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Abstract
A copula is a multivariate probability distribution function used to describe the depen-
dence structure between randomvariables, independent of theirmarginal distributions.
Among the numerous proposed copulas, renewed interest has recently been shown in
the exponential-type copula, including the famous Gumbel–Barnett and Celebioglu–
Cuadras copulas. The key reasons for this are their applicability potential, exploitable
dependence qualities, and simplicity. In some works, rare attempts have been made
to make a parametric compromise between these two copulas, but without searching
for the optimal sets of admissible values for the parameters. In this article, we fill
this gap by also considering an extended version of the Celebioglu–Cuadras copula,
recently introduced in the literature. We therefore introduce a three-parameter copula
that integrates both the Celebioglu–Cuadras and Gumbel–Barnett copulas. The main
challenge is to analytically determine the widest range of acceptable values for the
relevant parameters. Two new results are demonstrated in this regard, one of which sig-
nificantly improves an existing theorem. The secondary functions related to this copula
are exhibited. Some figures are produced to illustrate the validity and versatility of the
proposal. Themain copula properties are discussed, including symmetry, series expan-
sions, analytical bounds, bivariate distribution generation, and concordance ordering.
The theory is supported by a numerical analysis, which also demonstrates how the
parameters under consideration have a favorable impact on the dependence structure.
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1 Introduction

Copulas are a powerful tool in probability and statistics that allow us to model the
dependence structure among a set of random variables. Unlike traditional correlation-
basedmethods, the copulamethod allows us to separate the joint distribution of random
variables into two components: the marginal distributions of each random variable and
the dependence structure between them. This separation enables us to capture the com-
plex relationships between the random variables that cannot be adequately described
by simple correlation measures. The function modeling the extracted dependence
structure is called a copula. Some commonly used copulas include the Gaussian cop-
ula, which assumes that the variables are normally distributed andmainly have a linear
relationship, and the Archimedean copula, which allows for more flexible dependence
structures. Other copulas include the Student-T copula, the Clayton copula, and the
Gumbel copula.

Historically, the concept of copulas originated in the early 1950s (see Sklar, 1959,
1973), but it was not until the 1980s that they gained wider recognition in the field
of probability and statistics. Since then, copulas have become an essential tool in
various areas, including finance, actuarial science, and multivariate analysis. They are
particularly useful in modeling the dependence structure of financial instruments, risk
management, portfolio optimization, and option pricing. The popularity of copulas has
grown in recent years due to their flexibility and ability to capture complex dependence
structures emerging from modern data analysis challenges. With a variety of copula
functions available, each with its own unique properties and applications, researchers
and practitioners have a broad range of tools at their disposal.

Understanding copulas and their applications is becoming increasingly important as
we continue to face complex data andmodeling challenges in variousfields. This article
provides theoretical contributions to the topic. Before describing these contributions,
some precise facts must be recalled, beginning with the mathematical definition of a
copula in the absolutely continuous bivariate case.

Definition 1 In the context of the absolutely continuous bivariate case, we define a
copula as a differentiable function defined on [0, 1]2 and denoted as C(x, y), (x, y) ∈
[0, 1]2, satisfying the following conditions:

Boundary (B) condition: For any (x, y) ∈ [0, 1]2, we have

C(x, 0) = C(0, y) = 0, C(x, 1) = x, C(1, y) = y.

Positive derivative (PD) condition: For any (x, y) ∈ [0, 1]2, we have

∂2

∂x∂ y
C(x, y) ≥ 0.

Overall, in this article, the notion of copula will be understood in the absolutely
continuous bivariate case.Most of the theoretical and practical information in this case
is contained in Nelsen (2006), Durante and Sempi (2016), Joe (2015) and Cuadras
(2006), modern applications are given in Safari-Katesari et al. (2020), Roberts and
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Zewotir (2020), Tavakol et al. (2020) and Shiau and Lien (2021), and very recent
theoretical and practical developments are described in Susam (2020a, b), Chesneau
(2021a, b, 2022), Michimae and Emura (2022), Shih et al. (2022), El Ktaibi et al.
(2022) and Yeh et al. (2023).

The purposes of this article are centered around two specific exponential-type cop-
ulas: the Gumbel–Barnett (GB) and Celebioglu–Cuadras (CC) copulas. A review of
them is required to proceed. The GB copula is first shown as

C(x, y; a) = xy exp
[−a log(x) log(y)

]
, (x, y) ∈ [0, 1]2, (1)

or equivalently

C(x, y; a) = xy
{
exp

[
log(y)

]}−a log(x) = xy1−a log(x), (x, y) ∈ [0, 1]2,

with a ∈ [0, 1]. The GB copula is unique in that it is one of the most straightforward
Archimedean copulas, covering the independence copula by taking a = 0, and is well
suited for modeling various negative-type of dependence structures. However, it has
no tail dependence. As an Archimedean copula, simplified formulas exist to determine
various crucial quantities (tau ofKendal, rho of Spearman, tail dependence parameters,
etc.). For more detail on these aspects, we refer to Nelsen (2006), Zhang et al. (2013)
and Kularatne et al. (2021). On a similar but simple functional basis, the authors in
Celebioglu (1997) and Cuadras (2009) have conjointly elaborated a modified version
of the GB copula demonstrating a broader range of dependence. The CC copula is
thus created. It is specified as

C(x, y; b) = xy exp [b(1 − x)(1 − y)] , (x, y) ∈ [0, 1]2, (2)

with b ∈ [−1, 1]. Thus, the expression of the CC copula is quite simple. It also
covers the independence copula, has controllable qualities, and is versatile in the
sense of the dependence structure, including negative and positive-type dependences.
It was used in recent studies, including Zhang et al. (2013), Bekrizadeh et al. (2017),
Cuadras et al. (2020), Manstavičius and Bagdonas (2022), Diaz and Cuadras (2022)
and Chesneau (2023a). In particular, several extended CC copulas were proposed in
Chesneau (2023a) with the addition of diverse shape parameters.

