating β1, when β2
may or may not be a null vector. In other words, when practitioners may not be certain
that model is fully sparse or not. In an effort to help data analyst, we propose shrinkage
M-estimates based on Stein-rule to improve the performance of the under-fitted model
estimators.

The remainder of the paper is organized as follows. In Sect. 2, we define a kernel-
based least-squares (LS) estimators and discuss a two-step procedure to estimate
the nonparametric function in a PLM. In Sect. 3, we propose Stein-rule shrinkage
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M-estimators. Asymptotic properties of the estimators are presented in Sect. 4. The
expressions for asymptotic bias and risk for the estimators are derived in Sect. 5.Monte
Carlo simulation results are conducted in Sect. 6. Our concluding remarks are made in
Sect. 7. Finally, our derivations of the theoretical results are included in the appendix.

2 Proposed LS estimation

In this section, we propose our robust LS estimationmethodwith a two-step procedure.
Again, consider a PLM of the form

Y = Xβ + g(T ) + σ e, (2.1)

We first linearize (2.1) by estimating g(·) using kernel smoothing. We then con-
fine ourselves to the estimation of β based on the partial residuals which attains the
usual parametric convergence rate n−1/2 without under-smoothing the nonparametric
component g(·); see e.g. Speckman (1988).

Now, we describe the estimation process. We assume
{
yi , x�

i , ti ; i = 1, 2, . . . , n
}

satisfy (2.1). If β is the true parameter, then by E(ei ) = 0, we have

g(ti ) = E(yi − x�
i β), i = 1, 2, . . . , n.

A natural nonparametric estimator of g(·) given β is

g∗(t,β) =
n∑

i=1

Wni (t)(yi − x�
i β),

where

Wni (t) = K ((ti − t)/h)
∑n

j=1 K ((t j − t)/h)
, (2.2)

with K (·) being a kernel function which is a non-negative function integrable on R,
and h being a bandwidth parameter. We need to make the assumptions as outlined in
Appendix B.

Now, we define the conditional expectations

γ0(t) = E(y|T = t), and

γ (t) = (γ1(t), γ2(t), . . . , γn(t))
�,

where γ j (t) = E(x j |T = t).
We estimate β using

β̂ = argmin SS(β) = (X̃
�
X̃)−1 X̃

�
Ỹ , (2.3)
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with

SS(β) =
n∑

i=1

(
yi − x�

i β − g∗(ti ,β)
)2 =

n∑

i=1

(ỹi − x̃�
i β)2, (2.4)

where Ỹ = (ỹ1, ỹ2, . . . , ỹn)�, X̃ = (x̃1, x̃2, . . . , x̃n)�, ỹi = yi − γ0(t), and x̃i =
xi − γ (t) for i = 1, 2, . . . , n.

The conditional expectations γ0(t) and γ (t) are obtained using a classical nonpara-
metric approach through

γ̂0(t) =
n∑

i=1

Wni (t)yi , and

γ̂ j (t) =
n∑

i=1

Wni (t)xi j ,

whereWni (t) is defined in (2.2). Clearly, once we obtain the estimates γ̂0(t) and γ̂ j (t),
they can be plugged into (2.4) prior to the estimation of β.

The above procedure was independently proposed by Denby (1986) and Speck-
man (1988). A similar approach was taken by Ahmed et al. (2007) in estimating the
nonparametric component in a PLM.

We obtain the robust M-estimators of the parameters of a PLM using a two-step
procedure as follows:

Step 1 We first estimate γ0(t) and γ j (t) through kernel smoothing as described above.
We denote the estimates by γ̂0(t) and γ̂ j (t), respectively.

Step 2 The estimates in Step 1 are then plugged into (2.2). So the estimator β̂ of β can
be obtained by regressing the residuals yi − γ̂0(t) and xi − γ̂ (t) using a robust
procedure. We denote the residuals as r̂i = yi − γ̂0(t) and ui = xi − γ̂ (ti ).

Consistency and asymptotic normality of the estimators can be found in Appendix
Section B.1 and the reference therein.

3 Proposed shrinkageM-estimation strategies

In this section, we propose our full model and submodel estimators, and formulate a
test statistic which has asymptotically a non-central χ2 distribution.

Let β̂
RM
1 be the restricted estimator ofβ1 whereβ2 = 0, and β̂UM

1 be the unrestricted
estimator of β1 when β2 may not be a null vector. Following Ahmed (2014), a Stein-

type M-estimator (SM), β̂
SM
1 of β1 can be defined as

β̂
SM
1 = β̂

RM
1 + (β̂

UM
1 − β̂

RM
1 )

{
1 − κψ−1

n

}
, for κ = p2 − 2 and p2 ≥ 3,
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where ψn is a distance statistic defined later in (3.7). To avoid the over-shrinkage
problem, the positive-rule Stein-type M-estimator (SM+) has the form

β̂
SM+
1 = β̂

RM
1 + (β̂

UM
1 − β̂

RM
1 )

{
1 − κψ−1

n

}+
, for p2 ≥ 3,

where z+ = max(0, z).

3.1 Full model and submodel estimation strategies for ˆ̌
1

For a suitable absolutely continuous function ρ : R → R, with derivative φ, an
M-estimator of β is defined as a solution of the minimization

min
β

n∑

i=1

ρ(ỹi − x̃�
i β). (3.1)

Generally, an M-estimator is regression-equivariant, i.e.,

Mn(cY + Xa) = cMn(Y) + c a, for a ∈ Rp,

and robustness depends on the choice of ρ(·). But it is generally not scale-equivariant.
That is, it may not satisfy

Mn(cY) = cMn(Y), for c > 0.

To have the estimators scale and regression equivariant, we need to studentize them.
The studentized M-estimator is defined as as solution of the minimization

min
β∈Rp

n∑

i=1

ρ

(
ỹi − x̃�

i β

Sn

)

, (3.2)

where Sn = Sn(Y) ≥ 0 is an appropriate scale statistic that is regression equivariant
and scale equivariant, i.e.,

Sn(c(Y + Xa)) = cSn(Y), for a ∈ Rp and c > 0.

According to Jurečcková and Sen (1996), the minimization in (3.2) should be sup-
plemented by a rule how to define Mn in the case when Sn(Y) = 0. However, in
general, this happens with probability zero, and the specific rule does not affect the
asymptotic properties of Mn . There are additional regularity conditions needed with
(3.2), which we present in Appendix A. Further details may be found in Jurecčková
and Sen (Jurečcková and Sen (1996), page 217).
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Now, in an effort to define the M-estimator for β1, we define C = X�X with
X = (X1 : X2) as follows:

C =
(
C11 C12
C21 C22

)
=

(
X�
1 X1 X�

1 X2

X�
2 X1 X�

2 X2

)

Also, we define

C22.1 = C22 − C21C
−1
11 C12.

