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Abstract

We study maximum-likelihood-type estimation for diffusion processes when the
coefficients are nonrandom and observations occur in nonsynchronous manner. The
problem of nonsynchronous observations is important when we consider the analysis
of high-frequency data in a financial market. Constructing a quasi-likelihood function
to define the estimator, we adaptively estimate the parameter for the diffusion part
and the drift part. We consider the asymptotic theory when the terminal time point
T, and the observation frequency goes to infinity, and show the consistency and the
asymptotic normality of the estimator. Moreover, we show local asymptotic normality
for the statistical model, and asymptotic efficiency of the estimator as a consequence.
To show the asymptotic properties of the maximum-likelihood-type estimator, we
need to control the asymptotic behaviors of some functionals of the sampling scheme.
Though it is difficult to directly control those in general, we study tractable sufficient
conditions when the sampling scheme is generated by mixing processes.

Keywords Asymptotic efficiency - Diffusion processes - Local asymptotic
normality - Maximum-likelihood-type estimation - Nonsynchronous observations

1 Introduction

Given a probability space (€2, F, P) with aright-continuous filtration F = {F;};>0, let
X@ = (x®},20 = {(Xt(a)’l, Xt(a)’z)}lzo be a two-dimensional F-adapted process
satisfying the following stochastic differential equation:
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dX(* = 11, (0)d1 + by(0)dW,, Xo = xo, (1.1

where xp € R2, {W:lo<i<7 is a two-dimensional standard F-Wiener process,
{r:(0)};=0 and {b;(0)};>0 are deterministic functions with values in R? and R%*2,
respectively, « = (0,0),0 € O, 6 € 0O, and ® and ©; are bounded open subsets
of R? and R%, respectively. Let ag = (09, 6p) € O1 x O, be the true value, and
let X, = (X!, X ,2) =X ,(O‘“). ‘We consider estimation of oy when X is observed with
nonsynchronous manner, that is, observation times of X I'and X2 are different to each
other.

The problem of nonsynchronous observations appears in the analysis of high-
frequency financial data. If we analyze the intra-day stock price data, we observe
stock prices when a new transaction or a new order arrives. Then, the observation
times are different for different stocks, and hence, we cannot avoid the problem
of nonsynchronous observations. Statistical analysis with such data is much more
complicated compared to the analysis with synchronous data. Parametric estimation
for diffusion processes with synchronous and equidistant observations has been ana-
lyzed through quasi-maximum-likelihood methods in Florens-Zmirou (1989), Yoshida
(1992, 2011), Kessler (1997), and Uchida and Yoshida (2012). Related to the esti-
mation problem for nonsynchronously observed diffusion processes, estimators for
the quadratic covariation have been actively studied. Hayashi and Yoshida (2005,
2008, 2011) and Malliavin and Mancino (2002, 2009) have independently constructed
consistent estimators under nonsynchronous observations. There are also studies of
covariation estimation under the simultaneous presence of microstructure noise and
nonsynchronous observations (Barndorff-Nielsen et al., 2011; Bibinger et al., 2014;
Christensen et al., 2010, and so on). For parametric estimation with nonsynchronous
observations, Ogihara and Yoshida (2014) have constructed maximum-likelihood-type
and Bayes-type estimators and have shown the consistency and the asymptotic mixed
normality of the estimators when the terminal time point 7}, is fixed and the observa-
tion frequency goes to infinity. Ogihara (2015) have shown local asymptotic mixed
normality for the model in Ogihara and Yoshida (2014), and the maximum-likelihood-
type and Bayes-type estimators have been shown to be asymptotically efficient. On
the other hand, we need to consider asymptotic theory that the terminal time point 7},
goes to infinity to consistently estimate the parameter 6 in the drift term. To the best
of the author’s knowledge, there are no studies of the asymptotic theory of parametric
estimation for nonsynchronously observed diffusion processes when 7,, — oo.

In this work, we consider the asymptotic theory for nonsynchronously observed
diffusion processes when 7,, — oo, and construct maximum-likelihood-type estima-
tors for the parameter o in the diffusion part and the parameter 6 in the drift part. We
show the consistency and the asymptotic normality of the estimators. Moreover, we
show local asymptotic normality of the statistical model, and we obtain asymptotic
efficiency of our estimator as a consequence. Our estimator is constructed based on the
quasi-likelihood function that is similarly defined to the one in Ogihara and Yoshida
(2014), though we need some modification to deal with the drift part. To investigate
asymptotic theory for the maximum-likelihood-type estimator, we need to specify the
limit of the quasi-likelihood function. Then, we need to assume some conditions for
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the asymptotic behavior of the sampling scheme. In Ogihara and Yoshida (2014), for
a matrix

(St A ST — s v st vo

- n,1 n,11/2)on,2 n2 1,2
!|Sl. — SRS - SR Y

i,j

generated by the sampling scheme, the existence of the probability limit of
n~tr((GG")P) (p € Z)isrequired, where (Sf’l)i are observation times of X/ and T
denotes transpose of a vector or a matrix. Since we consider the different asymptotics,
the asymptotic behavior of the quasi-likelihood function is different from that in Ogi-
hara and Yoshida (2014). We also need to consider estimation for the drift parameter 6.
Then, we need other assumptions for the asymptotic behavior of the sampling scheme
[Assumption (A5)]. Though these conditions for the sampling scheme are difficult to
check directly, we study tractable sufficient conditions in Sect.2.4.

The rest of this paper is organized as follows. In Sect.2, we introduce our model
settings and the assumptions for main results. Our estimator is constructed in Sect. 2.1,
and the asymptotic normality of the estimator is given in Sect.2.2. Section2.3 deals
with local asymptotic normality of our model and asymptotic efficiency of the esti-
mator. Tractable sufficient conditions for the assumptions of the sampling scheme are
given in Sect. 2.4. Section 3 contains the proofs of main results. Preliminary results are
collected in Sect. 3.1. Section 3.2 is for the consistency of the estimator for o, Sect. 3.3
is for the asymptotic normality of the estimator for o, Sect.3.4 is for the consistency
of the estimator for 6, and Sect.3.5 is for the asymptotic normality of the estimator
for 6. Other proofs are collected in Sect. 3.6.

2 Main results
2.1 Setting and parameter estimation

Let N be the set of all positive integers. For [ € {I1, 2}, let the observation times
{S;1 ’Z}IMZ’O be strictly increasing random times with respect to i, and satisfy Sg =0
and SZ,I][ = nhy, where M; is a random positive integer depending on n and (h,,);2 |
is a sequence of positive numbers satisfying

hy — 0, n'=h, - 0o, nh? -0 .1

asn — oo for some €y > 0. Intuitively, n is of the order of the number of observations
and h,, is of the order of the length of the observation intervals. More precise assump-
tions of observation times are given in (A2), (A4), and (AS) later. We assume that
{Sf’l}of,-fMlJ:l,z is independent of F7, and its distribution does not depend on «. We
consider nonsynchronous observations of X, thatis, we observe {Sf’l}ogis M;,i1=1,2 and
{X ls i }o<i<m;,i=1,2. In particular, we consider the nonendogenous observation times.
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We denote by ||-|| the operator norm with respect to the Euclidean norm for a matrix.
We often regard a p-dimensional vector v as a p x 1 matrix. For j € N, we denote 9, =
" - foravariable z € R/, and denote 3 = (9, "'azz-,),!l ..... ;=1 forl € N.For functions
f and g, we often use shorthand notation 9, fd,g = (3. f(3.¢)" + 3,83, ) ") /2.
For a set A in a topological space, let clos(A) denote the closure of A. For a matrix
A, [A];; denotes its (i, j) element. For a vector v = (Uj);(:l’ we denote [v]; = vj,
and diag(v) denotes a K x K diagonal matrix with elements [diag(v)];; = v;.

Let M =M+ M. Forl <i <M,let

)i ifi < My, L)1, it < My,
i) = { — My, ifi> M, ‘”(’)_{2, ifi > M.

For a two-dimensional stochastic process (U;);=0 = (U}, U}))i=0, let AlU =

Ul, = U, andlet AU = (AlU)1<icy; and AU = A(f((ll))U for 1 <i < M.
i i—1

Let AU = (AT, (A2U)T)T. Let |K| = b — a for an interval K = (a, b]. Let

(Sl”’ll, S"’l] forl <i < Mj,andletI; = Iw(fl)) for 1 <i < M. We denote a unit
matrlx of size k by &. _

Let £l(0) = f,, [b;b, (0)];dt and 2, ; 2(0) = f,ilmjg [b:b, (0)]12dt, and let =; =

EZ((;)) for 1 <i < M. By setting D= dlag((E[)]SiSM)

12
{\/>\/>(J)}1§ISM1JS]SM2’

we can calculate the covariance matrix of AX as

G(o) =

=i Emy G©O))\ &1
Sy(0) =D <GT(<17) 5M2)D . 2.2)

As we will see later, we can ignore the term related to p,(6) (drift term) when we
consider estimation of o, because this term converges to zero very fast. Therefore, we
first construct an estimator for o, and then construct an estimator for . Such adaptive
estimation can speed up the calculation.

We define the quasi-likelihood function Hn1 (o) for o as follows:

1 1 T o—1 1
H}(0) = =5 AXTS1(0)AX — - logdet 5, (o).

Then, the maximum-likelihood-type estimator for o is defined by

0n € argmax Hnl(a).
oeclos(®1)

We consider estimation for 6 next. Let V(6) = (V:(6)):>0 be a two-dimensional
stochastic process defined by V;(0) = (fot wl@®)Tds, fot u2@)Tds)T. Let X(0) =
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AX — AV (0). We define the quasi-likelihood function H,% (0) for 6 as follows:
1 - e =
H(0) = —EX(G)TS” L6)X(0).

Then, the maximum-likelihood-type estimator for € is defined by

én € argmax an(G).
feclos(©7)

The quasi-(log-)likelihood function H,! is defined in the same way as that in Ogihara
and Yoshida (2014). Since AX follows normal distribution, we can construct such
a Gaussian quasi-likelihood function even for the nonsynchronous data. When the
coefficients are random, though the distribution of A X is not Gaussian, such Gaussian-
type quasi-likelihood function is still valid due to the local Gaussian property of
diffusion processes. The Gaussian mean that comes from the drift part is ignored
when we construct the quasi-likelihood Hnl. When we estimate the parameter 6 for
the drift part, we subtract the mean in X (9) to construct the quasi-likelihood function
an. Since the effect of the drift term on the estimation of o is small, it works well to
estimate o in this way and then plug in 6, to S, to construct the estimator for 6. Thus,
we can speed up the calculation by separating the estimation for ¢ and 6.

Remark 2.1 Hnl (o) and H,% (9) are well defined only if det S, (o) > Oand det Sy, (6,,) >
0, respectively. For the covariance matrix S, of nonsynchronous observations AX, it
is not trivial to check these conditions. Proposition 1 in Section 2 of Ogihara and
Yoshida (2014) shows that these conditions are satisfied if b;(o) is continuous on
[0, 00) x clos(®1) and inf; det(b,btT (o)) > 0. We assume such conditions in our
setting (Assumption (A1) in Sect. 2.2).