On the other hand, employing the notion of weighted geometric mean, Zhang et al.
(2013) proposed a compromise (or tradeoff) version of the GB and CC copulas of the
following form:

C(x, y; a, b) = xy exp
[−a log(x) log(y) + b(1 − x)(1 − y)

]
, (x, y) ∈ [0, 1]2.

(3)

In Zhang et al. (2013, Theorem 2), it is proved that, under the following precise
parameter configuration: a = αβ and b = α(1 − β), with α ∈ [0, 1] and β ∈ [0, 1],
C(x, y; a, b) is a valid copula. This implies that a ∈ [0, 1] and b ∈ [0, 1]; some strict
parameter conditions are here: b cannot be negative, and a and b are strongly related
by the equation: a + b = α ∈ [0, 1]. Despite these technical restrictions, this result is
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of great interest, because it shows that, with the use of only two parameters, a copula
combining the diverse functionalities of the GB and CC copulas can be constructed.

In this article, we revisit this result and extend it by taking into account the more
generic parametric form as follows:

C(x, y; a, b, c) = xy exp
[−a log(x) log(y) + b(1 − xc)(1 − yc)

]
, (x, y) ∈ [0, 1]2, (4)

where a and b are as arbitrary as possible, and c is a newly added shape parameter.
The idea behind this shape parameter is to allow for greater flexibility in modeling the
dependence structure, accommodating various degrees of tail dependence, and cap-
turing more complex relationships between random variables. Moreover, its presence
can enhance the possible values of a and b, beyond the ranges of values determined
in Zhang et al. (2013); the interactions of the parameters can be quite profitable. Of
course, by taking c = 1, the copula in Eq. (4) is reduced to the one in Eq. (3) with
general a and b. Otherwise, it operates as a compromise between the GB copula and
the extended CC copula as presented in Chesneau (2023a). Thus, the idea of the gen-
eral copula in Eq. (4) and the three parameters involved is to offer a high degree of
adaptability in dependence modeling, beyond those of the aforementioned reference.

Based on Eq. (4), a summary of the findings is as follows: In the first part, we
determine wide admissible sets of values for a, b, and c making C(x, y; a, b, c) a
valid copula beyond the parameter restrictions considered in Zhang et al. (2013, The-
orem 2). Two new results in this regard are presented: one assuming that c ∈ [0, 1]
only and with a direct proof using a general result of Liebscher (2008), and the other
considering another approach, with possible negative values for c, but at the price
of a complex and technical proof. This second result generalized Zhang et al. (2013,
Theorem 2) on all the possible parameter values. In the second part, we determine the
main functions related to the new copula and illustrate some of them with graphics.
Finally, its properties are discussed, including symmetry, correlations, series expan-
sions, analytical bounds, bivariate distribution generation, and concordance ordering.
Also, a computational work reflects its interesting dependence properties; the rho of
Spearman is considered a benchmark for this aim. Overall, we emphasize the role of
the parameters a, b, and c, and the gain of the proposed copula from a dependence
modeling perspective.

The next sections are as follows: Sect. 2 contains all the results of the article,
along with the detailed proofs. Section3 presents the main functions and displays
some graphics of them. Section4 focuses on the important properties of the proposed
copula. A summary of the findings is given in Sect. 5. A minor result generalizing
Zhang et al. (2013, Lemma 3) is also provided in Appendix, being of independent
interest.

2 Main results

The main results of the article are in the form of two complementary propositions
based on Eq. (4) and its mathematical validity with respect to the parameters, but with
completely different approaches in terms of proofs.
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The following proposition focuses on the case c ∈ [0, 1] which can be derived
from a general result established in Liebscher (2008); it is based on the product of two
copulas composed of power functions with the addition of a shape parameter.

Proposition 2.1 Let (a, b, c) ∈ R
3. We consider the following bivariate function:

C(x, y; a, b, c) = xy exp
[−a log(x) log(y) + b(1 − xc)(1 − yc)

]
, (x, y) ∈ [0, 1]2.

Then, C(x, y; a, b, c) is a copula for c ∈ [0, 1], a ∈ [0, (1− c)2] and b ∈ [−1, 1].
Proof Let CGB(x, y;α) be the GB copula as defined in Eq. (1) with a = α, and
CCC (x, y;β) be the CC copula as defined in Eq. (2) with b = β. For any (x, y) ∈
[0, 1]2 and c ∈ [0, 1], let us set

C∗(x, y;α, β, c) = CGB(x1−c, y1−c;α)CCC (xc, yc;β).

Then, according to Liebscher (2008, Theorem 2.1), since CGB(x, y;α) is a copula
for α ∈ [0, 1] and CCC (x, y;β) is a copula for β ∈ [−1, 1], for any c ∈ [0, 1],
C∗(x, y;α, β, c) is a valid copula under these parameter conditions. Now, we remark
that

C∗(x, y;α, β, c) = x1−c y1−c exp
{
−α[log(x1−c)][log(y1−c)]

}

× xc yc exp
[
β(1 − xc)(1 − yc)

]

= xy exp
[
−α(1 − c)2 log(x) log(y) + β(1 − xc)(1 − yc)

]

= C(x, y; a, b, c),

with a = α(1 − c)2 ∈ [0, (1 − c)2] and b = β ∈ [−1, 1], and no interdependence
between a and b. The result is established. ��

Proposition 2.1 must be viewed as the first step in our findings; it is of interest, since
it demonstrates that an original compromise between the GB copula and the extended
CC copula is possible. Furthermore, the parameter b can be chosen independently of a
and c. However, the parameters a and c have a strong connection; if c = 1, then a = 0,
which totally removes the product logarithmic term, and if c = 0, then a ∈ [0, 1], but
the product polynomial term is removed.