Note that, if C21 = 0, then C22.1 = C22. Otherwise, C22 − C22.1 is positive semi-
definite. We assume that C and C22.1 are positive.

A studentized unrestricted M-estimator of β is defined as a solution of (3.2). Let
us denote it by

β̂
UM =

((
β̂
UM
1

)�
,
(
β̂
UM
2

)�)�
.

A studentized restricted M-estimator of β1 is obtained by minimizing

min
β1∈Rp1

n∑

i=1

ρ

(
ỹi − x̃�

i1β1

Sn

)

, (3.3)

where Sn is regression-invariant so is not affected by the restricted environment. Since

ρ(·) is assumed to have derivative φ(·), we rewrite β̂
UM

as a solution of

Mn(θ) =
n∑

i=1

x̃i φ

(
ỹi − x̃�

i θ

Sn

)

= 0. (3.4)

In other words,

Mn(β̂
UM

) = 0.

Similarly, β̂
RM
1 is a solution of

Mn1(θ1) =
n∑

i=1

x̃i1 φ

(
ỹi − x̃�

i1θ1

Sn

)

= 0. (3.5)

Now, let

M̂
RM
n2 =

n∑

i=1

x̃i2 φ

(
ỹi − x̃�

i1β̂
RM
1

Sn

)

. (3.6)

Note that Mn is a (p1 + p2)-vector, Mn1 is a p1-vector and M̂
RM
n2 is a p2-vector.
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3.2 Test statistic

Following (Jurečcková and Sen (1996), Sect. 10.2) a suitable test statistic can be
formulated as follows:

ψn =
[
M̂

RM
n2

]�
C−1
22.1

[
M̂

RM
n2

]

σ̂
n

, (3.7)

where

σ̂ 2

n

= (n − p2)
−1

n∑

i=1

φ2

(
ỹi − x̃�

i1β̂
RM
1

Sn

)

. (3.8)

Directly applying the Lemma 5.5.1 in (Jurečcková and Sen (1996), page 220), it can
be shown that under the sparsity assumption, that is, β2 is a null vector

ψn
d−→ χ2

p2 .

Further, under (local) alternative hypothesis ψn has a non-central χ2 distribution.
It is to be mentioned here that unlike LS estimators, M-estimators are not linear.

Even if the distribution function F is normal, the finite sample distribution theory
of M-estimators is not simple. Asymptotic methods Jurečcková and Sen (1996) have
been used to overcome this difficulty.

4 Asymptotic properties of the estimators

In this section, we establish the asymptotic properties of the estimators. This facil-
itates in finding the asymptotic distributional bias (ADB), asymptotic distributional
quadratic bias (ADQB), and asymptotic distributional quadratic risk (ADQR) of the
estimator of the regression parameter vector β1.

Under the assumed regularity conditions

lim
n→∞

Cn

n
= Q, (4.1)

where

Q =
(
Q11 Q12
Q21 Q22

)
,

it is known that under non-sparsity assumption, that is under local alternatives,β2 �= 0,

ψn

n
→ γ (β̂1, β̂2; Q) > 0, as n → ∞,
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such that the shrinkage factor κψ−1
n = Op(n−1). This implies, asymptotically, there

is no shrinkage effect. Therefore, to obtain meaningful asymptotics, we consider a
class of local alternatives, {Kn}, given by

Kn : β2 = β2n = ω√
n
, (4.2)

where ω = (ω1, ω2, . . . , ωp2)
� ∈ Rp2 is a fixed vector and ||ω|| < ∞, so that the

null hypothesis H0 : β2 = 0 reduces to H0 : ω = 0.
For an estimator β∗

1 and a positive-definite matrix W , we define the loss function
of the form

L(β∗
1;β1) = n(β∗

1 − β1)
�W(β∗

1 − β1).

Thus, the risk function is defined as follows:

R[(β∗
1,β1);W ] = nE[(β∗

1 − β1)
�W(β∗

1 − β1)]
= n tr[W{E(β∗

1 − β1)(β
∗
1 − β1)

�}]
= tr(W�∗), (4.3)

where tr denotes the trace operator and �∗ is the covariance matrix of
√
n(β∗

1 − β1).

Whenever limn→∞ �̂
∗
n = �̂

∗
exists, the asymptotic risk is defined by

Rn(β
∗
1n,β1;W) → R(β∗

1,β1;W) = tr(W�̂
∗
).

Consider the asymptotic cumulative distribution function (cdf) of
√
n(β∗

1n − β1)

under {Kn} exists, and is defined as

G( y) = P
[
lim
n→∞

√
n(β∗

1n − β1) ≤ y
]
.

This is known as the asymptotic distribution function (ADF) of β∗
1. Suppose that

Gn → G at all points of continuity as n → ∞, and let �̂
∗
be the covariance matrix

of G. Then the ADR is defined as

R(β∗
1,β1;W) = tr(W�∗

G).

As noted in Ahmed et al. (2006), if Gn → G in second moment, then ADR is
the asymptotic risk. However, this is a stronger mode of convergence, and is hard
to analytically prove for shrinkage M-estimators. Therefore, they suggested using
asymptotic distributional risk.

Now let

� =
∫ ∫

· · ·
∫

y y�dG( y)
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be the dispersion matrix which is obtained from ADF. The asymptotic distributional
quadratic risk (ADQR) may be defined as

R(β∗
1;β1) = tr(W�), (4.4)

where � is the asymptotic distributional mean squared error (ADMSE) of the estima-
tors.

To establish the asymptotic properties of the estimators, we present two important
theorems.

Theorem 1 Consider an absolutely continuous function f (·) with derivative f ′(·)
which exists everywhere, and finite Fisher information

I ( f ) =
∫

R

(− f ′(x)
f (x)

)2

dF(x) < ∞.

Under {Kn} and the assumed regularity conditions, ψn has asymptotically a non-
central chi-square distribution with non-centrality parameter � = ω� Q22.1ωγ −2,
where

γ 2 =
∫
R φ2(y)dF(y)

∫
R φ(x)[− f ′(x)/ f (x)]2dF(x)

, (4.5)

and φ(·) is defined in (3.4) or Appendix A.

Theorem 2 We have, under the assumed regularity conditions, as n → ∞
√
n(β̂

UM − β)
d→ Np(0, γ 2Q−1). (4.6)

Proofs of these theorems are available in Jurečcková and Sen (1996).

