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Abstract
Population-based cancer registry studies are conducted to investigate the various can-
cer question and have important impacts on cancer control. In order to investigate
cancer prognosis from cancer registry data, it is necessary to adjust the effect of deaths
from other causes, since cancer registry data include deaths from causes other than
cancer. To correct for the effect of deaths from other causes, excess hazard models are
often used. The concept of the excess hazard model is that the hazard function for any
death in a cancer registry population is the sum of the hazard for cancer deaths, refer to
the excess hazard, and the hazard for deaths from other causes. The Cox proportional
hazard model for the excess hazard has been developed, and for this model, Perme et
al. (Biostatistics 10:136–146, 2009) proposed the inference procedure of the regres-
sion coefficients using the techniques of the EM algorithm to compute the maximum
likelihood estimator. In this article, we present the large sample properties for the
maximum likelihood estimator. We introduce a consistent estimator of the variance
for the regression coefficients based on the technique of the semiparametric theory and
the consistency and the asymptotic normality of the estimator. The empirical property
of variance estimator is investigated by the finite sample simulation studies. We also
apply the variance estimator to cancer registry data for stomach, lung, and liver cancer
patients from the Surveillance, Epidemiology, and End Results (SEER) database in
U.S.
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1 Introduction

Cancer registries are effectively used in various cancer studies and play important
roles in cancer control. A series of CONCORD studies addressed differences in cancer
survival rates among nations for various cancer types, such as breast, colon, gastric,
and prostate cancers (Coleman et al., 2008; Allemani et al., 2015, 2018). Derks et
al. (2018) examined differences in survival outcomes due to differences in treatment
policies among countries by the relative excess risks for older breast cancer patients in
the Netherlands, Belgium, Ireland, England, and Greater Poland. These studies used
data from cancer registries.

To address these scientific questions, rather than the overall survival, which is
defined as the duration to the all-cause death, the cancer-specific survival is often of
interest. Thus, the statistical analysis that accounts for the cause of death is appreciated.
A potential approach is to apply methods for the competing risk analysis (Andersen
et al.,1993, pp. 512–515; Fine and Gray, 1999). However, in cancer registries, reliable
information on cause of death is hard to correct comprehensively. Then, in the field
of cancer registry data analysis without the information on the cause of death, special
survival analysis methods have been developed, in which the external data such as
the life table of the general population are used to adjust the non-cancer death. This
framework for inference of the cancer registry data is often referred as the relative
survival framework (Perme et al., 2016;Kalager et al., 2021), since the relative survival
ratio is one of keymeasure used in this field. The relative survival ratio is defined as the
ratio of the overall survival to the non-cancer survival. Utilizing an external database
of the life table for the non-cancer general population, various methods to handle the
relative survival ratio has been proposed (Ederer et al., 1961; Hakulinen, 1982) and
widely used in population studies (Coleman et al., 2008; Angle et al., 2014; Allemani
et al., 2015). The net survival, which is defined as the survival probability if the cancer
subject would not die due to reasons other than the cancer, is an alternativemeasure and
is getting popular and popular after (Perme et al., 2012) introduced a novel estimator
with sound theoretical justification. An application was reported by Allemani et al.
(2018).

All these methods mentioned are for marginal quantities. Since cancer registry
data consist of huge number of cancer patients, stratified analysis by age, gender,
and so on with these simple methods is preferable in general without any strong
statistical assumptions. On the other hand, regression analysis is also important. For
example, for rare cancer types, the stratified analysis can be unstable. In assessing some
covariates effects jointly, it would be useful to apply some regression models. Various
regression models for cancer registry data were proposed including the parametric
models (Rubio et al., 2018), the additive hazard model (Lambert et al., 2005; Cortese
& Scheike, 2008) and the spline based nonproportional hazard model (Bolard et al.,
2002; Gorgi et al., 2003). The Cox proportional hazard model, which is probably
one of the most famous regression models for survival analysis, was also examined
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(Hakulinen & Tenkanen, 1987; Estève et al., 1990; Sasieni, 1996; Dickman et al.,
2004; Nelson et al., 2007; Perme et al., 2009). Sasieni (1996) introduced martingale
estimating equations motivated by the partial likelihood. The unweighted estimating
equation, which corresponds to the score function for the partial likelihood in the
standard survival analysis, was not efficient for the Cox proportional hazard model
for the net survival. Sasieni (1996) considered a weighted estimating equation, which
gave an efficient estimator for the regression coefficients. However, to estimate the
optimal weight, a smoothing technique was needed.