However, since Zhang et al. (2013, Theorem 2) focus on the case c = 1 with a ∈
[0, 1], Proposition 2.1 does not contain this theorem; the used approach of Liebscher
(2008) offers another viewpoint than the weighted geometric mean method.

With the same copula, the proposition below examines other parameter configu-
rations. In particular, negative values for c are allowed, the same for c > 1, and we
can have c = 1 with a �= 0. The proof is totally self-contained; it uses the setting in
Definition 1, differentiation techniques, well-chosen arrangements, and mathematical
inequalities. We will show later that it contains Proposition 2.1, which is not apparent
at first glance.
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Proposition 2.2 Let (a, b, c) ∈ R
3. We consider the following bivariate function:

C(x, y; a, b, c) = xy exp
[−a log(x) log(y) + b(1 − xc)(1 − yc)

]
, (x, y) ∈ [0, 1]2.

Then, C(x, y; a, b, c) is a copula for a ≥ 0 and under one of the three distinct
parameter configurations according to the signs of b and c:

PC1: b ≥ 0, c ≥ 0 and 1 − bc ≥ a,
PC2: b ≤ 0, c ∈ [−1, 0] and 1 + bc2 ≥ a,
PC3: b ∈ [−1, 0], c ∈ [0, 1] and (1 + bc)2 ≥ a.

Proof Let us useDefinition 1, and the B and PD conditions in particular to demonstrate
that C(x, y; a, b, c) is a valid copula.

Proof of the B condition: Under PC1, PC2 or PC3, a limit study gives

lim
y→0

[−a log(x) log(y) + b(1 − xc)(1 − yc)
] = −∞,

implying that

C(x, 0; a, b, c) = lim
y→0

xy exp
[−a log(x) log(y) + b(1 − xc)(1 − yc)

] = 0,

and similarly, we have C(0, y; a, b, c) = 0. On the other hand, it is clear that

C(x, 1; a, b, c) = x × 1 × exp
[−a log(x) log(1) + b(1 − xc)(1 − 1c)

]

= x × exp(0) = x,

and, in a similar way, we get C(1, y; a, b, c) = y. The B condition is thus demon-
strated.
Proof of the PD condition: Using appropriate differentiation methods and factor-
ing in a way that allows us to draw conclusions, we have

∂2

∂x∂ y
C(x, y; a, b, c) = exp

[−a log(x) log(y) + b(1 − xc)(1 − yc)
]

×
{

− a log(y)
[
bc(xc − 1)yc + 1

] + a log(x)
[
a log(y) − bcxc yc + bcxc − 1

]

− a + b2c2x2c y2c − b2c2x2c yc − b2c2xc y2c + b2c2xc yc + bc2xc yc + 2bcxc yc

− bcxc − bcyc + 1

}

= exp
[−a log(x) log(y) + b(1 − xc)(1 − yc)

]

× [T1(x, y) + T2(x, y) + T3(x, y) + T4(x, y)] ,

where
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T1(x, y) = −a log(y)
[
1 − bc(1 − xc)yc

]
, T2(x, y) = a2 log(x) log(y),

T3(x, y) = −a log(x)
[
1 − bcxc(1 − yc)

]
(= T1(y, x))

and, after some developments not detailed here, we have

T4(x, y) = b2c2xc yc(1 − xc)(1 − yc)

+bc(c + 1)xc yc + bc(1 − xc)(1 − yc) + 1 − a − bc.

Therefore, to establish the PD condition, a possible way is to prove that, under
PC1, PC2, and PC3, for any (x, y) ∈ [0, 1]2, T1(x, y), T2(x, y), T3(x, y) and
T4(x, y) are non-negative.

Proof of T1(x, y) ≥ 0: We recall that a ≥ 0. Let us distinguish PC1, PC2,
and PC3.

Under PC1: Since b ≥ 0, c ≥ 0 and 1 − bc ≥ a ≥ 0, it is clear that
bc ∈ [0, 1]. For any (x, y) ∈ [0, 1]2, we have −a log(y) ≥ 0, (1 −
xc)yc ∈ [0, 1] and 1 − bc(1 − xc)yc ≥ 1 − bc ≥ 0. Hence, we obtain
T1(x, y) = −a log(y)

[
1 − bc(1 − xc)yc

] ≥ 0.
Under PC2: Since b ≤ 0 and c ∈ [−1, 0], we have bc ≥ 0. For
any (x, y) ∈ [0, 1]2, we have −a log(y) ≥ 0, xc ≥ 1, −(1 −
xc)yc ≥ 0 and 1 − bc(1 − xc)yc ≥ 0. As a result, we get T1(x, y) =
−a log(y)

[
1 − bc(1 − xc)yc

] ≥ 0.
Under PC3: Since b ∈ [−1, 0], c ∈ [0, 1], we have −bc ≥ 0. For any
(x, y) ∈ [0, 1]2, we have −a log(y) ≥ 0, (1− xc)yc ≥ 0 and 1− bc(1−
xc)yc ≥ 0. Hence, we obtain T1(x, y) = −a log(y)

[
1 − bc(1 − xc)yc

]

≥ 0.