5 Asymptotic bias and risk of the estimators

In this section, we present the asymptotic distribution, bias and risk results for each
of our estimators. We also compare their risk performances.

Theorem 3 Under the local alternative Kn and the assumed regularity conditions, we
have as n → ∞
(i) η1 = √

n(β̂
UM
1 − β1)

d→ N (0, γ 2Q−1
11.2),

(ii) η2 = √
n(β̂

UM
1 − β̂

RM
1 )

d→ N (δ,	∗), δ = −Q−1
11 Q12ω,

(iii) η3 = √
n(β̂

RM
1 − β1)

d→ N (−δ,�∗), �∗ = γ 2Q−1
11 .

We have, under {Kn}
√
n

(
(β̂

UM
1 − β1)

�, (β̂
UM
2 − n− 1

2 ω)�
)� d→ N (0, γ 2Q−1),
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where Q is partitioned as in (4.1).
Also, we have the joint distributions as follows:

(
η1
η2

)
∼ N

[(
0
δ

)
,

(
γ 2Q−1

11.2 	12
	21 	∗

)]

(
η2
η3

)
∼ N

[(
δ

−δ

)
,

(
	∗ �12
�21 �∗

)]
.

The proof for this theorem is given in Appendix C.

5.1 Asymptotic bias of the estimators

The asymptotic distributional bias (ADB) of an estimator β∗ is defined as

ADB(β∗) = E
{
lim
n→∞ n

1
2 (β∗ − β)

}
.

Theorem 4 Under the assumed regularity conditions and the stated theorems above,
and under {Kn}, the ADB of the estimators are as follows:

ADB(β̂
UM
1 ) = 0

ADB(β̂
RM
1 ) = −δ

ADB(β̂
SM
1 ) = κδE

{
χ−2
p2+2(�)

}

ADB(β̂
SM+
1 ) = ADB(β̂

SM
1 ) − δ

[
Hp2+2(κ,�) − E

{
κχ−2

p2+2(�)I (χ2
p2+2(�) < κ)

}]
,

where E
{
χ−2
a (�)

}
is the expected value of an inverse of a non-central χ2 random

variable with a degrees of freedom and non-centrality parameter �, and Ha(y,�)

is the cdf of the a non-central χ2 random variable with a degrees of freedom and
non-centrality parameter �.

The proof for this theorem is given in Appendix D.
Let us define the asymptotic distributional quadratic bias (ADQB) of an estimator

β∗ of β1 by

ADQB(β∗) = [ADB(β∗)]�	−1[ADB(β∗)],

where	 is the dispersion matrix of β̂
UM
1 as n → ∞. In our case, the dispersion matrix

is Q11. Thus, the asymptotic quadratic distributional bias of the estimators are given
below.

ADQB(β̂
UM
1 ) = 0,

ADQR(β̂
RM
1 ) = δ� Q−1

11 δ
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ADQB(β̂
SM
1 ) = κ2δ� Q−1

11 δ
[
E

{
χ−2
p2+2(�)

}]2

ADQB(β̂
SM+
1 ) = δ� Q−1

11 δ
[
Hp2+2(κ,�) − E

{
κχ−2

p2+2(�)I (χ2
p2+2(�) < κ)

}]
.

The above expression reveal that, as expected, the unrestricted estimator of β1 is
asymptotically unbiased. On the other, the bias function of restricted estimator is a
function of the sparsity parameter (non-centrality parameter �), so under the sparsity
assumption, the estimator is asymptotically unbiased. However, it is an unbounded
function of �, not a desirable property.

It can be seen that both shrinkage estimators are also function of �, more impor-
tantly, they are bounded function of the non-centrality parameter. The magnitude of
bias increases as � increases and then converges to zero as � → ∞. As expected the
bias curve of positive-part shrinkage estimator is below or equal the curve the curve
of the shrinkage estimators.

The bias is a function of MSE (risk), so onward we focus on the risk properties of
the estimators.

5.2 Asymptotic risk and risk performance of the estimators

In Appendix E, we present the derivation of the expressions for asymptotic distribu-
tional mean square error (ADMSE), and consequentially the risk expressions of the
respective estimators.

From the ADMSE and ADQR results in Appendix E, we see clearly that the risk
of the classical unrestricted estimator is independent of the sparsity assumption, so

its risk take a constant value of tr(W�(β̂
UM
1 )). On the other hand, the risk of the

restricted estimator depends on the sparsity assumption, and when the assumption is

nearly correct then R(β̂
RM
1 ) ≤ R(β̂

UM
1 ) and a strict inequality will hold for some

values in the parameter space induced by the sparsity parameter. However, beyond
this small interval in the parameter space, the unrestricted estimator will dominate the
restricted estimator. As amatter of fact of the the restricted estimator risk is unbounded
function of sparsity parameter, a undesirable property.

Interestingly, but not surprisingly, both shrinkage estimators are superior to bench-
mark estimators in the entire parameter space. For a suitable choice of W , it can

be verified that R(β̂
SM
1 ) ≤ R(β̂

SM+
1 ) ≤ R(β̂

UM
1 ), and the strict inequality will hold

for some values in the parameter space. Thus, the shrinkage estimators dominate the
classical M-estimator. Further, the shrinkage estimators will outperform the restricted
estimator except in a small interval where sparsity assumption may hold. Thus, we
recommend the use of the shrinkage estimators, they are in closed form and free from
any tuning parameter.
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6 Simulation studies

In this section, we conduct a simulation study to appraise the performance of in
practical setting and to quantify the relative behavior of the estimators. We perform
Monte Carlo simulation experiments to examine the quadratic risk performance of the
proposed estimators. We simulate the response from the following model:

yi =
p1∑

l=1

xilβl +
p∑

m=p1+1

ximβm + sin(4π ti ) + εi (6.1)

where βl is a p1 × 1 vector and βm is p2 × 1 vector of parameters with p = p1 + p2,
and εi ∼ N (0, 1), i = 1, . . . , n. Furthermore, xi1 = (ζ

(1)
i1 )2 + ζ

(1)
i + ξi1, xi2 =

(ζ
(1)
i2 )2 + ζ

(1)
i + 2ξi2, xis = (ζ

(1)
is )2 + ζ

(1)
i with ζ

(1)
is ∼ N (0, 1), ζ (1)

i ∼ N (0, 1), ξi1 ∼
Bernoulli(0.35) and ξi2 ∼ Bernoulli(0.35) for all s = 3, . . . , p.