Remark 2.2 As seen in Ogihara and Yoshida (2014), the quasi-likelihood analysis
for nonsynchronously observed diffusion processes becomes much more complicated
compared to synchronous observations. In this work, estimation for the drift parameter
6 is added, and hence, we consider nonrandom drift and diffusion coefficients to avoid
overcomplication. For general diffusion processes with the random drift and diffu-
sion coefficients, we need to set predictable coefficients to use the martingale theory.
However, the quasi-likelihood function loses a Markov property with nonsynchronous
observations and the coefficients in the quasi-likelihood function contain randomness
of future time. Then, we need to approximate the coefficients by predictable func-
tions. This operation is particularly complicated. Moreover, approximating the true
likelihood function by the quasi-likelihood function is much more difficult problem
when we show local asymptotic normality and asymptotic efficiency of the estima-
tors. Therefore, we left asymptotic theory under general random drift and diffusion
coefficients as a future work.
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2.2 Asymptotic normality of the estimator

In this section, we state the assumptions of our main results, and state the asymptotic
normality of the estimator.

For m € N, an open subset U C R™ is said to admit Sobolev’s inequality if,
for any p > m, there exists a positive constant C depending on U and p, such that
sup,ep ()| < C Yy ([ 185u(x)[Pdx)!/P for any u € C'(U). This is the case
when U has a Lipschitz boundary. We assume that ®, ®1, and ®, admit Sobolev’s
inequality.

Let X;(0) = b;b/ (o), and let

(2112 [Z:(00)]u

pi(0) = [1/2—1/2( o). Bii(o) = [Zi(0)u

Xl 2]

Let pr,0 = p:(00).

Assumption (A1). There exists a positive constant c1 ,suchthat c1& < ¥;(o) for any
t € [0,00) and 0 € ®;. For k € {0,1,2,3,4}, 8 u:(0) and Bkb,(o) exist and are
continuous with respect to (¢, o, 8) on [0, c0) X clos(@l) x clos(®,). For any € > 0,
there exist § > 0 and K > 0, such that

|95 14 (0)] + 195 b: (0)] < K,
|95 100 (0) — 8K 115 (0)] + 105 b, (o) — 35 b5 (o) < €

forany k € {0,1,2,3,4},0 € ©®1,0 € Oy, and ¢, s > 0 satisfying |t — s| < §. Let
ry, = max; |Il.l|.

Assumption (A2). r, —P> 0asn — oo.

Assumption (A3). For any [ € {1,2}, i1 € Z4, i € {0,1}, i3 € {0,1,2,3,4},
ki1, ky € {0, 1, 2} satisfying k1 +ky = 2, and any polynomial function F(xl, e, X14)
of degree equal to or less than 6, there exist continuous functions <I>l i (0) d>l i (o)

and <I>2 kl k2 (8) on clos(®) and clos(®5), such that

1 T
1 / F (0 By (0))oskct i1 2.
T Jo

@ pr@)f_ e (@)1 p2dr — @1 (o),

1, 12
| )
— 93 log By, (0)dt — @7, (0),
T 0 ’ 13
1 T 813 kl k2 0 d CD3 k] k2 6
? 0 ] (¢1,t¢2,t)( )p r— i1,i3 ( )
as T — oo for o € clos(®)), 6 € clos(®y), where ¢ ,(0) = [Z:(00)];, /> (1 (6) —
l
wy (60))-

Assumption (A1) and the Ascoli-Arzela theorem yield that the convergences in
(A3) can be replaced by uniform convergence with respect to o and 6 (the left-hand
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sides of the above equations become relatively compact, and then, any uniformly
convergent subsequence converges to the right-hand sides due to the pointwise conver-
gence assumptions). Assumption (A3) is satisfied if u;(0) and b; (o) are independent
of ¢, or are periodic functions with respect to ¢ having a common period (when the
period does not depend on o nor 6). Let & be the set of all partitions (sx)7-, of
[0, 0o) satisfying sup~ [sx —sk—1] < 1 andinfy>1 |sx —sg—1] > 0. For (sp)72, € &,
let M; = #{i; sup Il.l € (Sk—1, 5¢]} and g, = max{k; sy < nh,}, and let Efk) be an
M) x M) matrix satisfying [Efk)]ij = 1ifi = j and sup Iil € (Sk—1, S|, and otherwise,
[£0)ij = 0. Let

1 2
_{ 1N }
IV ) cicmy 1<,

Assumption (A4). There exist positive constants aé and ag, such that {h, M; 4, 11}52
is P-tight and

1H/1<ax My — ay(sk — sk— 1)|—>0
<

for I € {1, 2} and any partition (sx);—, € &. Moreover, for any p € N, there exists a
nonnegative constant a},, such that

1 Typy 1 . P
max {htr(€g (GG ) = ap(si = si-n)| > 0

as n — oo for any partition (s;)72, € 6. Let J; = (|Il|1/2)M’ .

Assumptlon (AS). For p € Z., there exist nonnegative constants f; !

fp such that {|5(q +1)Jl|} 2, is P-tight for/ € {1, 2}, and

f;’z, and

P
max 13185(GG NPTy — fy! sk — se-1)| = 0,

P
max |J15(k)(GGT)”GCI‘2 [y sk — sk = 0,

1<k <q

P
max [5:63)(GTG)PTy — f sk — si-1)| = 0

1<k=<q,

as n — oo for any partition (sg)2, € 6.

Assumption (A4) corresponds to [A3’] in Ogihara and Yoshida (2014). The func-
tionals in (A4) and (A5) appear in Hn1 and an, and hence, we cannot specify the limits
of H! and H? unless we assume existence of the limits of these functionals. It is diffi-
cult to directly check (A4) and (A5) for concrete statistical experiments with general
sampling schemes. We study sufficient conditions for these conditions in Sect.2.4.
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Assumption (A6). The constant a} in (A4)is positive, and there exist positive constants
¢> and c¢3, such that

. 1T
lim sup (?/ X (0) — 2,(00)||2dt> > o — o,
0

T—o0

. 1 (7
lim sup (7 /0 |14 (6) — Mz(90)|2dt) > 310 — 6o

T—o0

for any o € clos(®1) and 6 € clos(®>).
Assumption (A6) is necessary to identify the parameter o and 6 from the data. For

p<q

(€ (GG ) < (€L (GGHNIGGHTP| < r(Ey(GGTHP)  (2.3)

by Lemma 3.3 later and Lemma A.1 in Ogihara (2018). Then, ! is monotone non-

P

increasing with respect to p. This implies that a[l7 = 0 for any p € Nif all =0.In
this case, the non-diagonal components of the covariance matrix S, are negligible in
the limit. Then, we cannot consistently estimate the parameter in p; (o). This is why,
we need the assumption al1 > 0 (see Proposition 3.9 and the following discussion to
obtain the consistency).

Let A(p) = Y07 a},pzf’ for p € (=1, 1). Then, (2.3) implies that A(p) is finite.
Moreover, (AS) yields

q}‘l
fyl=mh)™' Y I EL(GGTPT 40, (1)
k=1
= (nhy) '3[ (GGTYPT +0,(1)
(GG P (nhy) 1311 + 0, (1)
l—i—op(l),

IATA

which implies f,"' < 1. Similarly, we have f,* < 1and f,> < 1. Let 8% By, =
8% By (00), and let

95 01,0 ? p1.0)*
Vi =A(Pt,o)( = —agBl,t,o—ang,,,o) — B, A(py0) L L0 ZZ(ao

Pt,0

+A(p1.0)) (30 Br.r.0)?,

andlet ) = limy_ oo T} fOT y1.:dt, which exists under (A1), (A3), and (A4). Let

L= Jim 1 / Z {Zf”(amo (6)
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—2pf,of;2ae¢1,lae¢>z,t(eo>}dr,

which exists under (A1), (A3), and (AS). Let T,, = nh,, and

(T 0
= (7).
Theorem 2.3 Assume (A1)—(A6). Then, T is positive definite, and

(V160 — 00). VTG — 60)) > N0, T

asn — oQ.

2.3 Local asymptotic normality

Letag € ©, ® C R?, and {Py.n}aco be a family of probability measures defined
on a measurable space (X}, A,) for n € N, where ® is an open subset of RY. As
usual, we shall refer to dPy, ,/d Py, , the derivative of the absolutely continuous
component of the measure Py, , with respect to measure Py, , at the observation
x as the likelihood ratio. The following definition of local asymptotic normality is
Definition 2.1 in Chapter II of Ibragimov and Has’minskii (1981).

Definition 2.4 A family P, , is called locally asymptotically normal (LAN) at point
ap € ® as n — oo if for some nondegenerate d x d matrix €, and any u € R?, the
representation

dPoto—i-enu,n

T 2
— Ay — 2 0
Py n (' Ap —ul"/2) —

log

in Py, ,-probability as n — 0o, where
L(A, |Pa0,n) — N(0, &)

asn — 00, and L(-| Py.») denotes the distribution with respect to Py .

Let ® = ©) x ©,. Fora € ©, let Py, be the probability measure generated by
the observations {Si"’l}i,l and {Xéa)’l},;l.

n,l
i

Theorem 2.5 Assume (A1)—(A6). Then, { Py n}q.n Satisfies the LAN property ata = ag

with
(e o
n 0 Tn_l/2F2_l/2 :
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The proof is left to Sect.3.6. Theorem 11.2 in Chapter II of Ibragimov and
Has minskif (1981) gives lower bounds of estimation errors for any regular estima-
tor of parameters under the LAN property. Then, the optimal asymptotic variance
of €, YU, — ) for regular estimator U, is &;. We will show that (6,,, én) is reg-
ular in Remark 3.18. Therefore, Theorem 2.5 ensures that our estimator (d,,, é,,) is
asymptotically efficient in this sense under the assumptions of the theorem.

2.4 Sufficient conditions for the assumptions

Itis not easy to directly check Assumptions (A4) and (AS5) for general random sampling
schemes (even for a sampling scheme generated by simple Poisson processes given
in Example 2.6). In this section, we study tractable sufficient conditions for these
assumptions. The proofs of the results in this section are left to Sect. 3.6.

Letg > 0 and ./\f,"’l = ZM’ 1 We consider the following conditions for

i=1 {SZZ'IS[}'
the point process N/
Assumption (B1-¢).

sup max  sup E[(./\/t':;lh” — N1 < 0.
n=>11€(L.2Y o<t<(n—1)hy,

Assumption (B2-g).

lim sup sup max sup  ul PN N =0) < oo

u—oo nx>11€{1.2} o<t <nh,—uh, tithn

Example 2.6 Let (/\_/,] , /\_/;2) be two independent homogeneous Poisson processes with
positive intensities A1 and X,, respectively, and J\/t”‘l =N }Il_ll, that is, S;' L — inf {t >

0; NV! ilf‘t > i}. Even in this simple case, it is not trivial to directly check (A4) and

(A5).nOn the other hand, (B1-g) obviously holds for any ¢ > 0. Moreover, (B2-q)
holds for any ¢ > 0, since

lim sup sup max sup u"P(/\/trﬂ;Zuh — NP =0) = lim ufe" MM =,
u—oco nx>11€{1.2Y o<t <nh,—uh, " u—00

Then, by Corollary 2.12, we can check Assumptions (A2), (A4), and (AS5) for this
sampling scheme.