Proof of T2(x, y) ≥ 0: Under PC1, PC2 or PC3, for any (x, y) ∈ [0, 1]2, we
obviously have a2 ≥ 0 and log(x) log(y) ≥ 0, implying that T2(x, y) ≥ 0.

Proof of T3(x, y) ≥ 0: Since, for any (x, y) ∈ [0, 1]2, we have T1(x, y) ≥ 0,
we also have T3(x, y) = T1(y, x) ≥ 0.

Proof of T4(x, y) ≥ 0: We recall that a ≥ 0. Let us distinguish PC1, PC2,
and PC3.

Under PC1: The proof is direct. Since b ≥ 0, c ≥ 0 (so bc ≥ 0), and
1− bc ≥ a, for any (x, y) ∈ [0, 1]2, we have xc yc ≥ 0 and (1− xc)(1−
yc) ≥ 0, so

T4(x, y) = b2c2xc yc(1 − xc)(1 − yc) + bc(c + 1)xc yc

+ bc(1 − xc)(1 − yc) + 1 − a − bc

≥ 1 − a − bc ≥ 0.

Under PC2: Since b ≤ 0, c ∈ [−1, 0] (so bc ≥ 0), and 1 + bc2 ≥ a, for
any (x, y) ∈ [0, 1]2,we have xc yc ≥ 1, so bc(c+1)xc yc ≥ bc(c+1) ≥ 0,
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and (1 − xc)(1 − yc) ≥ 0, implying that

T4(x, y) = b2c2xc yc(1 − xc)(1 − yc) + bc(c + 1)xc yc

+ bc(1 − xc)(1 − yc) + 1 − a − bc

≥ bc(c + 1) + 1 − a − bc = bc2 + 1 − a ≥ 0.

Under PC3: To begin, let us notice that we can rewrite T4(x, y) as

T4(x, y) = b2c2xc yc(1 − xc)(1 − yc) + bc(c + 1)xc yc

+ bc(1 − xc)(1 − yc) + 1 − a − bc

= [1 + bc(1 − xc)(1 − yc)](1 + bcxc yc)

− bc(1 − cxc yc) − a.

Since b ∈ [−1, 0] and c ∈ [0, 1] (so bc ≤ 0), for any (x, y) ∈ [0, 1]2,
we have (1 − xc)(1 − yc) ∈ [0, 1] and xc yc ∈ [0, 1], implying that
1 + bc(1 − xc)(1 − yc) ≥ 1 + bc ≥ 0, 1 + bcxc yc ≥ 1 + bc ≥ 0, and
[1 + bc(1 − xc)(1 − yc)](1 + bcxc yc) ≥ (1 + bc)2. Furthermore, since
cxc yc ∈ [0, 1], we have −bc(1 − cxc yc) ≥ 0 and, since (1 + bc)2 ≥ a,
we get

T4(x, y) ≥ (1 + bc)2 − a ≥ 0.

As a result, we obtain

∂2

∂x∂ y
C(x, y; a, b, c) ≥ 0.

The PD condition is established.

The desired result is proved. ��
Theparameter configurationsPC1,PC2, andPC3 in Proposition 2.2 are determined

to be as sharp as possible. However, we do not claim that they are the optimal ones in
the mathematical sense.

Let us now discuss the importance of Proposition 2.2 in comparison to the existing
results. To begin, let us notice that the CG copula is obtained by taking b = 0 or c = 0,
the CC copula is obtained by taking a = 0 and c = 1, and the generalized version
of the CC copula as described in Chesneau (2023a) is obtained by taking a = 0. In
addition, the result in Zhang et al. (2013, Theorem 2) is obtained by taking c = 1,
a = αβ and b = (1 − β)α with α ∈ [0, 1] and β ∈ [0, 1], that is, a ∈ [0, 1] and
b + a = α ∈ [0, 1], so 1 − b ≥ a, which is covered by PC1. To the best of our
knowledge, under PC1, the other values for a and b, as well as c ∈ (0,+∞)/{1},
are unexplored cases. Furthermore, the parameter configurations PC2 and PC3 are
exhibited for the first time in this setting, opening a new modeling horizon. This claim
will be supported in Sects. 3 and 4 with graphical and numerical studies highlighting
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the importance of the parameters a, b, and c in the shape and correlation properties of
the proposed copula.

Let us now discuss a configuration that intersects PC1 and PC3. We can notice
that, since bc ∈ [0, 1], we have 1 − bc ≥ (1 − bc)2. Therefore, with the following
more restrictive condition on PC1 : (1 − bc)2 ≥ a instead of 1 − bc ≥ a, we arrive
at the following result, which combines PC1 and PC3 in the case c ∈ [0, 1]:

C(x, y; a, b, c) is a copula for c ∈ [0, 1], b ∈ [−1, 1], and a ∈ [0, (1 − |b|c)2].
Furthermore, for c ∈ [0, 1] and b ∈ [−1, 1], we have (1 − |b|c)2 ≥ (1 − c)2. This
shows that Proposition 2.2 offers a more suitable alternative to Proposition 2.1, under
the same conditions on b and c.

To conclude this part, let us mention that an additional contribution to the work of
Zhang et al. (2013) is given in the appendix, which can also be viewed as a comple-
mentary interest.

3 Functions and graphical work

Some important functions and graphics are given in this section.

3.1 Functions

Various useful functions, including original copulas, can be derived from a given
copula. This section illustrates some of them using our theoretical findings.

To begin, we recall that the proposed copula is defined by

C(x, y; a, b, c) = xy exp
[−a log(x) log(y) + b(1 − xc)(1 − yc)

]
, (x, y) ∈ [0, 1]2,

under one of the parameter configurations described in Proposition 2.2. For the rest
of the article, let us call it the GB-ECC copula.