We are interested in testing the assumption of the sparsity in the form of statistical
hypothesis H0 : (βp1+1, βp1+2, . . . , βp1+p2) = 0. Our aim is to estimate β1 when
sparsity assumption may or may not be true. We partition the regression coefficients
as β = (β�

1 ,β�
2 ). Each realization was repeated 5000 times to obtain stable results.

For each realization, we calculated the MSE of the estimators.
We define �∗ = ||β − β(0)||, where β(0) = (β�

1 , 0)� and || · || is the Euclidean
norm. In addition,�∗ and Sn were estimated bymedian absolute deviation (MAD). To
determine the behavior of the estimators for �∗ > 0, further data sets were generated
from those distributions under the alternative hypothesis.

6.1 Error distributions

In an effort to evaluate the performance of the proposed estimators numerically, we
perform a simulation study. We generate data from four different error distributions,
namely the standard normal, contaminated normal, standard logistic distribution, and
standard Laplace distribution, respectively.

The cumulative distribution function

F(x) = λN (0, ω2) + (1 − λ)N (0, 1) (6.2)

was used to generate the standard normal and contaminated normal errors, where λ

is the parameter indicating whether the standard normal or its contaminated version
is returned. We consider λ = 0 and λ = 0.9, respectively. Indeed, for λ = 0 we
get the standard normal errors, while for λ = 0.9, with ω2 �= 1, we obtain the scale
contaminated normal errors.

The standard logistic distribution has cdf

F(x) = 1

1 + e−x
, x ∈ R. (6.3)
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The standard Laplace distribution has cdf

F(x) = 1

2

[
1 + sign(x)(1 − e−|x |)

]
, x ∈ R. (6.4)

6.2 Relative risk comparison

The risk performance of an estimator of β1 was measured by comparing its MSE
with that of the unrestricted M-estimator. We numerically calculated the relative MSE

(RMSE) of the proposed estimators β̂
RM
1 , β̂

SM
1 , β̂

SM+
1 to the unrestricted estimator

β̂
UM
1 , given by

RMSE(β̂
UM
1 : β̂

*
1) = MSE(β̂

UM
1 )

MSE(β̂
*
1 )

, (6.5)

where β̂
*
1 is one of the proposed estimators. The amount by which an RMSE is larger

than unity indicates the degree of superiority of the estimator β̂
*
1 over β̂

UM
1 ; see also

Fig. 1.
We compute theRMSEvalues for n = 30, 50 and various configurations of (p1, p2)

based on Huber’s ρ−function. Our results are presented in Fig. 1 and Tables 1–4.
Figure 1 shows the RMSE values of various M-estimators. Here, �∗ indicates the

correctness of the submodel under sparsity assumption. Thus, �∗ > 0 quantify the
degree of deviation from the assumed model. Figure 1 clearly shows that the restricted
estimator is the best when �∗ is close to the origin. However, the restricted estimator
become inefficient and the RMSE goes below 1 very quickly as �∗ deviates from
zero. The RMSE of restricted estimator is depicted by the dashed line in Fig. 1. In
the simulation study, the restricted estimator shows similar behaviour for all the error
distributions considered in this study.

Tables 1–4 portrayed similar characteristic of the estimators. Both shrinkage estima-
tors dominate the classical M-estimator, and positive-rule shrinkage estimator (SM+)
dominates the shrinkage estimator. As for example, Table 1 presents the RMSEs for
(p1, p2) = (3, 5) and n = 30. For the standard normal error, the gain in risk for the
positive-rule shrinkage M-estimator is 3.161 times that of the classical M-estimator
provided that the model specification is correct (i.e., �∗ = 0). For the same config-
uration, when the error distribution is the standard Laplace, the gain in risk for SM+
is 2.273 times that of unrestricted estimator. Interestingly, for the large dimensional
case (p1, p2) = (5, 20) in Table 3, the gain is much higher with the value 7.325 and
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Table 1 RMSE values for
restricted, shrinkage, and
positive shrinkage M-estimators
for (p1, p2) = (3, 5), n = 30,
based on Huber’s ρ−function
for different error distributions

Error �∗ β̂
RM
1 β̂

SM
1 β̂

SM+
1

Standard 0.00 3.695 2.035 3.161

Normal 0.05 3.472 2.084 3.224

0.10 2.386 1.758 2.515

0.15 1.619 1.496 1.835

0.20 1.065 1.216 1.479

0.25 0.814 1.202 1.261

1.00 0.060 0.995 0.997

Contaminated 0.00 3.867 2.163 3.195

Normal 0.05 2.842 1.733 2.621

0.10 2.250 1.707 2.352

0.15 1.476 1.492 1.839

0.20 1.100 1.288 1.473

0.25 0.737 1.082 1.163

1.00 0.060 1.017 1.017

Standard 0.00 3.532 1.921 2.991

Logistic 0.05 3.288 1.922 3.004

0.10 2.400 1.846 2.434

0.15 1.656 1.551 1.853

0.20 1.129 1.323 1.464

0.25 0.758 1.158 1.208

1.00 0.062 0.996 0.996

Standard 0.00 3.853 1.895 2.273

Laplace 0.05 3.628 1.743 2.056

0.10 2.719 1.597 1.974

0.15 2.179 1.426 1.753

0.20 1.418 1.329 1.538

0.25 1.090 1.273 1.360

1.00 0.093 1.014 1.016

4.200, respectively, demonstrating the applicability, power and beauty of the Stein-rule
estimators in high-dimensional cases.

In closing, our numerical results strongly corroborate the theoretical properties of
the suggested estimators.

7 Concluding remarks

In this paper, the shrinkage M-estimation strategies in the context of a partially linear
regression model are developed. The statistical properties of shrinkage and positive-
rule shrinkageM-estimators are investigatedwhen the sparsity assumptionmay ormay
not hold. The expressions for bias and risk of the estimators are presented in closed
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Table 2 RMSE values for
restricted, shrinkage, and
positive shrinkage M-estimators
for (p1, p2) = (3, 9), n = 50,
based on Huber’s ρ−function
for different error distributions

Error �∗ β̂
RM
1 β̂

SM
1 β̂

SM+
1

Standard 0.00 5.552 3.607 5.462

Normal 0.05 4.269 3.098 4.407

0.10 2.574 2.322 2.919

0.15 1.601 1.827 2.027

0.20 1.085 1.503 1.583

0.25 0.726 1.340 1.370

1.00 0.051 0.994 0.994

Contaminated 0.00 5.443 3.576 5.301

Normal 0.05 4.457 3.009 4.510

0.10 2.755 2.442 3.096

0.15 1.668 1.788 2.028

0.20 1.022 1.417 1.500

0.25 0.750 1.313 1.353

1.00 0.051 1.001 1.001

Standard 0.00 5.702 3.364 5.410

Logistic 0.05 4.422 3.316 4.459

0.10 2.641 2.364 2.927

0.15 1.666 1.941 2.139

0.20 1.040 1.475 1.582

0.25 0.710 1.338 1.374

1.00 0.049 1.009 1.009

Standard 0.00 5.827 2.734 3.256

Laplace 0.05 5.187 2.489 2.989

0.10 3.351 2.333 2.624

0.15 2.332 2.142 2.242

0.20 1.462 1.692 1.783

0.25 1.039 1.565 1.606

1.00 0.075 1.021 1.021

form. The relative performance of the estimators is critically examined, the positive-
rule shrinkage estimator is found to perform better than the unrestricted estimator.
Further, it outshines the restricted estimator except in small intervalwhen the submodel
at the hand assumed to be to nearly true model.