Perme et al. (2009) proposed the semiparametric maximum likelihood estimation.
They successfully introduced a simple method to obtain the maximum likelihood
estimator based on the expectation–maximization (EM) algorithm. The variance of
the estimator was obtained with the Louis’ method (Louis, 1982). Derks et al. (2018)
applied thismethod to cancer registry data of older breast cancer patients in theNether-
lands, Belgium, Ireland, England, and Greater Poland. Although the goodness of the
method by Perme et al. (2009) was examined by their simulation study, asymptotic
properties were not discussed. In this paper, we established asymptotic justification
of the maximum likelihood estimator of the Cox proportional hazard model for the
net survival by applying the general semiparametric efficiency theory. Instead of the
Louis’ variance estimator, we consider a variance estimator from the semiparametric
theory.

The rest of the paper is organized as follows. In Sect. 2, we introduce cancer registry
data and the EM-based inference procedure for the Cox proportional excess hazard
model. In Sect. 3, we present the consistency of the maximum likelihood estimator
for the regression coefficients. In Sect. 4, the asymptotic normality of the maximum
likelihood estimator for the regression coefficients is presented. A consistent estimator
of its asymptotic variance is also presented. In Sect. 5, we report the results of a
simulation study, and in Sect. 6 we apply the proposed method to a real data from the
Surveillance, Epidemiology, and End Results (SEER) Program. Some discussions are
made in Sect. 7. All the theoretical details are placed in Appendixes.

2 Maximum likelihood estimation for Cox proportional excess hazard
model

2.1 Notations and general settings for the cancer registry data

Analysis of cancer registry data generally requires two datasets: the cancer registry
data and the population life tables. Cancer registry data consists of information on
characteristics at diagnosis and the survival time for a subject diagnosed with cancer.
Table 1 illustrates the data structure of the cancer registry data.Note that no information
on the cause of death is included in the cancer registry data. The population life tables
are a set of tables of annual mortality rates calculated by demographic variables for
the general population, based on demographic statistics. Table 2 shows an example of
the life table for the male population by age and calendar year. The information from
the life table is used to correct the impact of death due to causes other than the cancer
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Table 1 Example of cancer
registry data: list of first
five-observation of cancer
registry data

ID Time (Y) Status Age Gender Year Stage

1 0.542 1 61 Male 1999 2

2 10.000 0 75 Male 1984 2

3 6.467 0 51 Male 1997 1

4 1.457 1 73 Male 1978 3

5 2.042 1 67 Male 1999 2

Table 2 Examples of the
population life table for the male
population with 60–64 years old
in 1990–1994

Year

1990 1991 1992 1993 1994

Age 60 1.146 1.140 1.140 1.128 1.087

61 1.244 1.234 1.245 1.245 1.209

62 1.341 1.330 1.350 1.368 1.331

63 1.442 1.432 1.463 1.490 1.454

64 1.555 1.541 1.582 1.609 1.574

The value of each cell implies 1-year mortality (%)

of interest. The mathematical formulations of the cancer registry data and the relative
survival framework are given as follows.

Let Z be a bounded vector of baseline covariates in the cancer registry data. Typi-
cally, it consists of age at diagnosis, gender, year at diagnosis, and someother additional
variables. Let TO and C be the time-to-death due to any causes and the potential cen-
soring time from the time of diagnosis. TO may be censored by C . We suppose that
T = TO ∧ C and � = I (TO ≤ C) are observed, where A ∧ B is the minimum value
of A and B and I (·) is the indicator function, which takes 1 if the event in bracket is
true and 0 otherwise.

Let TE and TP be the potential time-to-death due to cancer and that due to reasons
other than the cancer, respectively. Then, TO is expressed as TO = TE ∧ TP . Define
�E = I (TE ≤ TP ). We regard (T ,�,�E , Z) as the complete data, although the
information of�E is unobserved in the cancer registry data. The observed information
is the triple (T ,�, Z) for each subject in the cancer registry data. Let the corresponding
counting process and the at-risk process denoted by N (t) = I (T ≤ t,� = 1) and
Y (t) = I (T ≥ t), respectively. Let τ be a constant satisfying Pr(T > τ |Z) > 0
for all Z . Suppose n i.i.d. copies of (T ,�, Z) are observed and they are denoted by
(Ti ,�i , Zi ). For other random variables, the subscript i is also used to represent the
quantity for the i th subject.