Upondifferentiation of theGB-ECCcopula, theGB-ECCcopula density is obtained
as

c(x, y; a, b, c) = ∂2

∂x∂ y
C(x, y; a, b, c)

= exp
[−a log(x) log(y) + b(1 − xc)(1 − yc)

]

×
{

− a log(y)
[
bc(xc − 1)yc + 1

]

+ a log(x)
[
a log(y) − bcxc yc + bcxc − 1

]

− a + b2c2x2c y2c − b2c2x2c yc − b2c2xc y2c

+ b2c2xc yc + bc2xc yc + 2bcxc yc

− bcxc − bcyc + 1

}
, (x, y) ∈ [0, 1]2.
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This copula density allows for the quantification of the strength and direction of the
dependence structure and enables the calculation of various statistical measures (rho
of Spearman, etc.). By using a graphical study, we will show in the next part that it
accommodates various shapes thanks to the wide ranges of values for a, b and c, which
reveal a great flexibility in dependence modeling.

On the other hand, based on the GB-ECC copula, the GB-ECC survival copula is
given by

Ĉ(x, y; a, b, c) = x + y − 1 + C(1 − x, 1 − y; a, b, c)

= x + y − 1 + (1 − x)(1 − y) exp {−a log(1 − x) log(1 − y)

+ b[1 − (1 − x)c][1 − (1 − y)c]} , (x, y) ∈ [0, 1]2. (5)

It is also a three-parameter exponential-type copula that does not appear in the existing
literature.

Following the flipping technique described in De Baets et al. (2009), two other
copulas may be described. The GB-ECC x-flipping copula is indicated as

C̄(x, y; a, b, c) = y − C(1 − x, y; a, b, c)

= y − (1 − x)y exp {−a log(1 − x) log(y)

+ b[1 − (1 − x)c](1 − yc)
}
, (x, y) ∈ [0, 1]2.

Similarly, the GB-ECC y-flipping GB-ECC copula is given as

C̃(x, y; a, b, c) = x − C(x, 1 − y; a, b, c)

= x − x(1 − y) exp {−a log(x) log(1 − y)

+ b(1 − xc)[1 − (1 − y)c]} , (x, y) ∈ [0, 1]2.

These flipping copulas are also new three-parameter exponential-type copulas.
Furthermore, the GB-ECC copula is simple enough to think of using it in elaborate

techniques to create new copulas. For instance, focusing on PC1 of Proposition 2.2,
one can take a = 1−bc with b ∈ [0, 1] and c ∈ [0, 1]. Under this setting, the mixture
copula technique using the uniform distribution over [0, 1] ensures that the following
bivariate function is a valid copula:

C†(x, y; c) =
∫ 1

0
C(x, y; 1 − bc, b, c)db

= yx1−log(y)
∫ 1

0
exp

{
b

[
c log(x) log(y) + (1 − xc)(1 − yc)

]}
db

= yx1−log(y) exp[c log(x) log(y) + (1 − xc)(1 − yc)] − 1

c log(x) log(y) + (1 − xc)(1 − yc)
, (x, y) ∈ [0, 1]2.

More information on the mixture copula technique can be found in Nelsen (2006).
One can also think of the copula product or something else. Further development in
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Fig. 1 Plots of the GB-ECC copula for a = 3/4 and b = c = 1/2, belonging to PC1: shape plot (left) and
intensity plot (right)
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Fig. 2 Plots of the GB-ECC copula for a = 1/2, b = −1/2 and c = −1, belonging to PC2: shape plot
(left) and intensity plot (right)

the copula creation based on the GB-ECC copula can be done; we leave this aspect
for other works.

3.2 Graphical work

In this part, we complete our theoretical findings with visual material. Some figures of
the GB-ECC copula and copula density are displayed. The graphics aremade using the
R software, in particular the packages plot3D and plotly (see CoreTeam (2016)).

To begin, with a focus on the result in Proposition 2.2, we plot the GB-ECC copula
for selected values of the parameters satisfying either PC1, PC2, or PC3. Figure1
shows the GB-ECC copula for a = 3/4 and b = c = 1/2, belonging to PC1.

Figure 2 displays the GB-ECC copula for a = 1/2, b = −1/2 and c = −1,
belonging to PC2.
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Fig. 3 Plots of the GB-ECC copula for a = 1/4, b = −1/2 and c = 1, belonging to PC3: shape plot (left)
and intensity plot (right)
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Fig. 4 Plots of the GB-ECC copula density for a = 3/4 and b = c = 1/2, belonging to PC1: shape plot
(left) and intensity plot (right)

Figure 3 displays theGB-ECC copula for a = 1/4, b = −1/2 and c = 1, belonging
to PC3.

Figures 1, 2, and 3 reveal the expected shapes of a valid copula, more or less skewed
depending on the values of the parameters. A symmetry in x and y is observed. These
figures visually underline the Proposition 2.2 in a punctual parametric way.

In general, copula densities can have a wide range of shapes and characteristics,
including symmetry, asymmetry, tail dependence, and concavity or convexity. These
shapes constitute the functional print of the involved dependence structure. In light of
this, we plot the GB-ECC copula density for the same previously selected parameters.
Thus, Fig. 4 displays the GB-ECC copula density for a = 3/4 and b = c = 1/2,
belonging to PC1.

Figure 5 shows the GB-ECC copula density for a = 1/2, b = −1/2, and c = −1,
belonging to PC2.