In the simulation study, we numerically compute relative mean squared errors of
the restricted-M, shrinkage-M, and positive-rule shrinkage M-estimators compared to
the unrestricted M-estimator. Four different error distributions are considered to study
the performance of the proposed estimators. Our numerical provides support for the
positive-rule shrinkage estimators under varying degrees of model misidentification,
as well. The submodel restricted M-estimator outperforms all other estimators when
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Table 3 RMSE values for
restricted, shrinkage, and
positive shrinkage M-estimators
for (p1, p2) = (5, 9), n = 50,
based on Huber’s ρ−function
for different error distributions

Error �∗ β̂
RM
1 β̂

SM
1 β̂

SM+
1

Standard 0.00 3.838 2.772 3.705

Normal 0.05 3.202 2.438 3.179

0.10 2.494 2.168 2.641

0.15 1.638 1.708 1.923

0.20 1.097 1.453 1.531

0.25 0.778 1.201 1.260

1.00 0.062 1.016 1.016

Contaminated 0.00 3.653 2.592 3.472

Normal 0.05 3.172 2.328 3.161

0.10 2.391 2.035 2.530

0.15 1.632 1.748 1.986

0.20 1.123 1.453 1.550

0.25 0.797 1.244 1.297

1.00 0.064 1.028 1.028

Standard 0.00 3.740 2.730 3.678

Logistic 0.05 3.299 2.554 3.298

0.10 2.424 2.125 2.544

0.15 1.596 1.690 1.931

0.20 1.077 1.383 1.480

0.25 0.769 1.283 1.326

1.00 0.059 1.002 1.002

Standard 0.00 3.919 2.125 2.626

Laplace 0.05 3.872 2.158 2.461

0.10 2.613 1.923 2.207

0.15 2.015 1.798 1.895

0.20 1.519 1.637 1.703

0.25 1.157 1.464 1.528

1.00 0.099 1.022 1.022

there is sparsity. However, a small departure from this condition makes the restricted
very inefficient, questioning its applicability for practical purposes. We suggest to use
positive-rule shrinkage M-estimators due to its performance in the entire parameter
space.

More importantly, the performance positive-rule shrinkage M-estimators is notice-
able when p2 is large, this work can be extended to high-dimensional cases, we
refer to Ahmed et. al. (2023). We plan to study such extensions in a separate
communication.
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Table 4 RMSE values for
restricted, shrinkage, and
positive shrinkage M-estimators
for (p1, p2) = (5, 20), n = 50,
based on Huber’s ρ−function
for different error distributions

Error �∗ β̂
RM
1 β̂

SM
1 β̂

SM+
1

Standard 0.00 7.469 5.415 7.328

Normal 0.05 6.034 4.502 6.145

0.10 3.809 3.343 3.992

0.15 2.230 2.487 2.727

0.20 1.437 1.901 1.985

0.25 1.019 1.638 1.672

1.00 0.072 1.037 1.037

Contaminated 0.00 7.900 5.809 7.974

Normal 0.05 6.115 4.864 6.171

0.10 3.593 3.111 3.820

0.15 2.295 2.446 2.726

0.20 1.491 1.967 2.054

0.25 1.005 1.613 1.636

1.00 0.073 1.028 1.028

Standard 0.00 7.366 5.569 7.238

Logistic 0.05 6.085 4.701 6.042

0.10 3.767 3.391 4.100

0.15 2.296 2.494 2.714

0.20 1.482 1.920 2.004

0.25 1.018 1.589 1.624

1.00 0.072 1.025 1.025

Standard 0.00 8.550 3.841 4.200

Laplace 0.05 7.369 3.424 3.817

0.10 4.973 3.262 3.457

0.15 3.116 2.510 2.622

0.20 2.149 2.266 2.342

0.25 1.473 1.938 1.945

1.00 0.112 1.054 1.054
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Appendix

A. Regularity conditions

Here, we list the regularity conditions needed for the minimization problem in (3.2).
Detailed discussions about these conditions can be found in (Jurečcková and Sen
(1996), p. 217–218).

For the studentized M-estimators, consider that φ = ρ′ can be decomposed as

φ = φ1 + φ2 + φ3, (A.1)

where φ1 is an absolutely continuous function with absolutely continuous derivative,
φ2 is a continuous piecewise linear function that is constant in a neighbourhood of
±∞, and φ3 is a non-decreasing step function.

The following conditions are imposed on (3.2).

RC1 Sn(Y ) is regression invariant and scale equivariant, Sn > 0 a.s., and

√
n(Sn − S) = Op(1)

for some functional S = S(F) > 0.
RC2 The function h(t) = ∫

ρ((z − t)/S)dF(z) has the unique minimum at t = 0.
RC3 For some δ > 0 and η > 1,

∫ ∞

−∞

{

|z| sup
|u|≤δ

sup
|v|≤δ

∣∣∣∣φ
′′
1

(
e−v(z + u)

S

) ∣∣∣∣

}η

dF(z) < ∞

and

∫ ∞

−∞

{

|z|2 sup
|u|≤δ

∣∣∣∣
φ′′
1 (z + u)

S

∣∣∣∣

}η

dF(z) < ∞,

where φ′
1(z) = d

dzφ1(z) and φ′′
1 (z) = d2

dz2
φ1(z).