To give sufficient conditions for (A4) and (AS5), we consider mixing properties of
N™! That is, we assume conditions for the following mixing coefficient ay . Let

G = oW =N ihy <5 <t < jhy l=1,2) (0<i,j<n),
and let

ap =0V sup sup sup |[P(ANB)— P(A)P(B)|.
1<i,j<n—1,j—i>k Aegg‘, Beg;'yn
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Proposition 2.7 Assume that (B1-q) and (B2-q) hold and that

sup Z(k + o) < (2.4)

neNk —0

for any g > 0. Moreover, assume that there exist positive constants aé and aé, and a
nonnegative constant all, for p € N, such that {Elh, M, 4,11 ]}°o | is bounded and

max |, E[M; k] — afy(sk — sk—1)| — 0,
1<k=<qg,

max |k, E[tr(E, (GG T)P)] — ab(se — si—)| — 0 2.5)

I<k=qn

asn — oo for p € Zy, | € {1, 2} and any partition (s;);2, € &. Then, (A4) holds.

Proposition 2.8 Assume that (B1-q) and (B2-q) hold and that (2.4) is satisfied for any

. . 1,1 1,2 2,2
q > 0. Moreover, assume that there exist nonnegative constants fp'", fp'~, and f,
for p € Z, such that {E[|S(q +1)Jl|]}lc1>0=1 is bounded and

max |E[J16(k)(GGT)P31]—f1 (st — si-1)| = 0,

1<k<

Typ _ fL _
12}<a§)§1n|E[jlg(k)(GG )Y GTs] fp (sx — sk—1)| — 0,

max |E[3:E5, (G G)P Tl — f2(sk — se—1)| = 0 (2.6)

asn — oo forl € {1,2}, p € Z and any partition (s);~, € &. Then, (AS) holds.

Proposition 2.9 Assume that there exists g > 0, such that (A4) and (B2-q) hold,

nl n,l . . 00 1
NV = N Yo<i<t,—hyiet1 2)nen is P-tight, and 3 72 | kel < oo. Then, a; > 0.

Inthe following, let (/\7,[ )s>0 be an exponential -mixing point process for/ € {1, 2}.

Assume that the distribution of (/\_/'tl +i —N! +1_,)1<k<k 1=1,2 does notdependont > 0
forany K e Nand0 <7y <t <--- < 1g.

Lemma2.10 Let N = /\'/,i,l[ for0 <t < nhyandl € {1,2}. Then, (2.4) is satisfied

for any g > 2, and there exist constants a(l), a%, and ap =a for p € N, such that

(2.5) holds and { E[h, M qn+l]} 2 | is bounded for any (sx);2, € &. Moreover, there
exist nonnegative constants fp fI} 2 and fg 2 for p € Z, such that (2.6) holds

and {E[|5(q +1)31|}°° | is bounded for | € {1, 2} and any (sp)p= € 6.

Proposition 2.11 (Proposition 8 in Ogihara & Yoshida, 2014) Let g € N. Assume
(B2-(g + 1)). Then, sup,, E[h; ' i1 < 0o. In particular, (A2) holds under (B2-2).

By the above results, we obtain simple tractable sufficient conditions for the
assumptions of the sampling scheme when the observation times are generated by
the exponential «-mixing point process ./\/,l defined above.
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Corollary 2.12 Let N = /\_/;ll_ltforO <t <T,andl € {1,2}. Assume that (B1-q)
and (B2-q) hold for any g > 0. Then, (A2), (A4), and (AS) hold, and al1 > 0.

3 Proofs
3.1 Preliminary results

For a real number a, [a] denotes the maximum integer which is not greater than
a.Let T = I, = {S"'}1<i<mueq12). We denote |x> = 3, |xiy...q, | for
X = {xi\,...ip }ir,...iy Withk € Nand x;,,._;, € R. For a matrix A = (A;;);j, Abs(A)
denotes the matrix (|A;;|);j. C denotes generic positive constant whose value may
vary depending on context. We often omit the parameters o and 6 in general functions
f(0) and g(9). )

For a sequence p, of positive numbers, let us denote by {R, (p,)},eN @ sequence
of random variables (which may also depend on 1 < i < M and ¢ € ©O)
satisfying that {sup, ; Enl|p, ' Ra(pn)|91}nen is P-tight for any ¢ > 1, where
En[X] = E[X]o(IT,)] for a random variable X.

For a matrix A and vectors v, w with suitable sizes, we repeatedly use the following
inequality:

lwT Av] < [wl|Av] < [All[v]|w],

Lemma 3.1 (A special case of Lemma 3.1 in Ogihara and Uehara, 2022) Let (Z,))eN
be nonnegative-valued random variables. Then

1. EnqlZ,] —P> 0 as n — oo implies that Z,, —P> 0asn — oo.
2. P-tightness of (EnlZ,])neN implies P-tightness of (Z,)neN.

Let V = V(6p), and let

12
——L i NI # 9,
pij(0) = § & /2261, B
07

otherwise.

Let p, = sup, (max;, j [pi,j (o) v sup; |p; (o)), and let

¢ EM _KSnG
Sy = il . 3.1
Let AéﬁtU = U:AS?,, - U:A . and let A; U = Ag((;))JU for t > 0 and a two-

i—1
dimensional stochastic process (U;);>0 = !, Uf))tzo.
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Under (A4), we have

qn+1
h,M; = h, Z My = a(l)nhn +op(nhy).
k=1
Then, we obtain
M; = abn + 0, (n). (3.2)

Lemma 3.2 Assume (Al). Then, for any p > 1, there exist positive constants C),
(depending on p) and C, such that

sup [ALV (@) < ClIfl, EnlIAlx |1 < ¢, (1 + /11!
[

forl e {1,2}and 1 <i < M.

Proof Since ;Ll{ (0) and [b;b;(00)]y; are bounded by (Al), the Burkholder—Davis—
Gundy inequality yields

sup ALV (6)] = sup <,
0 0

/ iy (©)dr
1

En[lalx|py/p =En[

p}l/p

p/Z]l/p

/, Gy + /] bi(00)dW,)

5cp|1}|+c,,En[

/ [bybs (00) nd
1!

< Cp(II1 +/111)D.

O
Lemma 3.3 (Lemma 2 in Ogihara & Yoshida, 2014) |G|| vV |G| < 1.
Lemma3.4 |G|V G| < pn.
Proof Since all the elements of G are nonnegative, we have
B y 2
IGI* = sup |Gxf* = sup ) | (Zpi,»c;i,-x,»)
x|=1 =13 7
2
< /fy sup ) (Zcmxﬂ) < prlIGI* < By
|x]=1 ; ;
Since |G || = ||G||, we obtain the conclusion. O
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Let D = diag({|/;]};Z,). It is difficult to deduce the orders of upper bounds of
the operator norms || S,(o)|| and ||, 1|, because they depend on the maximum and
minimum lengths of observation intervals. However, we can deduce the orders of
upper bounds for D1/ 23, (0)75_1/ 2 and its inverse. Indeed, we obtain the following
estimates, which are repeatedly used in the following sections (we use D instead of
D to avoid parameter dependence).

Lemma 3.5 Assume (Al). Then, there exists a positive constant C, such that
IDY2058, 1 (0)DV2|| < €1 = ) *" and |, (0)ij| < C[D™V25, D712,
if pp < 1, and ||D_1/28§SH(U)D_1/2II < Cforanyo € ©1,1 <1i,j <M, and
kel0,1,2, 3,4}

Proof By (A1) and Lemma 3.3, we have

k ~
_ X _ ; 0 G
ID~12558,(0)D1 2| < CZ ag{é’M + (GT 0) } <cC.
j=0
Moreover, by (A1) and Lemma 3.4, we have
0 G\\ '
IDV2s, D2 < CH <5M + (GT 0 )) <CU—pp)!
if p, < 1.
Using the equation 3, S, ! = —S,19, 5,5, !, we obtain

IDY29, 5, ' D2 = |DV25 10, 5,8, D2
< D28, "DV PP 20, 5, D72 < €1 = o)

if p, < 1. Similarly, we obtain
IDY2958, 'D2| < c(1 = )7

if p, < 1fork €{0,1,2,3,4}.
If p, < 1, since Lemma 3.4 yields

~ —1 00 ~N\ P
s :D*l/2<(5641 SOMZ) + ((;)T g)) D2 —p-1/2 Z(—I)P (GOT g) D12,

p=0

we obtain

> 0 G\ :
p=0 Y
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Under (A1), we have %;(0) > c¢1&, which implies that sup, , |o/(0)| < 1. Then,
by (A2) and uniform continuity of b;, for some fixed § > 0 and any € > 0, there exists
N € N, such that P(1 — p, < ) < € forn > N. Therefore, we have

Ppp<1-6)—1 (3.3)
as n — oo, and we have
P((1=pp) 1 >877) <e
for any ¢ > 0 and n > N, which implies that
(I=pn)~ 1= 0,(). (34

Moreover, Lemma 3.4 yields

—1 12 E ,( 0 G g <12
S, o) =Dy (-1 &To) P
p=0

_ n-1/2 - (§G~T)p~ _(@GT)'DG A—1/2
=D I;)(—(GTG)PGT TGy D (3.5)

if p, < 1.
3.2 Consistency of 8’,,

. . . . P .
In this section, we show consistency: 6, — o as n — o0. For this purpose, we
specify the limit of H, (o) — H}(00).

Lemma 3.6 Assume (Al) and (A2). Then

L sup |ak (#) (@) — H (00)) + %a!itms;' (©)(54(00) = 54(0))) + %aﬁ log jf: SS”((:O)) £0(3.6)

n 5e0,

asn — oo fork € {0, 1,2, 3}.

Proof Let X; = fot bs(00)dW;. By the definition of Hnl, we have

1 1 1 —_— . 1 det Sy, (o)
n

We first show that
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Hy) (o) — H,(00) = %(AX“)T(S;I(o) 57 (00)) AXE — L 1og 25

2 det S, (00) + \/ﬁen (o),

(3.7)

where (é,(0));2

denotes a general sequence of random variables, such that

. P
sup, |én(o)] = 0asn — oo.
Since

AXTS N o)AX — (AX) TS (0)AXS =2(AV) TS (o) AXE
+HAWV TS 0)AV = W) 4+ 0, (3.8)

it suffices to show that ¥; = \/né, fori € {1, 2}.
Lemma 3.5 and (3.4) yield

|W,| < |DV2S, Y o)D) D7 V2AV 2 = 0,(1) x [ID7V2AV 2. (3.9)
Moreover, Lemma 3.2 yields

IDT2AV@O)F =) 1AV @ 1 = T = ¢ )Y 1| < Cnhy,.
il il il
(3.10)
Furthermore, Lemma 3.5, (3.4), (3.10), and the equation E [AXS(AXO)T] = S,(00)
yield

En[|¥11*] = 4AV) TS (o) En[AXS(AX) 1S, (o) AV = 0, (nhy) = 0, (n).