Figure 6 displays the GB-ECC copula density for a = 1/4, b = −1/2, and c = 1,
belonging to PC3.
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Fig. 5 Plots of the GB-ECC copula density for a = 1/2, b = −1/2, and c = −1, belonging to PC2: shape
plot (left) and intensity plot (right)
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Fig. 6 Plots of the GB-ECC copula density for a = 1/4, b = −1/2, and c = 1, belonging to PC3: shape
plot (left) and intensity plot (right)

In Figs. 4, 5 and 6, various shapes are observed, illustrating the functional versatility
of the GB-ECC copula density. In particular, from Fig. 5 illustrating the case where
c is negative, we see that the GB-ECC copula density is highest near the points of
coordinates (0, 1) and (1, 0), indicating a strong dependence structure. Such a property
is not observed when c > 0 (and c = 1 in particular, with reference to the CC and CG
copulas).

4 Properties

In this section, theGB-ECCcopula is discussed alongwith someof itsmajor properties.
It is supposed that the copula parameters belong to either PC1, PC2, or PC3 of
Proposition 2.2.
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4.1 Basic properties

We now investigate some basic properties of the GB-ECC copula.

• The GB-ECC copula is diagonally symmetric since C(x, y; a, b, c) = C(y, x; a,

b, c) for any (x, y) ∈ [0, 1]2.
• For b �= 0 or c �= 0, the GB-ECC copula does not belong to the Archimedean
family; C(x, y; a, b, c) does not satisfy the associative property.

• The GB-ECC copula is not radially symmetric, because, based on Eq. (5), there
exists (x, y), such that Ĉ(x, y; a, b, c) �= C(x, y; a, b, c).

• The GB-ECC copula satisfies the following product geometric property: For any
(x, y) ∈ [0, 1]2 and β ∈ [0, 1],

C(x, y; a1, b1, c)βC(x, y; a2, b2, c)1−β

= C (x, y;βa1 + (1 − β)a2, βb1 + (1 − β)b2, c) ,

which is also a common property to the GB and ECC copulas.
However, C (x, y;βa1 + (1 − β)a2, βb1 + (1 − β)b2, c) is a valid copula under
some conditions on the parameters βa1 + (1 − β)a2, βb1 + (1 − β)b2 and c,
implying an adjustment of the initial condition β ∈ [0, 1] (see Proposition 2.2, for
instance). This result can also be viewed as a generalization of Zhang et al. (2013,
Theorem 2).

• The GB-ECC copula is negatively quadrant dependent for b ∈ [−1, 0] (which
is a common condition to PC2 and PC3), since C(x, y; a, b, c) ≤ xy for any
(x, y) ∈ [0, 1]2.

• As a well-established copula fact, the Fréchet–Hoeffding bounds are satisfied.
Hence, for any (x, y) ∈ [0, 1]2, we have max(x + y − 1, 0) ≤ C(x, y; a, b, c) ≤
min(x, y), that is

max(x + y − 1, 0) ≤ xy exp
[−a log(x) log(y) + b(1 − xc)(1 − yc)

]

≤ min(x, y).

• Owing to the classical exponential and binomial series formulas, the following
expansion is obtained:

C(x, y; a, b, c) =
+∞∑

k=0

k∑

�=0

k−�∑

m=0

k−�∑

n=0

ζk,�,m,n

{
xmc+1[log(x)]�

} {
ync+1[log(y)]�

}
,

(6)

where

ζk,�,m,n =
(
k

�

)(
k − �

m

)(
k − �

n

)
1

k! (−1)�+m+na�bk−�.

This result can be of interest for computational manipulations of the GB-ECC
copula, as seen later for the corresponding rho of Spearman.
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• Using standard limit techniques, the lower and upper tail dependence parameters
are calculated as follows:

σL = lim
x→0

C(x, x; a, b, c)

x
= lim

x→0
x exp

{
−a[log(x)]2 + b(1 − xc)2

}
= 0

and

σU = lim
x→1

1 − 2x + C(x, x; a, b, c)

1 − x
= lim

x→1

1 − 2x + x2 exp
[−a[log(x)]2 + b(1 − xc)2

]

1 − x
= 0,

respectively. As a result, the GB-ECC copula is free of tail dependence.
• The medial correlation of the GB-ECC copula is expressed as follows:

M = 4C

(
1

2
,
1

2
; a, b, c

)
− 1 = exp

{
−a[log(2)]2 + b(1 − 2−c)2

}
− 1.

• The rho of Spearman associated with the GB-ECC copula is basically defined by

ρ = 12
∫ 1

0

∫ 1

0
[C(x, y; a, b, c) − xy] dxdy

= 12
∫ 1

0

∫ 1

0
xy

{
exp

[−a log(x) log(y) + b(1 − xc)(1 − yc)
] − 1

}
dxdy.

Due to the complexity of the integrated function, ρ lacks a closed-form expression.
Based on Eq. (6), a series expansion is possible. Indeed, by interchanging the sums
and integral signs, and using the following integral formula:

∫ 1
0 xα[log(x)]βdx =

(−1)ββ!/(1 + α)β+1 where α > −1 and β is an integer, we get

ρ = 12
+∞∑

k=1

k∑

�=0

k−�∑

m=0

k−�∑

n=0

ζk,�,m,n
(�!)2

(mc + 2)�+1(nc + 2)�+1 .

Hence, for a large integer K , the following finite approximation is admissible:

ρ ≈ 12
K∑

k=1

k∑

�=0

k−�∑

m=0

k−�∑

n=0

ζk,�,m,n
(�!)2

(mc + 2)�+1(nc + 2)�+1 .