RC4 φ3 is a continuous, piecewise linear function with knots at μ1, . . . , μk , which
is constant in a neighborhood of ±∞. Hence the derivative φ′

3 of φ3 is a step
function

φ′
3(z) = αν for μν < z < μν+1, ν = 0, 1, . . . , k,

where α0, α1, . . . , αk ∈ R1, α0 = αk = 0 and ∞ = μ0 < μ1 < · · · < μk <

μk+1 = ∞. Further, we assume that f (z) = dF(z)
dz is bounded in neighbourhood

of Sμ j , j = 1, 2, . . . , k.
RC5 φ3(z) = λν for qν < z ≤ qν+1, ν = 1, 2, . . . ,m where −∞ = q0 < q1 <

· · · < qm < qm+1 = ∞, −∞ < λ0 < λ1 < · · · < λm < ∞. We further
assume that f ′(z) and f ′′(z) are bounded in the neighbourhood of Sq j , j =
1, 2, . . . ,m.
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B. Assumptions

Assumption B.1 The function g(·) satisfies the Lipschitz condition of order 1 on [0, 1].
Assumption B.2 The probability weight functions Wni (·) satisfy
a) max1≤i≤n

∑n
j=1 Wni (t j ) = O(1),

b) max1≤i, j≤n
∑n

j=1 Wni (t j ) = O(n−2/3),
c) max1≤ j≤n

∑n
i=1 Wni (t j )I (|ti − t j | > cn) = O(dn), where I is the indicator func-

tion, cn satisfies lim supn→∞ nc3n , and dn satisfies lim supn→∞ nd3n < ∞.

Remark 1 The usual polynomial and trigonometric functions satisfy Assumption B.1.

Remark 2 Under regular conditions, the Nadaraya-Watson kernel weights, Priestley
and Chao kernel weights, locally linear weights and Gasser-Müller kernel weights
satisfy Assumption B.2. If we consider the pdf of U [−1, 1] as the kernel function as

K (t) = 1

2
I[−1,1](t),

with ti = i
n , and the bandwidth cn−1/3 where c is constant, then the Priestley and

Chao kernel weights satisfy Assumption B.2, and the weights are

Wni (t) = 1

2cn
2
3

(∣∣t − i

n

∣∣ ≤ cn− 1
3

)(t)

.

For a detailed discussion on the assumptions above, see Ahmed et al. (2007).

B.1 Consistency and Asymptotic Normality

Now, we denote the random vector (R(T ),U(T )�)� with the same distribution as
(ri , u�

i )�.
Consistency of the regression parameters in a semi-parametric model has been

proved in great detail in Bianco andBoente (2004).We omit the details but present only
the set of assumptions, lemma, and theorem which are needed for proving asymptotic
normality and consistency of the estimators.

Let ρ̃ and W̃ be score and weight functions, respectively. The asymptotic distribu-
tion of β is defined as a solution of

n∑

i=1

ρ̃

(
r̂i − ûi β̂

sn

)

W̃ (||ûi ||)ûi = 0, (B.1)

where r̂i = yi − γ̂0(t), ui = xi − γ̂ (ti ), and sn is an estimate of the residual scale.
To derive the asymptotic distribution of β we must have ti in a compact set, so

without loss of generality, we assume that ti ∈ [0, 1]. We need the following set of
assumptions. See Bianco and Boente (2004) for details.
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A1 ρ̃ is odd, bounded, continuous, and twice differentiable with bounded derivative
ρ̃′ and ρ̃′′ such that φ1(t) = t ρ̃′(t) and φ2(t) = t ρ̃′′(t) are bounded.

A2 E(W̃ (||U(T )||)||U(T )||2) < ∞ and the matrix

A = E

(
ρ̃′

(
R(T ) − U(T )�β

σ

)
W̃ (||U(T )||)U(T )U(T )�

)

is nonzero.
A3 W̃ (u) = ρ̃1(u)u−1 > 0 is a bounded function which satisfies the Lipschitz

condition of order 1. Further, ρ̃1 is bounded with bounded derivative.
A4 E(W̃ (||U(T )||)U(T )|T = t) = 0 for almost all t .
A5 The functions x j (t), 0 ≤ j ≤ p are continuous in [0, 1] with continuous first

derivative.

Remark 3 According to Robinson (1988), condition A2 is needed so that no element
of X can be predictable by T . A2 guarantees that there is no multicollinearity in the
columns of X − X̃ j (T ). In other words, X has to be free from multicollinearity. Also,
condition A5 is a standard requirement in kernel estimation in semi-parametric models
in order to guarantee asymptotic normality.

Lemma B.1 Let (yi , x�
i , ti )�, 1 ≤ i ≤ n be independent random vectors satisfying

(2.1) with ei independent of (x�
i , ti )�. Assume that ti are random variable with ti ∈

[0, 1]. Denote (R(T ),U(T )�)� a random vector with the same distribution as

(ri , u�
i )� = (yi − γ̂0(ti ), [xi − γ̂ (ti )]�)�.

Further, let γ̂ j (ti ), 0 ≤ j ≤ p be the estimates of γ j (ti ) such that

∑

t∈[0,1]
|γ̂ j (t) − γ j (t)| p−→ 0, 0 ≤ j ≤ p.

If β̃
p−→ β and sn

p−→ σ , then under the stated assumptions A1-A3, An
p−→ A,

where A is defined in A2, and

An = n−1
n∑

i=1

ρ̃′
(
r̂i − û�

i β̂

sn

)

W̃ (||ûi ||)ûi û�
i ,

where
p−→ denotes convergence in probability.

Proof The proof is available in the appendix of Bianco and Boente (2004).

Theorem B.1 Let (yi , x�
i , ti )�, 1 ≤ i ≤ n be independent random vectors satisfying

(2.1) with ei independent of (x�
i , ti )�. Assume that ti are random variables with

tin ∈ [0, 1]. Denote (R(T ),U(T )�)� a random vector with the same distribution as

(ri , u�
i )� = (yi − γ0(ti ), (xi − γ (ti ))

�)�.
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Further, let γ̂ j (t), 0 ≤ j ≤ p be estimates of γ j (t) such that first derivative of γ̂ j (t)
exists and is continuous, and

n1/4
∑

t∈[0,1]
|γ̂ j (t) − γ j (t)| p−→ 0, 0 ≤ j ≤ p, (B.2)

∑

t∈[0,1]
|γ̂ j (t) − γ j (t)| p−→ 0, 0 ≤ j ≤ p. (B.3)

Then, if sn
p−→ σ, under A1-A5,

√
n(β̂ − β)

d−→ N (0, Q)

with Q = A−1	(A−1)�, where A is defined in A2 and

	 = σ 2E

(
ρ̃2

(
R(T ) − U(T )�β

σ

)
W̃ 2(||U(T )||)U(T )U(T )�

)
.

Proof The proof is available in Bianco and Boente (2004).