(3.11)
Then, we obtain (3.7) by (3.8)—(3.11) and Lemma 3.1.
Next, we show that
(AX) TSN o) AXE — (S, 1 (0)8,(00)) = Ru (/). (3.12)
1t6’s formula yields
(AX) TSN (o) AXE — (S, (0) Sy (00))
= > 18,1 (0)1ij (A XA X =[Sy (00)]ij)
ij
= Z[S;l(o)]ij{ / Ajexedxy? 4 / Ai,txfdx,“‘”f)}
i) I I
— 22[5;1(0)]i,/ AjxedxOv Y, (3.13)
I.

i i
where X f’l is the /-th component of X7.
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Since (A; X, A;j X ), = f[o DAL [Z:1y ),y (jHdt, together with the Burkholder—
Davis—Gundy inequality, we have

e )
En[<Z[S,:1<a>],~j /1 AjXCdXy ) ]
ij i

2 qa/2
=< Cq ZEH[< Z [S (0') i1 [S (0)]1 ﬁ./[ Jis tXC Ja, tX [Et]w(l) l//(l)dt> :|
=1

i1 J2 !
Y (i)=l

+chn[( N A 3 TN R () PR
1,02, J1,J2
VD=1 (i) =2
q/2
sz . AjlJXCAJZanC[Zf]II/(il),1//(i2)dt> ]

< CqEn[( E 1S, (0)iy, 1 1S () in, jo | SUP [T Ty iy, iy |1y N Ly [ SUP A, X6
Lo t t
11,12, ]1,]2

\4/?
supIAjzny‘|) :|
t

., A Xr2 q/2
SCqEn[<||Dl/2Abs(Sn’1){|I,-ﬂlj|},-jAbs(Sn’l)D1/2||2:7&4}"';"’ ') ]
. 1
1

Together with Lemmas 3.3 and 3.5, the triangle inequality for L9/2 that

Eu;, G
AT — |2 (M 1/2
won=[P (2 g, )P

and that

[ Abs(S, ) II* = sup |Abs(S, ")x|?

x|=1
=|51‘1p Z(ZHS ]lj|-x]>
2
< C sup Z (Z[D 12§=1p= 1/2]U|x]|>
Ix|=1

j
< C||D*1/2S;1D*1/2||2

by Lemma 3.5, we have

[(Z[s (o)],j/ ,,X‘dx“”‘”)]
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o sup, | A; X2\ 1?
< Cy(1 = pn) qEn[<§ P12 1 ”f"
. l
1

o Enlsup, |A;, X€|9]2/4\ /2
< €01 = o3 FRER O
13

i

< CqMI2(1 — )7

on {p, < 1} for g > 1. Then, thanks to (3.2), (3.4), (3.13) and Lemma 3.1, we obtain
(3.12).

(3.12), (3.7), Sobolev’s inequality, and similar estimates for 8§ (Hn1 (o) — Hn1 (00))
yield

3 (H) (o) — H)(00))
det S, (o)

1
=—§a§tr(sn(ao)<s,:‘(o> Sy (00)))——3k gm+ﬁe’n(0>
kst Lok o detSn(0) ;
5 05(S, (@) (Sn(00) = Sa(@)) a o Sn(00)+ﬁen<o)
fork € {0, 1,2, 3}. O

For (s1)f2) € ©,let A , = €4, (GGT)? and A7 , = €5, (GTG)P for p €
Zy and 1 < k < g,. The following lemma is used when we specify the limit of
n! (Hn1 (o) — Hn1 (09)) in the next proposition.

Lemma 3.7 Assume (A2) and (A4). Then, for any p > 1

-1 il i2 P
n~ max |tr(A —tr(A =0
ISkSqn| (A, p) (Ae )l

asn — OQ.

Proof By the definition of Ai e We obtain
ltr(Ag ) — tr(A7 )]
= ‘ Y GEH— Y HGTGY;
i suplile(sk_l,sk] Js supl_/ze(sk_1,sk]

= > Y HGGHP wlGlIG i

i; sup Iil €(Sk—1,5k] i’,j

- Y Y IGTLGGEH T Gl

Js sup I%E(Sk—lvsk] i’

Two summands in the right-hand side coincide when both sup Ii1 and sup Ij2 are

included or not included in (sx—1, sx]. In other cases, we have min,—o 1 | sup Ii1 —
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Sk—ul < rpif [GT]j,- > (. Therefore, we obtain

|tr<,4,1,p>_tr(,4g,,,>|g< Y o+ %

i.j; supI'e(sk—1,s] i.j; suplle(sk—1.5k]
SUPI?G(Sk—IJk] SUPI}¢(~Yk—1’5k]

x Y UGG iw[GliyIG i

< > [(GGT) i

i; miny—=0,] | sup 1,'1 —Sk—ul=<rn

Thanks to (A2) and (A4), the right-hand side of the above inequality is equal to
0p(hyt) = 0p(n). o

Let Vi (0) = limy— oo (T " [ y1,(0)dt), where

2 2
1 B1,:B2 01,0
1(0) = =2 Ap) Y By + Alp) ——== +Za B,t+10gBI,

=1 =1
Pt A
P1,0 o

The limit Y (o) exists under (A1), (A3), and (A4).

Proposition 3.8 Assume (A1)—(A4). Then

sup [n~ 1ok (H (o) — H!(00)) — 941 (0)] Lo (3.14)

0E®
asn — oo fork € {0, 1,2, 3}.

Proof Let Al = (GGT)?, A2 = (GTG)?, £} ) = £!(00), and oy j =% (ao)
Thanks to (Al) for any € > O there exists § > 0 such that [t —s| < & 1mphes

lor = ps| VB = X Ve — ps| < € (3.15)

for any o and 6. We fix such § > 0, and fix a partition s; = k§/2. Then, (3.5) and
(A4) yield

n= (S5 (0)(Sn(00) — Su(0)))
as((1 —$hy (512 1,2
ltr<Sn](O') <d13;g1((22i,() ~ 12231 )i) _{El’]’..oz El J } ij ) )
" {Ei,’j,() - Zi;j }/l dlag((zj,o - E])/)
1,2

P& 51, (52, o512
—~ tr( di =1 A[)—Zt <A1G{—~”” — } )}
n 2{; r( lag<< 5 )) )T EDRE 2

p
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S(on( () Jict)

looqn+1
-y {

p=0 k=1 ‘=1
sz _gl2
—2tr(51 AIG{f”’O—~l’J} )} (3.16)
(k)" *p
(EHV2EH2 ]
if o, < 1.

Let pr = pg,_, and By = ([T, (00)111/[Zs,_, (0)111) /2. Then, (3.15) yields that
for any p € Z,, we have

€L ALY — B¢ TAL Nijl < Cpan” e (3.17)

on {2pr, < §/2}.Here, the factor p in the right-hand side appears, because we consider
the difference between 2 p products of p; ;s and ,('),zp . Moreover, Lemma 3.4 and (3.4)
yield

limsup max leg(k)A I < Climsup Z On (3.18)

n—oo l<k=gn+ n—00
p=0

almost surely.
Then, together with (A2) and Lemma 3.7, we obtain

n (8,1 (0) (S0 (00) — Su(0)))
o0 qn 2
Z Z Z { 2p Z(B,f,l — Dtr(A}, o)~ 2,02p+ (By1 Be2fro — Dk)tf(/\/l(,pﬂ)} +en,
L =1

(3.19)

where pr 0 = oy, (00), and (e;)2 | denotes a general sequence of random variables

such that lim sup,,_, o, lex] = 0as§ — 0.
Moreover, by (3.3) and Lemma 3.4, we can apply Lemma A.3 in Ogihara (2018)

to S,. Then, we have

logdet S, (o) = logdetﬁ + log det <5M + <é)‘r g))

2 M, _ ~
= ZleogEWZ “e((69))
=1 i=1
2 M o)

= Z Zlog f)f - Z %tr((éGT)p)

I=1 i=I =1
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if p, < 1. Therefore, thanks to (3.2) and (3.17), we obtain

det S, (o) 2 U >
“og —2=2 = 7! log — N 2w ((GGTY? — (GG THP
n~!log oo s ;2 g ; Sr(GGT)” = (GET) (o)
qn 00 2P —p )
_n*IZHZMlklogBk,—i-Z kOt(A,Lp)}—i-en.
k=
(3.20)
Lemma 3.7, (3.6), (3.19), and (3.20) yield
o 2 . .
H, (o) — H, (00) = —> Z > { OB — DAL )
p =0 k=1 =1
2 pr(Bk,lBk.z/)k,o - ﬁk)tr(-/l;i,p“)}
qn o] p —-p .
+= Z{ZM/klogBk1+Z ¢ kot(A;Lp)}+nen
qn . . .
= Z{ Zp ZBk,tr(Ak Dt Zpk 'or.0Bi1 Beotr (AL )
k=1
+- Ztr(Ak o)
pk Pko il
+= ZMlklogBk,—i—Z t(Ak,p) + ne,
B qn 00 1 2 ,(.)k’() . . .
= Z Z Z Bk ,tr(A )+ %Bk,lBkyztr(Ak’p)
k=1t p=1 25 Pk
2 . .
— Bi, +1+1log B}
1:
> — by
Z "Ot (A,l,p>] +ney. (3.21)

Here, we used that tr(./lfc’o) = tr(é‘(lk)) =M.
Moreover, (A4) and (3.15) yield

dn nhy
S FsentCAL ) — bt /O ab f(r)de
k=1

kp) — Ity (sk — Sk—l))‘
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+

qn Sk
h'ay ) f (f(0) = Flsk-D)dr|+0, ()
k=1 "%k

<o0p(hy ") g+ Cpen+ 0,(hy ") = 0,(n) + ne, (3.22)

. 2 2p—1 2 2

for p > 1andany choiceof f(t) = p;” BZ,,p;"" pr0B1.Basand (0;” — ;) / (2p).
Here, we used that ¢,, = O(nh,) by the definition of (sk),fio € G. Similarly, we

obtain

qn nhy,

ZM,,k(l — Bi, +logB}) =h,! f ay(1 — B}, + log B} )dt + ney.
0

k=1

Together with (3.21), (A3) and the equation

o0 o0
Pt — P, Pr P A
Sal gy [ e = [ A0,
P P

1,0
we obtain
H!(0) — H) (00) = nY1(0) + ney.

The above arguments show that the supremum with respect to o of the residual term
in the above equation is also equal to ne,, and consequently, we obtain (3.14) with
k = 0. Similarly, we obtain (3.14) with k € {1, 2, 3}. O

Proposition 3.9 Assume (A1)—(A4). Then, there exists a positive constant x, such
that

T
. 1
V1 < liminf f { — 5<a3 ANad)(Bri — Ba)* — x{al (or — pi0)?
0

T—o00

+ab Aai (BB, — 1)2}}dt.

Proof The proof is based on the ideas of proof of Lemma 5 in Ogihara and Yoshida
(2014). Let

Gy = {[G]ijl{sup Ii',supljze(sk,l,sk]}}if’

and let fl}(p = (G¢G} )P and A,%’p = (G,;er)P. Let A; = Zzozl hiptr(fl,](,p) and
By =300, (2p)_1(,é,fp - p,ff(’))tr(A,i’p). Similarly to the proof of Lemma 3.7, the

difference between tr(Ai p) and tr(flfc p) comes from terms with sup / l.l close to s;_1
or s, and hence, we obtain

il il
max |tr(A —tr(A =0,(n).
lsksqn| (A, p) (A, p)l p(n)
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Therefore, (3.21) yields

1 I TP
Vi = - /; { - E(Bk’l + Bi ) Ak + EBk,lBk,Z-Ak

2
1 hd . ~
+_ZM1J‘(1_Blgl'i'lOgB]%l)—FBk}—}—en
2 P , .
1 & 1. T
= —Z — =(Br.1 — Br2) " Ax + BrBeo| Av—— — Ak
nio b2 O
1 2
Y " ;
*3 ;Ml’k(l — By +log Bi ) + Bk} +ey.