Otherwise, numerical calculations of ρ can be investigated. These are performed
below, with four decimals for the values. The software R is used, in particular the
package pracma.
Table 1 presents its numerical values for c = 1, a = (1 − |b|c)2, and b varying
on a grid of values into [−1, 1]. This configuration belongs to PC1 for b ∈ [0, 1]
and PC3 for b ∈ [−1, 0].
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Table 1 Values of ρ for c = 1, a = (1 − |b|c)2, and b ∈ [−1, 1]
b −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

ρ −0.2962 −0.2656 −0.2799 −0.334 −0.4187 −0.5239 −0.3253 −0.1192 0.0824 0.2582 0.3806

Table 2 Values of ρ for c = 1/2, a = (1 − |b|c)2, and b ∈ [−1, 1]
b −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

ρ −0.2632−0.3033−0.3509−0.4044−0.4625−0.5239−0.4331−0.3405−0.2469−0.1537−0.0625

Table 3 Values of ρ for c = −1, a = 1 + bc2, and b ∈ [−1, 0]
b −1.0 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

ρ −0.8333−0.8124−0.7902−0.7666−0.7414−0.7142−0.6846−0.6522−0.6159−0.5743−0.5239

Table 2 is analogous to Table 1 but with c = 1/2.
Table 3 presents some values of ρ for c = −1, a = 1 + bc2, and b ∈ [−1, 0],

corresponding to PC2.
These tables demonstrate the vast range of amplitudes (here, from −0.83 to 0.38)

that the rho of Spearman of the GB-ECC copula can have. This flexibility is only
possible thanks to the combined actions of the parameters a, b, and c, demonstrating
their importance from a correlation viewpoint. Therefore, the GB-ECC copula is
ideal for modeling various kinds of dependence. It offers much greater flexibility in
dependence structure than the GB and extended CC copulas.

• Naturally, the GB-ECC copula can serve as a generator of bivariate distributions.
Indeed, for any cumulative distribution functions of absolutely continuous distribu-
tions, say F(x) and G(x), the following bivariate function defines a new bivariate
cumulative distribution function:

H(x, y; τ) = C(F(x),G(y); a, b, c)

= F(x)G(y) exp
{ − a log[F(x)] log[G(y)]

+ b[1 − F(x)c][1 − G(y)c]}, (x, y) ∈ R
2, (7)

where τ represents the vector of all the involved parameters, including a, b, and c.
Let us call it the GB-ECC family of distributions. The corresponding probability
density function is obtained as

h(x, y; τ) = f (x)g(y)c(F(x),G(y); a, b, c), (x, y) ∈ R
2, (8)

where f (x) and g(y) are the probability density functions associated with F(x)
and G(y), respectively. There are therefore an infinite number of new bivariate
distributions that could be produced. As an example, we can investigate the special
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Fig. 7 Plots of the probability density function of the GB-ECC normal distribution for a = 3/4 and
b = c = 1/2, belonging to PC1: shape plot (left) and intensity plot (right)

member of the GB-ECC family defined with the standard normal distribution as
the marginal distributions. Thus, if we consider

F(x) = G(x) =
∫ x

−∞
f (t)dt, f (x) = g(x) = 1√

2π
exp

(
− x2

2

)
, x ∈ R,

and we insert them into the cumulative distribution and probability density func-
tions in Eqs. (7) and (8), we introduce the GB-ECC normal distribution with
τ = (a, b, c). To observe the effect of the parameters a, b, and c on the subjacent
dependence model, we present the shapes of the probability density function of
the GB-ECC normal distribution for parameters belonging to the configurations
PC1, PC2, and PC3 of Proposition 2.2.
Figure7 displays the probability density function of the GB-ECC normal distri-
bution for a = 3/4 and b = c = 1/2, belonging to PC1.

Figure8 shows the probability density function of the GB-ECC normal distribution
for a = 1/2, b = −1/2, and c = −1, belonging to PC2.

Figure9 displays the probability density function of the GB-ECC normal distribu-
tion for a = 1/4, b = −1/2, and c = 1, belonging to PC3.

From Figs. 7, 8, and 9, we observe different shapes for the probability density
distribution; the parameters a, b, and c clearly affect the skewness and kurtosis of the
GB-ECC normal distribution.

On the other hand, for selected lifetime cumulative distribution functions depending
on the context, we refer to Taketomi et al. (2022).

• We can consider the so-called omnibus estimation approach for the estimation of
the parameters a, b, and c in a data analysis setting (see Genest et al. (1995) and
Silvapulle et al. (2004)). To present this approach, let us consider n observations,
say (x1, y1), . . . , (xn, yn), drawn from a continuous random vector, say (X ,Y ).
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Fig. 8 Plots of the probability density function of the GB-ECC normal distribution for a = 1/2, b = −1/2,
and c = −1, belonging to PC2: shape plot (left) and intensity plot (right)
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Fig. 9 Plots of the probability density function of the GB-ECC normal distribution for a = 1/4, b = −1/2,
and c = 1, belonging to PC3: shape plot (left) and intensity plot (right)

Then, the following argmax-values give the omnibus estimates of a, b, and c:

(â, b̂, ĉ) = argmax(a,b,c)∈�

n∑

i=1

log
{
c
[
F̂(xi ), Ĝ(yi ); a, b, c

]}
,

where� represents the ranges of values on the parameters makingC(x, y; a, b, c)
a valid copula,

F̂(x) = 1

n

n∑

j=1

1{x j ≤ x}, Ĝ(y) = 1

n

n∑

j=1

1{y j ≤ y},

and 1S denotes the indicator function over a setS. In otherwords, the omnibus esti-
mates â, b̂, and ĉ are equivalent to the maximum-likelihood estimates determined
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with the transformed data (F̂(x1), Ĝ(y1)), . . . , (F̂(xn), Ĝ(yn)). This approach has
assured global efficiency (see Genest et al. (1995) and Silvapulle et al. (2004)).