C. Proof for Theorem 5.1

For Theorem 5.1, we derive 	12 as follows:

	12 = Cov(η1, η2)

= Cov(β̂
UM
1 , β̂

UM
1 − β̂

RM
1 )

= Cov(β̂
UM
1 , β̂

UM
1 ) − Cov(β̂

UM
1 , β̂

RM
1 )

= Var(β̂
UM
1 ) − Cov(β̂

UM
1 , β̂

RM
1 )

= γ 2Q−1
11.2 − Cov(β̂

UM
1 , β̂

RM
1 ),

where

Cov(β̂
UM
1 , β̂

RM
1 ) = Cov(β̂

UM
1 , β̂

UM
1 + Q−1

11 Q12β̂
UM
2 )

= Var(β̂
UM
1 ) + Cov(β̂

UM
1 , β̂

UM
2 )[Q−1

11 Q12]�
= γ 2Q−1

11.2 + γ 2Q12Q21Q
−1
11 .

Therefore,

	12 = γ 2Q−1
11.2 − γ 2Q−1

11.2 − γ 2Q12Q21Q
−1
11

= −γ 2Q12Q21Q
−1
11
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and

	∗ = �∗ − γ 2Q−1
11.2 + 	12 + 	21

= γ 2(Q−1
11 − Q−1

11.2 − Q12Q21Q
−1
11 − Q−1

11 Q12Q21).

D. Proof for Theorem 5.2

We present our proof as follows: Obviously, ADB(β̂
UM
1 ) = 0 and

ADB(β̂
RM
1 ) = E

{
lim
n→∞

√
n(β̂

RM
1 − β1)

}

= E
{
lim
n→∞

√
n(β̂

UM
1 + Q−1

11 Q12β̂
UM
2 − β1)

}

= E
{
lim
n→∞

√
n(β̂

UM
1 − β1)

}
+ E

{
lim
n→∞

√
n(Q−1

11 Q12β̂
UM
2 )

}

= E
{
lim
n→∞

√
n

(
Q−1

11 Q12β̂
UM
2 )

)}

= Q−1
11 Q12ω

= −δ.

ADB(β̂
SM
1 ) = E

{
lim
n→∞

√
n(β̂

SM
1 − β1)

}

= E
{
lim
n→∞

(√
nβ̂

SM
1 − √

nβ1

)}

= E
{
lim
n→∞

√
n(β̂

UM
1 − β̂

RM
1 )(−κψ−1

n )
}

= −κE
{
η2ψ

−1
n

}

= −κ(−δ)E
{
χ−2
p2+2(�)

}

= κδE
{
χ−2
p2+2(�)

}
.

ADB(β̂
SM+
1 ) = E

{
lim
n→∞

√
n(β̂

SM+
1 − β1)

}

= E
{
lim
n→∞

√
n(β̂

SM+
1 − β1) − √

n(β̂
UM
1 − β̂

RM
1 )(1 − κψ−1

n )I (ψn < κ)
}

= E
{
lim
n→∞

√
n(β̂

SM
1 − β1)

}
− E

{
lim
n→∞

√
n(β̂

UM
1 − β̂

RM
1 )(1 − κψ−1

n )I (ψn < κ)
}

= ADB(β̂
SM
1 ) − E

{
η2(1 − κψ−1

n )I (ψn < κ)
}

= ADB(β̂
SM
1 ) − δE

{(
1 − κχ−2

p2+2(�
2)

)
I
(
χ2
p2+2(�

2) < κ
)}

= ADB(β̂
SM
1 ) − δE

{
I
(
χ2
p2+2(�)

)
< κ

}
− δE

{
κχ−2

p2+2(�)I
(
χ2
p2+2(�) < κ

)}
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= ADB(β̂
SM
1 ) − δ

[
Hp2+2(κ,�) − E

{
κχ−2

p2+2(�)I
(
χ2
p2+2(�) < κ

)}]
,

where I () denotes an indicator function.

E. Derivation of Asymptotic Risk of the Estimators

Let us denote the ADMSE by �, and then the expressions are listed as follows:

�(β̂
UM
1 ) = γ 2Q−1

11.2

�(β̂
RM
1 ) = γ 2Q−1

11 + Q−1
11 Q12ωω� Q21Q

−1
11

�(β̂
SM
1 ) = γ 2Q−1

11.2 − 2κ
[
E(χ−2

p2+2(�))�21 + δδ�E(χ−2
p2+4(�))	∗−1	21

−δδ�E(χ−2
p2+2(�))	∗−1	21

]

+ κ2
[
	∗E(χ−4

p2+2(�)) + δδ�E(χ−4
p2+4(�))

]
.

�(β̂
SM+
1 ) = �(β̂

SM
1 ) − 2	21E(1 − κχ−2

p2+2(�))I (χ2
p2+2(�) < κ)

− 2δδ�	∗−1	21E(1 − κχ−2
p2+4(�))I (χ2

p2+4(�) < κ)	∗−1	21

+ 2δδ�E(1 − κχ−2
p2+2(�))I (χ2

p2+2(�) < κ)

+ 	∗E(1 − κχ−2
p2+2(�))2 I (χ2

p2+2(�) < κ)

+ δδ�E
{
(1 − χ−2

p2+4(�))2 I (χ2
p2+4(�) < κ)

}
.

Proof

�(β̂
UM
1 ) = E

{
lim
n→∞

√
n(β̂

UM
1 − β1)

√
n(β̂

UM
1 − β1)

�}

= E{η1η�
1 }

= {Cov(η1η
�
1 ) + E(η1)E(η1)

�}
= Var(η1)

= γ 2Q−1
11.2.

�(β̂
RM
1 ) = E

{
lim
n→∞

√
n(β̂

RM
1 − β1)

√
n(β̂

RM
1 − β1)

�}

= E{η3η�
3 }

= Cov(η3, η
�
3 ) + E(η3)E(η3)

�

= Var(η3) + E(η3)E(η3)
�

= γ 2Q−1
11 + Q−1

11 Q12ωω� Q21Q
−1
11 .
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�(β̂
SM
1 ) = E

{
lim
n→∞

√
n(β̂

SM
1 − β1)

√
n(β̂

SM
1 − β1)

�}

= E
{
lim
n→∞ n

[
(β̂

UM
1 − β1) − (β̂

UM
1 − β̂

RM
1 )κψ−1

n

]

[
(β̂

UM
1 − β1) − (β̂

UM
1 − β̂

RM
1 )κψ−1

n

]�}

= E
{
[η1 − η2κψ−1

n ][η1 − η2κψ−1
n ]�

}

= E
{
η1η

�
1 − 2κψ−1

n η2η
�
1 + κ2ψ−2

n η2η
�
2

}
. (A)