Then, since

N =

2
> Myi(1 - BE, +log B )
=1

B}, B} Myy — M

k1 k.2 I 2.k 1k . .

= M1,k<1 -5t 10g(Bk,1Bk,2)> + s (1 = Bf 5 +1log(B} )
1 . . . . . .

= —§M1,k(3k,1 — Bio)? — My Bi 1 Beo + Mk (1 + 10g(3k.13k,2))

M — M i . .
e Eal (e Bi, +1og(B} ),

and a similar estimate holds by switching the roles of M| ; and M i, we have

& 1 S : o
Yi=n"" Z{ -5 (Mt A)(Bii — Bi2)? + My k(1 +log(B, 1 B.2)

k=1
5 Mok — M : : S ioPk0 %
+Br + ———=(1 = B{ 5 +10g(B} ) + Bi,1 Bk Ak? — A =M )t +en
In 1 - . .
=n'y { — 5 (Mo + A (Bit — Bi2)? + Mok (1+ log(Br 1 Bi.2))
k=1

Al | | L
4B MM o2 ) Bk,lBk,z(Ak% — A MZ”‘>} e
Forl € {1, 2}, let

. . ~ . . ~ pk’o ~
Fix = My (1 +log(By,1By,2)) + B + Bi,1 By 2 <~Akﬁ — Ak — Mz,k>,
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then since 1 — x 4+ logx < 0 for x > 0, we obtain

4qn
_ 1 - . .
Vy<n! E H - E(Ml,k + A By — Bio)* + Fl,k}l{Mz,kle,k}
k=1

1 ~ . .
+{ - E(Mz,k + A (Bi1 — Bra)® + Fz,k}l{Mz,KMl_k}] + ey,

and therefore, we have
4n
. 1 o C
Vi<n Z - E(Ml,k AM g+ Ap)(Br,1 — Br2)™ + Fri vV Fag ¢ +ep. (3.23)
Let (x5, ”‘ be all the eigenvalues of GG/ . Similarly to Lemma 3.3, we have
0< kf‘ <. Then, we have
Mk

o0
Fiu=Y_ {1 +10g(Bi,1 Beo) + BeaBia Y (GO 5 peo — 005"

= 0P
+[’X_; 2 (:013 _'OkO)}

Moreover, by setting gll‘ =,/1- kk gl 0=+1- )»k,o,% grand F(x) =1—x+

log x, we have

M,
Fip= [1 + B B2 (89720 oo — 1) + IOg(BkJBk,zgfo(gf)*l)]

B

=

= {Bk 1Bea(g) 2 pepro — 1D + Bk,ll'?k,zgf,o(g,{‘)_l + F(Bk,]Bk,Zgz]'(,O(g,{()_l)}-
1

i

Here, we also used the expansion formulas (1 —x)~! = Zp ox? and —log(l—x) =

> ey xP/pfor x| < 1.
Let

R= sup (|aLz, "% vl =112,

t,0,0<I<4

Since gl]f <1,0< )»f.‘ <1, and |px| < 1, we have

O prpro — 1+ g,kogf‘)(l — M prpro + gfog,]‘)

@720 pepro — D+gloeh™ =
' ' L (g1 = M prfro + gt o)
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O prpro — D> — (850)2(81 )?

(gf‘)z(l - )\f-(/.)kiék,o + gi,ogi )
Ak — pro)?

D2 = o + 8508

Mmoo

—?’(pk — pr0)>.

IA

Together with Lemma 11 in Ogihara and Yoshida (2014) and

; ; _akg2 4k 2
Bi1Bioglo(dH ' —1= Bk’]Bk’z\/l A Pico \/1 Ai O - Bk lBk2 R4
’ m \/1 \/1 _pn
we have
M i
1—
F“‘<Z{ SR o — o) — 4R8n( k1 Brogloe) ™! 1)2}.

Moreover, the inequality a> (a+ b)2/2 — b? witha = Bk,lBk,zg{"O — g{‘ and
b= gf — gF, yields

(Bk,IBk,Zglk,o(g,k)_l — 1) > (Bk,IBk,Zg,k,() —gh?

(g )?
> == Brabia = 1? = (g — gfo)?
1= 2 'Ok 0 5 82k = pr0)?
= — I BB — 12 - R
2 (gi + gi,O)
_152 . . k
> " (Bi.1Bro— 1)? — 05 (bx — r.0)°,
2 41 — p;)
and hence, we have
Mk _ 52y2 k
Bkl B2 X 2 ) a h 24 B
Fiy < Z{ ——=0 bk — fr0)” — TRS (BriBra = 1) + J g (b = p0)’
By By 0o o, (1=pD? . )
- T T ToRE tr(Ag )6k — Pr0)” — WMl,k(Bk,lBk,z - D~

By a similar argument for F3 x, there exists a positive constant ¥ which does not
depend on k nor n, such that

FieV For < =3 (1= gt (A )0k — £r.0)> + Mg A Mai(Bii Beo — 1))
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Together with (3.23), we have

qn
B 1 . .
M=n'y { = 5 (M1 A M) (B = Bio)?
k=1

—x (1= o (A (B — pr.0)® + My A Mo (Bei Bra — 1)2}} + en.

By letting n — o0, (A4) and (3.3) yield the conclusion. O
(A6) and Remark 4 in Ogihara and Yoshida (2014) yield that
. 1t 2 2 2
lim sup T {|Bl,t — Bo|” + |B1,Bay — 117 + |pr — pr0l }df > 0,
0

T—o0

when o # 0y.
Then, by Proposition 3.9, we have V(o) < 0 (note that ao1 A a(z) > all by (2.3) and
a similar argument). Therefore, for any § > 0, there exists > 0, such that

inf  (=)1(0)) = 1.

lo—op|=8

Then, since Hn1 (64) — Hn1 (09) > 0 by the definition, for any € > 0, we have

P (|6, — 00| = 9)

IA

P( sup (H, (o) — H, (00)) 20)

lo—0p|=8

IA

P( sup (n™!(H,}(0) = H,(00)) = D1(0)) = n)

lo—0op|=48

IA

P(sup In"'(H) (o) — H}(00)) — V1(0)] > n) <€ (329

for sufficiently large n by Proposition 3.8, which implies 6, £ 0p as n — oo.

3.3 Asymptotic normality of 6’,,

Let S,0 = Su(op) and X; 9 = %;(0p). (3.7) and the equation 8US,:(1) =
=S, 0955108, ¢ imply

1 , e 1 _
3, H ! (00) = —E(AX‘)TBU S 0AXC — ztr(f),,s,q,()sm(l)) +0,(v/n)
1
= —Etr(agS;’(l)(AXC(AXC)T — 851,0) + 0p(V/n). (3.25)

Let (L,)nen be a sequence of positive integers such that L, — oo and
L,n"(nh,)~!' = 0asn — oo for some n > 0.Letsy =kT,/L, for0 <k < L,, let
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J* = (5k_1. 5x], and let S,(lkg be an M x M matrix satisfying

k
[52,3)11'/' = f [0y ).y (hdr-
[,’ﬁ[_jﬂ\/k

For a two-dimensional stochastic process (U;);>0 = «ul, Utz)),zo, let Aﬁigk)U =

U U andlet AXU = AYO O for 1 <i < M. Let
(SIS D ASKAL (S VE_DAS AL Lt i)t -

APU = Al UL andlet AOU = (AP U) <1z
Let

1 T e : _ 1 Ta ool A @) ve
X = == {(AOX) Tap 55 A0 X< (@, 5, 0S40} — —= 2 (A0X) a5, p Al xe,
k' <k

Then, since AX¢ = Y1 AOXC and S0 = 37 S, (3.25) yields
L}‘l

n~20, Hy (00) = Y Xk +0p(1). (3.26)
k=1

Moreover, 1td’s formula yields

3 / A®) yeqxev®
Iiﬁjk J !

1 e
Vi = =3 Yt b2 [ afixeaxyr® 42
24" AV P
’ <

- _Z[aos;})],-_,-/ Aj XXV, (3.27)
i ’ 1;NJk
Let G, = F \/ o ({I1,,},) for r > 0. We will show

n=129, H (00) > N(0,T), (3.28)

using Corollary 3.1 and the remark after that in Hall and Heyde (1980). For this
purpose, it is sufficient to show

Ly
3 EdAH S T (3.29)
k=1
and
L)l P
> Edx >0, (3.30)
k=1

by (3.26), where E} denotes the conditional expectation with respect to Gy, _,.
We first show four auxiliary lemmas. Let Mk =#{i;1 <i <M,supl; € Jk}.
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Lemma 3.10 Assume (Al). Then, there exists a positive constant C, such that
ID~128% D12 < € and w(D~V2SED~1/?) < C(My +1) forany 1 <k < Ly.

Proof Since

(k) 12(&m G 12

Lemma 3.3 yields

_ _ Ev, G
D l/2s(k)D 1/2 <C 1 <C.
I 2sp P el (Gt e, )| =
Moreover, we have
M [0y adt M
_ _ [Nk L=e,009 @), ¥ () ~
w(D 25D = 3o o = < CY Nynnsien < COM + 1),

i=1 ! i=1

m}

Lemma3.11 Assume (A4) and that nh,L,' — 0o asn — oo. Then, {L,n~!
max k<, Mg}, is P-tight.

Proof Let M,, = [nhnL,jl]. We define a partition of [0, co0) by

nhnj .
;= > 0).
=0, VEY

Then, (s j)?ozo € & whennh,L,; I'>1,and (s j)ii’E)M” is a subpartition of (Ek),fio.

For M, ; which corresponds to this partition (M}, remains to be defined using 5;),
we have

2
M, =Z Z M,

I=1 j=2M, (k—1)+1

since §; = nh,kL; ! = 55 M,k Therefore, (A4) yields
 max My < 4M, max M ; < CMulh @b v ad) +op(hy )y = 0,(eL ).
<k<L, .J

Lemma 3.12 Assume (Al). Then O

(Qn+ Dpn"

~N— k —1 (k) R{—
1D~128% 055,758 D12 < € i
0% 0%, =0

on {py < 1} for |k —k'| > 1, where Q, = [r;; "(T,,/ Ly — 2ry)].
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Proof Using the expansion formula (3.5), we have
58305, 08%) = —s8) 508, snosnos(")

0 G\’ < -
=S¥ D~ 1/22( 1)P( 0) D123, 8, 0D~ /2

0 G\ p-172gk)
XX(:)(—l)q (éT 0) 280
q:

o0
= Y (—prratigher s (3.31)
r.q=0
if p, < 1, where
0 G - 0 G\’ ~_
%q: 1/2<G 0) D 1/23(78"’02) 1/2<GT 0) P12,

We consider a necessary condition for

(s&en s = Z[s,g"g IR A T (3.32)

to be zero for any i’ and j'. We first observe that the element [Qﬁ;’,’ ¢lij is equal to zero
if [SPFa+1];; = 0, where
S, _ 5M1 G
“\GTéw, )-

Moreover, [S")1; # 0 only if ; N J* # ¢, and (s ‘0 1jj # Oonlyif I; N J* % 4.
Since inf ey, yer; [x — y| > To/Ln — 2rn if I; N Tk # (zs and I; N J¥ # 0, we
have [§r],] 0 for r < Q,, when [Sn olii # 0 and [S, 0]” # 0. Therefore,

[S(k) ’;qSIEkO)], =O0foranyi and j if p+qg+1<Q,.