4.2 Copula comparisons

This part is devoted to some copula comparisons involving the GB-ECC copula and
other well-referenced copulas. These comparisons show how the GB-ECC copula can
be considered an alternative in terms of dependence modeling.

• For b ∈ [−1, 0], for any (x, y) ∈ [0, 1]2, we have

C(x, y; a, b, c) ≤ CGB(x, y; a),

where GGB(x, y; a) is the GB copula as given in Eq. (1). For b ∈ [0, 1] (which
belongs to PC1), the reverse inequality holds.

• For any (x, y) ∈ [0, 1]2, we have

C(x, y; a, b, 1) ≤ CCC (x, y; b),

where GCC (x, y; b) is the CC copula as given in Eq. (2). Of course, this result can
be extended by taking c ∈ [−1, 1] instead of c = 1, and the extended CC copula.

• Owing to the following exponential inequality: ez ≥ 1 + z for any z ∈ R, for any
(x, y) ∈ [0, 1]2, we get

exp
[
a log(x) log(y) − b(1 − xc)(1 − yc)

]

≥ 1 + a log(x) log(y) − b(1 − xc)(1 − yc)

≥ 1 − b(1 − xc)(1 − yc).

Therefore, since b(1 − xc)(1 − yc) ≤ 1, we have

C(x, y; a, b, c) ≤ CAMH (x, y; b),

where

CAMH (x, y; b) = xy

1 − b(1 − xc)(1 − yc)
,

which is a modified version of the Ali–Mikhail–Haq (AMH) copula with the
parameter b (see Nelsen (2006) for the former AMH copula). As a result, under
some parameter conditions, C(x, y; a, b, c) is smaller than CAMH (x, y; b) in the
concordance ordering sense.

• On the other hand, for any (x, y) ∈ [0, 1]2 and b ∈ [−1, 0], we have

exp
[
a log(x) log(y) − b(1 − xc)(1 − yc)

]

≥ 1 + a log(x) log(y) − b(1 − xc)(1 − yc)

≥ 1 + a log(x) log(y).
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This implies that

C(x, y; a, b, c) ≤ CCh(x, y; a),

where

CCh(x, y; a) = xy

1 + a log(x) log(y)
,

which is a copula introduced in Chesneau (2023b), defined with the parameter
a. As a result, under some parameter conditions, C(x, y; a, b, c) is smaller than
CCh(x, y; a) in the concordance ordering sense.

These copula orderings also illustrate how the parameters a, b, and c offer a higher
degree of flexibility compared to the aforementioned copulas.

5 Conclusion

This article contributes to the understanding of copula theory by significantly improv-
ing a theorem established in Zhang et al. (2013). More precisely, we considered a
copula defined as a compromise between the GB copula and an extended version of
the CC copula with the use of three parameters. It is named the GB-ECC copula. We
determine the ranges of values allowed for these parameters, making mathematical
efforts to have them as wide as possible. Then, we discussed the obtained results in
relation to the existing findings. The related functions were given, namely the copula
density, survival copula, (x and y) flipping copulas, and a special mixture copula. We
perform a graphical study of the GB-ECC copula and copula density. The discussion
covered the fundamental copula features, such as symmetry, series expansions, analyt-
ical bounds, bivariate distribution generation, and concordance ordering. The theory
was supported by a numerical analysis, which also demonstrated how the parameters
under consideration have an effect on the dependent structure.

The logical perspectives of this work are:

• The application of the GB-ECC copula to the analysis of real-life bivariate data.
• The development of new bivariate distributions with various supports.
• The creation of original “compromise or tradeoff copulas” based on themathemat-
ical techniques developed in this article, such as the following mixed GB-AMH
copula

C(x, y; a, b) = xy exp[−a log(x) log(y)]
1 − b(1 − x)(1 − y)

, (x, y) ∈ [0, 1]2,

among other ideas.
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• The investigation of the multivariate GB-ECC copula, which naturally takes the
following form:

C(x1, . . . , xn; a, b, c) =
(

n∏

i=1

xi

)

exp

[

−a

(
n∏

i=1

log(xi )

)

+b

(
n∏

i=1

(1 − xci )

)]

, (x, . . . , xn) ∈ [0, 1]n,

where n represents the dimension. For this expression, one can prove that the
multivariate B condition is satisfied, but the multivariate PD condition remains
challenging, since the precise conditions on the parameters a, b, and c need to be
determined.

These points need more work, which we leave for the future.
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Appendix

In the lemma below, we provide an extension of Zhang et al. (2013, Lemma 3) with
an alternative proof; the proof is much more direct, short, and without the use of
differentiation. This lemma is an ingredient of Zhang et al. (2013, Theorem 2). It can
be viewed as a minor result of independent interest.

Lemma 5.1 Let β ≤ 1. Then, for any (x, y) ∈ [0, 1]2, we have

3(1 − β)xy − (1 − β)(x + y) − β ≥ −1.

Proof The proof is based on a proper arrangement of the terms in the main equation.
Since 1 − β ≥ 0, and, for any (x, y) ∈ [0, 1]2, xy ≥ 0 and (1 − x)(1 − y) ≥ 0, we
have

3(1 − β)xy − (1 − β)(x + y) − β = 2(1 − β)xy + (1 − β)(1 − x)(1 − y) − 1

≥ −1.

The desired result is proved. ��

Hence, in comparisonwithZhang et al. (2013,Lemma3),wehave the conditionβ ≤
1 (possibly negative) instead of β ∈ [0, 1], and the proof is considerably simplified.
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