Now

E
{
ψ−1
n η2η

�
1

}
= E

{
E(η2η

�
1 ψ−1

n |η2)
}

= E
{
η2E(η�

1 ψ−1
n |η2)

}

= E

{
η2

[
0 + 	12	

∗−1(η2 − δ)
]�

ψ−1
n

}

= E
{
η2(η2 − δ)�	∗−1	�

12ψ
−1
n

}

= E
{
η2η

�
2 	∗−1	21ψ

−1
n

}
− E

{
η2δ

�	∗−1	21ψ
−1
n

}

=
[
Var(η2)E(χ−2

p2+2(�)) + E(η2)E(η2)
�E(χ−2

p2+4(�))
]
	∗−1	21

− E(η2)δ
�E(χ−2

p2+2(�))	∗−1	21

=
[
	∗E(χ−2

p2+2(�)) + δδ�E(χ−2
p2+4(�))

]
	∗−1	21

− δδ�E(χ−2
p2+2(�))	∗−1	21

= E(χ−2
p2+2(�))	21 + δδ�E(χ−2

p2+4(�))	∗−1	21

− δδ�E(χ−2
p2+2(�))	∗−1	21.

By substituting E{ψ−1
n η2η

�
2 } in (A), we get

�(β̂
SM
1 ) = E{η1η�

1 } − 2κE
{
ψ−1
n η2η

�
1

}
+ κE

{
ψ−2
n η2η

�
2

}

= Var(η1) − 2κ
[
E(χ−2

p2+2(�))	21 + δδ�E(χ−2
p2+4(�))	∗−1	21

−δδ�E(χ−2
p2+2(�))	∗−1	21

]

+ κ2
{
Var(η2)E(χ−4

p2+2(�)) + E(η2)E(η2)
�)E(χ−4

p2+4(�))
}

= γ 2Q−1
11.2 − 2κ

[
E(χ−2

p2+2(�))	21 + δδ�E(χ−2
p2+4(�))	∗−1	21

−δδ�E(χ−2
p2+2(�))	∗−1	21

]

+ κ2
[
	∗E(χ−4

p2+2(�)) + δδ�E(χ−4
p2+4(�))

]
.
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�(β̂
SM+
1 ) = E

{
lim

n→∞ n(β̂
SM+
1 − β1)(β̂

SM+
1 − β1)

�}

= �(β̂
SM
1 ) − 2E

{
lim

n→∞ n(β̂
UM
1 − β̂

RM
1 )(β̂

UM − β1)
�(1 − κψ−1

n )I (ψn < κ)
}

+ E
{
lim

n→∞ n(β̂
UM
1 − β̂

RM
1 )(β̂

UM
1 − β̂

RM
1 )�(1 − κψ−1

n )2 I (ψn < κ)
}

= �(β̂
SM
1 ) − 2E

{
η2η

�
1 (1 − κψ−1

n )I (ψn < κ)
}

+ E
{
η2η

�
2 (1 − κψ−1

n )2 I (ψn < κ)
}

. (B)

By using the rule of conditional expectation, we obtain

E
{
η2η

�
2 (1 − κψ−1

n )I (ψn < κ)
}

= E
[
η2E

{
η�
1 (1 − κψ−1

n I (ψn < κ)
}

|η2
]

= E

[
η2

{
0 + 	12	

∗−1(η2 − δ)
}�

(1 − κψ−1
n )I (ψn < κ)

]

= E
{
η2(η2 − δ)�	∗−1	21(1 − κψ−1

n )I (ψn < κ)
}

= E
{
η2η

�
2 	∗−1	21(1 − κψ−1

n )I (ψn < κ)
}

− E
{
η2δ

�	∗−1	21(1 − κψ−1
n )I (ψn < κ)

}

=
{
Var(η2)E(1 − κχ−2

p2+2(�))I (χ2
p2+2(�) < κ)	∗−1	21

+δδ�E(1 − κχ−2
p2+4(�))I (χ2

p2+4(�) < κ)	∗−1	21

}

−
{
δδ�E(1 − κχ−2

p2+2(�))I (χ2
p2+2(�) < κ)

}
.

Substituting the above in (B), we get

�(β̂
SM+
1 ) = �(β̂

SM
1 ) − 2	21E(1 − κχ−2

p2+2(�))I (χ2
p2+2(�) < κ)

− 2δδ�	∗−1	21E(1 − κχ−2
p2+4(�))I (χ2

p2+4(�) < κ)	∗−1	21

+ 2δδ�E(1 − κχ−2
p2+2(�))I (χ2

p2+2(�) < κ)

+ 	∗E(1 − κχ−2
p2+2(�))2 I (χ2

p2+2(�) < κ)

+ δδ�E
{
(1 − κχ−2

p2+4(�))2 I (χ2
p2+4(�) < κ)

}
.

Using the definition in (4.4), we have the ADQR expressions as follows:

R(β̂
UM
1 ) = tr(W�(β̂

UM
1 ))

= tr(Wγ 2Q−1
11.2),

R(β̂
RM
1 ) = tr(W�(β̂

RM
1 ))
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= tr(Wγ 2Q−1
11 ) + tr(W Q−1

11 Q12ωω� Q21Q
−1
11 ),

R(β̂
SM
1 ) = tr(W�(β̂

SM
1 ))

= R(β̂
UM
1 ) − 2κE

{
χ−2
p2+2(�)

}
tr(W	21)

− 2κE
{
χ−2
p2+4(�)

}
tr(Wδδ�	∗−1	21)

+ 2κE
{
χ−2
p2+2(�)

}
tr(Wδδ�	∗−1	21)

+ κ2E
{
χ−4
p2+2(�)

}
tr(W	∗)

+ κ2E
{
χ−2
p2+4(�)

}
tr(Wδδ�),

R(β̂
SM+
1 ) = tr(W�(β̂

SM+
1 ))

= R(β̂
SM
1 ) − 2E(1 − κχ−2

p2+2(�))I (χ2
p2+2(�) < κ)tr(W	21)

− 2E(1 − κχ−2
p2+4(�))I (χ2

p2+4(�) < κ)tr(Wδ�δ	∗−1	21	
∗−1	21)

+ 2E(1 − κχ−2
p2+2(�))I (χ2

p2+4(�) < κ)tr(Wδδ�)

+ E
{
(1 − κχ−2

p2+2(�))2 I (χ2
p2+2(�) < κ)

}
tr(W	∗)

+ E
{
(1 − κχ−2

p2+4(�))2 I (χ2
p2+4(�) < κ)

}
tr(Wδδ�).
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