Then, (3.31) and Lemmas 3.4, 3.5 and 3.10 yield
IIﬁ_l/QS,(k) 3y Sn OS(k )P~ 1/2”

> 0 G\’
s> 3 [presien(8G) o s
p=04q=(Qu—p)V0

0 G\ 5 12 ctt) 512
x(GT()) D128 DY

< Ci i Iaerq Qn,on + o n(l — pn)” !

p=0g=(Q,—p)V0 =P
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QDA
S A=

on {p, < 1}. O

Lemma3.13 Let m € N. Let V be an m x m symmetric, positive definite matrix and
A be am x m matrix. Let X be a random variable following N(0, V). Then

E[(XTAX)?] = tr(AV)? 4+ 2tr((AV)?),

E[(XTAX)?] = tr(AV)? + 6tr(AV)tr((AV)?) + 8tr((AV)?),

E[(XTAX)Y = r(AV)* 4+ 120 (AV) e ((AV)?) + 12tr((AV)?)?
+32tr(AV)tr((AV)?) + 48tr((AV) ).

Proof We only show the result for E[(X TAX)*. Let U be an orthogonal matrix and
A be a diagonal matrix satisfying UVU " = A. Then, we have UX ~ N (0, A), and

8 4
E|:H[UX]]-I.:| D (2N
i=1 (ZZq—lyqu)?]:] q=1

where the summation of (l4—1, 12,1)3=1 is taken over all disjoint pairs of {ji, ... js}.
Then, by setting B = UAU T we have

4 4
ExTAxy 1= > > Bl [ [1ATny1-
JiseesJ8 (zzq_l,lzq)gzl p=1 q=1
Let ,C; = #Lk)' Out of ji,..., jg, we connect jop 1 t0 j2p and lpg—1 t0 Iy

(1 < p,g < 4). Then, the pattern of the connected components gives five different
cases.

1. Four connected components (four components of size 2): only one case of the pairs
(lag—1, qu)3=1 appears, which corresponds to tr((BA)*).

2. Three connected components (a component of size 4 and two components of size 2):
The choice of elements for a components of size 4 gives 4C, ways, and the choice
of the pair (I24—1, l24) for this component gives two ways, and hence, 4C, x 2 = 12
ways in total. This case corresponds to tr(BA)2tr((BA)?).

3. Two connected components (two components of size 4): The choice of elements
for each component gives % ways, excluding duplicates, and the choice of the
pair (I24—1, l24) for each component gives two ways, and hence, % X2x2=12
ways in total. This case corresponds to tr((BA)2)2.

4. Two connected components (a component of size 6 and a component of size 2): The
choice of elements for a components of size 6 gives 4C1 ways, and the choice of the
pair (l24—1, [24) for this component gives 4 x 2 = 8 ways, and hence 4C1 x 8 = 32
ways in total. This case corresponds to tr(BM)tr((BA)?).
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5. One connected component (a component of size 8): The choice of the pair
(lag—1, lrg) gives 6 x 4 x 2 = 48 ways. This case corresponds to tr((BA)%).

Then, we obtain the conclusion.

Proposition 3.14 Assume (A1)—(A4) and (A6). Then
n= 128, H (00) > N(0,T)

asn — OQ.

Proof Tt is sufficient to show (3.29) and (3.30). Let 2 = (A® X)Ta, S,;})AWXC
and B, = 0, S,;(I)S,(l]%. By the definition of A%, we have

L,
ZEk[X,?]
C &
<= {Ek [{(APX) 8,8, AR X — (35S, S(k))}]
n k=1
[(Z(A(")XC) 9 S A(k)X‘) “

k' <k
C Ly
=2 [Ecl2) — 4B 1 (Bo) + 6EA r(Bi)? — 4ur(B)* + r(Bp)* |
e Ln LT , 2
Tz {( 2 8¢ x) 3oS;éSif‘%805;é( 2. At )Xc)} SRS
k=1 k' <k

Thanks to Lemmas 3.13, 3.10, 3.11 and 3.5, (3.4), and Lemma A.l in Ogihara
(2018), the first term in the right-hand side is calculated as

Ly

n% > {tr(%k)4 4+ 12tr(By)*tr(B7) + 12tr(B7)? + 32tr(Bp)tr(B3) + 48tr(BY)
—4tr(Bp) {tr(Br)? + 6tr(Btr(BY) + 8tr(B}) | + 6tr(By)*{tr(By)?
+2ur (B} — 3tr(‘Bk)4]

Ly
- n% > {48ur(By) + 12t(B)?}

C - _
< 3 max My + 17 La(1 = 5)~*1(5,<1) + 0, (1) Lo (3.34)
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Moreover, Lemma 3.13 yields

[ SE{(D a0 wsdstisi( Do)}

k' <k k' <k
C & ®) ®)
k k
<= {1tr(8- S, 6,808 S, S 5 (B Sy .St 006 Sy S o)
k=1 k| k) <k
—1 (k) 1 kD (k) (k)
(B0 S, Sk 00 S, 0 0 90 Sy 08 0 Sy 08, 31} (3.35)

If kj < k — 1, Lemmas 3.5 and 3.12, Lemma A.1 in Ogihara (2018) and the equation
S, 0 = =5, 090 Sn.0S, ¢ yield
11130 S 3580, 573540
= (D25, DV 20,8, 0D 2D g DV 25N g, 57 s K D12
— — — — ki
< (D25, D) D124, 5, 6D IID S, \DVA D 250, 5, h s D))

<CMQ,52 (1 — )™

on {p, < 1}. Here, we used that tr(ﬁl/zS,;(l)ﬁl/z) <M- ||251/ZS,;(1)@1/2|| <CM(-
pn) . Similarly, we obtain

o) o1 oK) k (k)
1t (3 S, .S 030 S S0 8o Sy 65k 03 Sy S ) < CMQup2 (1= ) S,

Since p,;~" converges to zero very fast if p, < 1 and r,, < 1, together with (A2) and
(3.3), the summation for of the terms with k| < k — 1 or k), < k — 1 in the right-hand
side of (3.35) is equal to 0, (1).

Then, together with Lemmas 3.5, 3.10,and 3.11, and Lemma A.1 in Ogihara (2018),
we obtain

L
C & ,
El'[|:*§ {<§ A(k)X> 3y S OS(k) (2 A(k)X‘>} ]
k=1 k' <k k' <k

L
Z{|tr(8 S, 08085 8, 08U T2 + 118 S, 50008, 0SS DI} + 0p (1)
k=1

L, P
=0, —zlmaka—i—l] +o,() 50 (3.36)

as n — oo. Then, (3.33), (3.34), and (3.36) yield (3.30).
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Next, we show (3.29). Let Z} j=Linn J¥. Then, (3.27) yields

Ly
D EMX = Z D D 106, olin 1[0 Sy oliz o
k=1

k iy, jiia,j2

ka [Zr.0lyain. v Ek[Aji, XA jp  XE]d1

i1,ip

L
1 n _ _
- n Z Z Z[aasn,(l)]il,jl [30Sn,(l)]i2,jz

k=111, j1i2,j2

ka [Zt,olwm),w(iz)/ [Zs.0ly Go.p(ndsdr. (3.37)
1

i1.in jlﬁl_/zﬂ[o,f)

We can decompose

/k [Ez,o]x/fm),n/f(iz)/ o oo s 0lw G dsdt

i,ip 71 NLjNI0.1)

2/ i1 tz(t)/ 1o ($)dsdr + Z i1,iz Jl 2’

k' <k

where Fk @) = [Zr0lyo), w(])lz-k (t),and .7-'1‘ fOT" F/‘l (t)dt. Moreover, switching
the roles of11 ir and ji, jo, we obtam

S 100 8 5 [0 S i /0 ko) / k- (s)dsds

i1,J1 2, J2

1
-1 -1
= Z Z[aUSn,O]il’./l [aUSiz,O]in/Z X 5{/0 i, zz(t)/ Jis jz(s)det

i1,J1 12, )2

—i—/o i n(t)/ i, lz(s)dsdt}

1 _ _ Tn
= z Z Z[ag Sn,(l)]il,jl [agsn,(l)]i%jz{ [) 11 iy (t)/ Ji,J2 (s)det

i1,J1 2, )2

+/ i lz(s)/ ’ W lz(t)dtds}

= = Z Z[a ()]11 Jl[a Sn 0]12 JZ i, 12'7:;{1 2

ll J1i2,j2
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Therefore, we have

Ly

k/
2n ZZ Z[a" n, 0]’1 Jl[a" nO]’Z 12= i1,i2 11 J2 +2Z i1, lz]:jl 12}

k=11iy,j1i2, )2 k' <k

Ly
> EdX]
k=1

= 5 Z Z Z[a Sn 0]11 J1 (95 Sn 0]12 J2 l] 12‘7:5(1 2

kk’ Lit,jriz,j2

1 -1 —1
= DD 196, ol [3«75,.,011'2,12/ [Zr.0ly ).y At

i jiiz, 2 0y
x / [Zs,0ly,w(ds
1 ﬁl-

- ltr((a S 8S0.0)%). (3.38)

95 S,,. ()Sn o corresponds to D(t) in the proof (p. 2993) of Proposition 10 of Ogihara
and Yoshida (2014). Then, by a similar step to the proof of Proposition 10 in Ogihara
and Yoshida (2014), we have (3.29). O

Proposition 3.15 Assume (A1)—(A4) and (A6). Then, I'1 is positive definite and
~ d _
(6, —00) > NO, T

asn — oQ.

Proof Proposition 3.9, (A6), and Remark 4 in Ogihara and Yoshida (2014) yield
Yi(0) < —clo — a0l (3.39)

for some positive constant c. Moreover, ) (op) = 0 by B; ;0 = 1, and 9,V (cp) =0
by

2
1
05 y1,1(00) = _apA(pt,O)aapt,O - EA()OI,O) E 205 By 1,0
=1

01,0
F0,A(01.0)0001.0 — Alpr0) 2 -
Pr,
2
+(0o B1.1.0 + 90 B2.1.0)A(pr.0) + Y _ ag(—0o B1.1.0 + 96 B1.1.0)
I=1
A(pi,0)
+ pr 8a;ot,O
Pt,0
=0.
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Then, Taylor’s formula yields
Yi(0) = (6 — 09) ' 9;V1(00) (06 — 00) + 0(lo — 0p*).
Therefore, considering o sufficiently close to o9, 'y = —33 V1 (0p) should be positive

definite by (3.39).
By Taylor’s formula and the equation 9, Hn1 (6n) = 0, we have

—0, H ! (00) = 8, H(6,) — 8, H (00)

1
= / 82 H ! (0,)dt (6, — 00)
0
1
— 02 H) (00) G — 00) + G — 00) " /O (1 — 192 H) (0)d1 G — 00),

where o; = 16, + (1 — 1)og.
Therefore, we obtain

—1

1
\/ﬁ<6n—00>={—1a§H;<oo>—1 / (1—r>83H,:<at>dt<6n—ao>} iaaH,:(ao).
n n Jo Jn

(3.40)
Since Proposition 3.8 yields
Lo L2 _
n%Hn (00) = —9;V1(00) =T,
and
{ sup |~ 32 H! }
P |05 n(U)
o [N neN

is P-tight, together with Proposition 3.14, we conclude
V6, — 00) % N©. T (3.41)
O

3.4 Consistency of é,,

Let
: (IR i 2p 12 2p+1
»20) = lim = | doi- Z I oG8+ 020 b1idha.s pdt
p=0

which exists under (A1), (A3), and (AS).
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Proposition 3.16 Assume (A1)—(A6). Then

sup |(nhy) "' a5 (HZ(0) — HZ(00)) — 35 22(0)] Lo (3.42)
0e®y

asn — oo fork € {0, 1,2, 3}.
Proof We first show that
XO) 'S, 6)X(0)
= AXTS, (6)AX = 2AV(0) S, (AX = AV(0)S, {(2AV (60)
—AV(0)) + /nh,é, (), (3.43)

where (¢, (9))

supg 1€,(0)] —> Oasn — oo.
Lemma 3.5 and (3.10) yield

o~ denotes a general sequence of random variables, such that

En[(AV©)TakS, (AXS) ]

o~n,0

= Y 105, 01ir i [958, 0in o Aiy VO) ALV (O) ER[A j, XA j, XE]

ll Jl 12 /2
=YD 1088, ol j 1058, §lin i Aiy VO ALV (O)[Sn0 o

l] ]I 12 ]2
< CID™ 2 AV ©)1*ID'?9% s, oD IPID 28, 0D
< Cnh,(1 = p,) %2 (3.44)

on {p, < 1}.

Since (3.2), Lemma 3.2 and Taylor’s formula yield

M 2
_ EnllA; X]7]
Enl|D~'2aX|?] = ,2:1 e T S M i) = 0y,
XO)'S 1 6)X(0) — AXTS, 1 G)AX = —AV () S (6,)2AX — AV (H)),
(3.45)

and

S, (6n) = S, )+ (62 —00)35 S, §+ (60 — 00) T / (1=1)3; S, ' (6, +(1—1)00)du (5, —0)

(3.46)
(3.4), (3.10), (3.41), (3.45), and Lemma 3.5 simply
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sup [ X(@O) 7S, 16X (©O) — AX TS, (6)AX
%
+AVO) (S, + (60 — 0005 S, o} RAX — AV ()]

1
AV(@)T/ (A =u) > " 05,05, (U6,
0

i,j

= sup
6

+(1 = u)o0)[64 — 00li[6n — 00 ;du(2AX — AV(9))‘

<sup[D~'2AV(©)] - sup | D2 2AX — AV(9))] - |64 — 00|
% 0

>
ij
= 0, (y/nhy -1 - (0752 1) = 0,(/nhy). (3.47)

1
‘ / (1 —u)D'285,05, S, 'y + (1 — w)o)D'*du
A .

Thanks to (3.4), (3.10), (3.41), and Lemma 3.5, we have

sup [AV () {61 — 000355, o} QAX — AV (9))]

6
=sup|AV(©) {64 — oo)ags,;g)}(mxf +2AV (6g) — AV ()]

%

TI/a -1 c

<sup|2AV(0) {(a,, — oo)aganO}AX |

6

+Csup D~ 2AV ) 12ID?8, S, D116, — o0l
p ,

< |6n — 00| SUP [2AV (0) T35S, s AXC| + Op(nhy) - Op(n~ ') (3.48)
6

For k € {0, 1} and ¢ > 1, the Burkholder—Davis—Gundy inequality, Lemma 3.5
and a similar estimate to (3.10) yield

sup Enl|of AV (60) 0, S, L axea)'/a
u ,
2
< C4sup Z En[
6
=1

2 1/2
<C sup > (Z[a(, Sy 008 AV gy, |1,.’|)
=1 i

= C,sup (5 AV(0) 0, S, 1D, S Lok av ()"
u , ,

qi|1/q

> 1968, 095 AV (O)ira—1ym A XC

1

< Cy/nhy(1 — py) 2. (3.49)
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Together with (3.4), (3.41), (3.48), and Sobolev’s inequality, we have
sgp |AV(0)T{(&n - GO)E)US;(])}(ZAX — AV(0)| = 0p(/nhy). (3.50)

Then, (3.47) and (3.50) yield (3.43).
Applying (3.43) to 8 and 8 = 6, we have

HX(6) — H? (6)

1
= AV () = V(60)" S, §AX" + EAV(@)TS,;(‘)(zAV(eo) — AV ()
%AV(@O)TS;(‘)AV(GO) + V/nhyé, (6)

=A(V(©O) = V(®) 'S, jAX - %A(vm) —V(©0)) S, 0 AV (O) = V(60) + V/nhuén ().
(3.51)

and hence, by similar estimates to (3.49), we have

1
sup H(0) = H7(60) + AV (©) = V(00) 'S, AV 0) = V(90))‘ = 0,(Vnhy).

(3.52)
Then, (3.5), (3.17), and a similar argument to (3.16) yield

AV (0) = V(00)) " S, 5AV () — V(60))

(GGTY —(GGTHPG

= A(V(0) = V(6) D (00) ) (7@6)1@ Gy )ﬁ”/z(oo)A(V(e) — V(60))

p=0
0 4n 2
B T . o .
=y > Pkf){ D G VP ILAL Tkt = 26001 5 2.5 3;|Ai,ka3k,2} +nhpey,
p=0k=1 I=1

where jk,l = Egk)jl. Together with (A3), (AS), (3.52), and a similar argument to
(3.22), we obtain

sup ()™ (H2©0) — H2(600)) — Y2(0)] > 0 (3.53)

asn — oo. Similar estimates for (nh,) 95 (H2(0) — H2(60)) (k € {0,1,2,3,4})
yield the conclusion. O

Proposition 3.17 Assume (A1)—(A6). Then, O £ 6p as n — oo.

Proof By Lemma 3.5, we have
D25 (D2 > | D728, oD ey = CEp. (3.54)
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Therefore, together with (3.15) and (3.16), we obtain

1
—ZAV(O) - V(©0) 'S, 6A(V(0) — V(6o))
< —CA(V(0) — V(6)) ' D'A(V () — V(6))

=cy |1,»|—1</14 /e - u;”‘”(eo»dr)

qn
==Y S WD O) = n D@11 N I+ nhge,
k=1 i

Ty
= - /0 |16 (0) — 11 (0) [*dt + nhyey. (3.55)
Hence, we have
. 17 2
W (0) < —Climsup | — [0 (0) — e (Bp)|7de ). (3.56)
T—oo \I Jo

Assumption (A6) yields that for any 6 € ©®
(@) <0, and )»(0) =0 if and only if 6 = Op; (3.57)
(3.42), (3.57) together with a similar estimate to (3.24), we have the conclusion. O

3.5 Asymptotic normality of On

Proof of Theorem 2.3 By the definition of H,% (0), we obtain
3o H,; (60) = 09 AV (60) " S, (6,)X (B0) = 9 AV (B0) T S, (61) AXC.

By a similar argument to the derivation of (3.43), we can replace S, 1(6,) in the right-
hand side of the above equation by S é with approximation error equal to 0, («/nhy).
Then, we have

00 H2(60) = B9 AV (60) ' S, §AXC + 0,(v/nhy).

Let

X = ;agAV(GO)S*IA(k)X“’
Vnh, 0
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for1 <k < L,. Then, we have

Ly
(nhy) 1209 H>(60) = Z X +o0,(1). (3.58)
k=1

Lemma 3.5 and a similar argument to (3.10) yield

L L
n . 3 n B . 2
> EX = e > {80AV 00 7S, 5550, 80 AV (60) )
k=1 n n k=1
L
> - Ny ) e
< 5 D7 280V @)D, 5D 1P Y ID s D )
" k=1
CL
< —(1-p)* 50
nhy,

Moreover, (3.5), (AS5), and a similar argument to the proof of Proposition 3.8 yield

L L
i . 1 - _ _
D Bl = nhy Yo D S i [, 002 A 80V (B0) Aiy 00 V (B0)Sy Oy s
k=1 k=Lliy,j1i2,j2

1 _ _
= — AdyV (00)" S, §Sn.0S, 0 AV (60)

n n
L gy 3 2 T il ~
- nhy, Zzpk%{ Zag(pl,sk_]('g())jl ‘Ak,le
p=0k=1 1=1

—20k.000 P15, 9 P2.5;, (eo)JTA,i,,,GJ2} +ep
—P> Is.

Therefore, (3.58) and the martingale central limit theorem (Corollary 3.1 and the
remark after that in Hall & Heyde, 1980) yield

Ly
()™ 200 HE2O0) = 3 &+ 0,(1) 5 N(O,T). (3.59)
k=1

By (3.56) and (A6), there exists a positive constant ¢, such that Y, (0) < —c|60—6y |2.

Then, I', = —3(3))2 (6p) is positive definite, since V> (8g) = 0 and 9y )»(6p) = 0.
Therefore, a similar estimate to Sect. 3.3, P-tightness of {(nh,,) ™! supy | 893 H2(0)|}n,

and the equation —(nh,) 193 H?(60) L 15 yield

~ d _
VT 6, —60) > N©O,T7").
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(3.40) and a similar equation for «/nh,,(é,, — bp) yield

(V160 = 00), VT (0 — 60)) = (0~ 2T7 0, H (00), T, /*T5 05 H2(60)) + 0, (1)
Lil

= (' T ) + 0, (D). (3.60)
k=1

Then, since Z,f;] Ex[ X Xk ] = 0, we obtain

N A d _
(V16 — 00), V/nhp (@, — 60)) = N(©O,T7h.
3.6 Proofs of the results in Sects. 2.3 and 2.4 O

Proof of Theorem 2.5 Let o, = o( + tequ foru € R% and ¢ € [0, 1], and let
| - 1
H,(0,0) = _EX(Q) S, (0)X(©O) — zlogdet S, (0).
Then, we have

Hy(oy, 04)

1
— T, / O Hy (010, 6p0)d1
0
T L+
=u €,0yHy (00, 0p) + Eu 6na(,{I—In(O‘()’ Oo)enu

1 (1- S)2
+ D | 5 BB B i (O Osu)dslenulilenu] et
ijkv0
By similar arguments to Propositions 3.8 and 3.14, and Sects. 3.4 and 3.5, we obtain
1 2
(1 - S) P
Z / Taai aaj 80{an (Osus esu)ds[enu]i[enu]j[enu]k — 0,
i,j k0
d
A, = €,04 Hy (00, 6p) — N(0, &),
P
—enajH,, (00, 0p)en — E4.
Therefore, we have the desired conclusion. O

Remark 3.18 We can show that (6,,, 6,) is a regular estimator by the proof of Theo-
rem 2.5, (3.60), and Theorem 2 in Jeganathan (1982).

Outline of the proof of Proposition 2.7
The proof is similar to the proof of Proposition 6 in Ogihara and Yoshida (2014).
P-tightness of {h, M 4,+1}7-, immediately follows from (B1-1). Fix 1 < j < gj.
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Then, using the mixing property (2.4) for J\/,"’l, we obtain the following result; there
exists > 0, such that for any g > 4, there exists C, > 0 that does not depend on j,
such that

E[|hatr(€;,(GGTYP) = Elhatr (£}, (GG M| < Cy(p + DI H]".

(The above inequality corresponds to (31) in Ogihara and Yoshida (2014). This is
obtained by defining b, = h, !, tr = sj_1 + k[h, 17 (s; —sj_1) for 0 < k <
[k '], and X} = tr(g(lj,k)(GGT)p)lA:b,;/ — E[tr(S(lj’k)(GGT)p)lA:hy] in the proof
of Proposition 6 in Ogihara and Yoshia; (2014), where Sf I is an Mnl X M) matrix
satisfying [Efj,k)]ii/ = 1ifi =i’ and sup Iil € (tx—1, t¢], and otherwise, [Egj’k)]ii’ =
0.

Therefore, by setting sufficiently large ¢, so that nh,l,Jrqn

— 0, we have

E|: max |h,,tr(€(lj)(GGT)”)—E[hntr(E(lj)(GGT)”)]|qi|
lfijn

qll

<E [Z |hatr (E5(GG TP — E[hntr(f(lj)(GGT)p)Hq}
j=1

= 0(q, - h"y — 0.

Here, we used that for any partition (s;)72, € &, we have g, < nh, /e + 1 with e =
infg>1 [sk — sg—1| > 0, which implies g, = O(nhy,). Together with the assumptions,
we obtain the conclusion.

Outline of the proof of Proposition 2.8

Similarly to the previous proposition, using the idea of Proposition 6 in Ogihara and
Yoshida (2014) and the mixing property (2.4) for ./\fl"’l, we have that there exists > 0,
such that for any g > 4, there exists C;, > 0, such that

E[[37€,(GG T3 = BT €L, GG Ty 3|"] = Cyp + 1™ i
for 1 < j < g,.(We define b, and #; the same as the previous proposition, and define

Xi =Tha) '3 & 1) (GG TP T 4 L Ellha)™'3] & 1 (GGHPTil 1)

kb5 kb3

Together with the assumptions and similar estimates for jlg(lj) (GGTPGT, and
325(2].) (GTG)sz, we obtain the conclusion.

Outline of the proof of Proposition 2.9

We can show the results by a similar approach to the proof of Proposition 9 in Ogihara
and Yoshida (2014). Roughly speaking, under (B2-¢), the probability P(/\/;Z;ZN hy ~

@ Springer



Japanese Journal of Statistics and Data Science (2023) 6:505-550 547

/\/t"’l = 0) is small enough to estimate the denominator of

1 212

R AL
1 2
12

i,j

for sufficiently large N. Then, we obtain estimates for the numerator using an inequality
x12+'-~+x,21 > Rz/nwhenxl +---4+x, =R.

Proof of Lemma 2.10 We only show

1 T 1
max [y EIr(Ely (GG )] = ap(sk = si-n)] = 0.

The other results are similarly obtained.

(2.4) is satisfied, because a,’j < c1e—?* for some positive constants c¢; and c».

Let fil be i-th jump time of A’. Then, we have S?’l = h,,fil .Let G be a matrix with
infinity size defined by

=1 =1 =2 =2
_ |(7:,',1v T N (Tj,]a Tj]l

(Gl =
-1 _ =1 [z2 =2
\/ri — tl._l\/rj -7,
fori, j > 1.
Fork € N, let
&= Y UGGH. opf= > (GG ) lis.
is7) elk—1.k) i1 €l k=1 k)

The following idea is based on Section 7.5 of Ogihara and Yoshida (2014). Roughly
speaking, if there are sufficient observations around the interval [k —1, k), we can apply
mixing property of N"! to &”. On the following sets Af,and A} , we have sufficient

observations of N/ and N, Let A; U = Utyrj — Upyrj—1) for astochastic process
(Ut)tZO’ and let

Ay N Arhy N
A]f’r: ﬂ { ﬂ {A;’[k/\/” >0} N ﬂ {A"/,,H/\/" >0}},

=12 % 1<j<2p+1 —2p<j<0
tr+rjh, <T, te—1+r(j—1Dh, >0
1 r w7l 1 i
=N { N BN >0 () (A, A >0}}. (3.61)
=12 “1<j<2p+1 —2p=<j=<0

k=1+4r(j—1)>0
Then, we obtain

E[Qﬁ,flAfr]zE[Qﬁlf,lgf/ | ifkAK =rp+1,
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E[®{ 1 1= EI6[" 1,y | ifrp+1<kK <n—rp.

We also have P((A,f,r)c) < C(p + 1)r~4 by (B2-q). For any € > 0, there exists
r > 0, such that B
P((AL,)) < €/2. (3.62)

Therefore, {E [QSf 1}k is a Cauchy sequence, and hence, the limit all, =limg_ oo E [65 ]
exists for p € N. Moreover, we see existence of

ag = lim E[N; — N 1= EIN] = Aj]

forl € {1, 2}.
Furthermore, for any € > 0, there exists r > 0, such that

P((A,’;r)c) <e and |E[&]]— a},| <e€ (3.63)
for k > [rp]. We also have
E[Qi,flgf,r] = [@Z”’lAgr] (3.64)
forrp+1 <k <n—rp,since
sup I} € (sj_1,5;1 <= T €y sj—1. by s;].
1 < E[N]], (3.63),

o 's;1. Then, since |8} <

Letrj =h 24 (=g k]
(3.64), and the Cauchy—Schwarz inequality yield

hn(sj — sj-1) " Eltr(E (GG THP)] — ay)|

Ti
shn<s,-—s,-1>—1E[ > 62*”]

k=rj,1+l

] 2 e

j—1+1

_ a}, + 2h,(sj — sj—1) " EINT]

IA

1 + Chy(s; — ijl)_l

1

rj_rj—l

IA

s s 1 —1
> |Els; Plap 14+ EL&L 1 4p ] = ap| + Chalsj = 5j-1)
k=rj_1+1

A
™
=

G
o

|

IS
-

[\®)
s
&)
E
5

+

@)

Byl
z
\(4

< e+ 2E[N)2Ve + Chy(sj —sj-1)™

for 1 < j < gy. To get the corresponding inequality for j = 1, g, we replace the
summation range of k in the above inequality with the range from r;_; + [rp] + 2

@ Springer



Japanese Journal of Statistics and Data Science (2023) 6:505-550 549

to r; when j = 1, and with the range from r;_y to r; — [rp] — 1 when j = g,.
Boundedness of {E[h, M; 4,+11}nen is shown using the same techniques. Then, we
have the conclusion. O

Acknowledgements On behalf of all authors, the corresponding author states that there is no conflict of
interest. The author is grateful to the journal editor and two anonymous referees for careful reading and
constructive comments, which led to improvements of this paper.

Funding Open access funding provided by The University of Tokyo. This work was supported by Japan
Society for the Promotion of Science (Grant no. 21H00997).

Data Availability Data sharing is not applicable to this article as no datasets were generated or analyzed
during the current study.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2011). Multivariate realised kernels:
Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-
synchronous trading. Journal of Econometrics, 162(2), 149—169.

Bibinger, M., Hautsch, N., Malec, P., & Reiss, M. (2014). Estimating the quadratic covariation matrix from
noisy observations: Local method of moments and efficiency. Annals of Statistics, 42(4), 80-114.

Christensen, K., Kinnebrock, S., & Podolskij, M. (2010). Pre-averaging estimators of the ex-post covariance
matrix in noisy diffusion models with non-synchronous data. Journal of Econometrics, 159(1), 116—
133.

Florens-Zmirou, D. (1989). Approximate discrete-time schemes for statistics of diffusion processes. Statis-
tics, 20(4), 547-557.

Hall, P., & Heyde C. C. (1980). Martingale limit theory and its application. Academic Press, Inc. [Harcourt
Brace Jovanovich, Publishers]. Probability and Mathematical Statistics.

Hayashi, T., & Yoshida, N. (2005). On covariance estimation of non-synchronously observed diffusion
processes. Bernoulli, 11(2), 359-379.

Hayashi, T., & Yoshida, N. (2008). Asymptotic normality of a covariance estimator for nonsynchronously
observed diffusion processes. Annals of the Institute of Statistical Mathematics, 60(2), 367-406.
Hayashi, T., & Yoshida, N. (2011). Nonsynchronous covariation process and limit theorems. Stochastic

Processes and Their Applications, 121(10), 2416-2454.

Ibragimov, I. A., & Has’minskii, R. Z. (1981). Statistical estimation. Applications of Mathematics (Vol. 16).
Springer. Asymptotic theory, Translated from the Russian by Samuel Kotz.

Jeganathan, P. (1982). On the asymptotic theory of estimation when the limit of the log-likelihood ratios is
mixed normal. Sankhya Series A, 44(2), 173-212.

Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations. Scandinavian Journal of
Statistics, 24(2), 211-2209.

Malliavin, P., & Mancino, M. E. (2002). Fourier series method for measurement of multivariate volatilities.
Finance and Stochastics, 6(1), 49-61.

Malliavin, P., & Mancino, M. E. (2009). A Fourier transform method for nonparametric estimation of
multivariate volatility. Annals of Statistics, 37(4), 1983-2010.

Ogihara, T. (2015). Local asymptotic mixed normality property for nonsynchronously observed diffusion
processes. Bernoulli, 21(4), 2024-2072.

@ Springer


http://creativecommons.org/licenses/by/4.0/

550 Japanese Journal of Statistics and Data Science (2023) 6:505-550

Ogihara, T. (2018). Parametric inference for nonsynchronously observed diffusion processes in the presence
of market microstructure noise. Bernoulli, 24(4B), 3318-3383.

Ogihara, T., & Uehara, Y. (2022). Local asymptotic normality for ergodic jump-diffusion processes via
transition density approximation. Bernoulli (to appear).

Ogihara, T., & Yoshida, N. (2014). Quasi-likelihood analysis for nonsynchronously observed diffusion
processes. Stochastic Processes and Their Applications, 124(9), 2954-3008.

Uchida, M., & Yoshida, N. (2012). Adaptive estimation of an ergodic diffusion process based on sampled
data. Stochastic Processes and Their Applications, 122(8), 2885-2924.

Yoshida, N. (1992). Estimation for diffusion processes from discrete observation. Journal of Multivariate
Analysis, 41(2), 220-242.

Yoshida, N. (2011). Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic
differential equations. Annals of the Institute of Statistical Mathematics, 63(3), 431-479.

@ Springer



	Asymptotically efficient estimation for diffusion processes with nonsynchronous observations
	Abstract
	1 Introduction
	2 Main results
	2.1 Setting and parameter estimation
	2.2 Asymptotic normality of the estimator
	2.3 Local asymptotic normality
	2.4 Sufficient conditions for the assumptions

	3 Proofs
	3.1 Preliminary results
	3.2 Consistency of n
	3.3 Asymptotic normality of n
	3.4 Consistency of n
	3.5 Asymptotic normality of n
	3.6 Proofs of the results in Sects.2.3 and 2.4

	Acknowledgements
	References