Let FZ (z) be the distribution function for Z . The conditional survival function for
TO given Z is denoted by SO(t |Z) = Pr(TO > t |Z), and the corresponding hazard
and cumulative hazard functions are denoted by λO(t |Z) and �O(t |Z), respectively.
These functions for TE , TP , and C are denoted in the same way with the subscripts
E , P , and C , respectively. Suppose the assumption

(A1) TE ⊥ TP |Z
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holds, where for any random variables A, B, and C , the conditional independence
between A and B given C is denoted by A ⊥ B|C . Then, the hazard function for TO
is represented as the sum of those for TE and TP ,

λO(t |Z) = λE (t |Z) + λP (t |Z).

The hazard function of TE , λE (t |Z), is called the excess hazard, representing the
excess risk of death by cancer. The conditional hazard function λP(t |Z) and the con-
ditional survival function SP (t |Z) are calculated by an external database for population
mortality and are regarded as known function.

2.2 Cox proportional excess hazardmodel

Suppose λE (t |Z) is modeled via a Cox-type regression model

λE (t |Z) = λ(t)eβT Z , (1)

where β is a vector of regression coefficients and λ(t) is an unspecified baseline hazard
function. Denote the baseline cumulative hazard function by �(t) = ∫ t

0 λ(u)du. Let
β0, λ0(t), and�0(t) be the true values of β, λ(t), and�(t), respectively. Furthermore,
we assume

(A2) C ⊥ (TE , TP ) |Z .

Under the assumptions of (A1) and (A2), the probability density function of the
observed data (T ,�, Z) is given by

fT ,�,Z (t, δ, z;�,β)

=
{
d�(t)eβT z + d�P (t |z)

}δ

e−�(t)eβT z−�P (t |z)d�C (t |z)1−δe−�C (t |z)dFZ (z), (2)

where d�(t) = �(t) − �(t−), d�P (t |Z) = �P (t |Z) − �P (t − |Z), d�C (t |z) =
�C (t |z) − �C (t − |z), and dFZ (z) = FZ (z) − FZ (z−). The observed likelihood
function is

L(�, β) ∝
n∏

i=1

L(�, β; Ti ,�i , Zi ), (3)

where L(�, β; Ti ,�i , Zi ) is the contribution of the i th subject to the likelihood given
by

L(�, β; Ti ,�i , Zi ) =
{
d�(Ti )e

βT Zi + d�P (Ti |Zi )
}�i

exp
{
−�(Ti )e

βT Zi
}

. (4)
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Perme et al. (2009) proposed the semiparametric maximum likelihood estimator
for the regression coefficients β, based on the EM algorithm. In constructing the
semiparametric likelihood, �(t) is regarded as a right-continuous and non-decreasing
step function with �(0) = 0 and positive jump size λ(t) > 0 at all uncensored event
time points to treat nonparametrically. The likelihood function for the complete data
is

LC (�, β) ∝
n∏

i=1

{
d�(Ti )e

βT Zi
}�Ei

exp
{
−�(Ti )e

βT Zi
}
,

and the log-likelihood after profiling the baseline hazard function out is

�CP (β) =
n∑

i=1

⎧
⎨

⎩
βT Zi − log

n∑

j=1

Y j (Ti )e
βT Z j

⎫
⎬

⎭
�Ei .

Set the initial values of λ and β as λ(0) and β(0), respectively. Then, the conditional
expectation of �CP (β) given the observed data is

Q(β; λ(0), β(0))

=
n∑

i=1

⎧
⎨

⎩
βT Zi − log

n∑

j=1

Y j (Ti )e
βT Z j

⎫
⎬

⎭
�iλ

(0)(Ti )eβ(0)T Zi

λ(0)(Ti )eβ(0)T Zi + λP (Ti |Zi )
.

The value of β is updated by maximizing the Q function and the updated value is
denoted by β(1). The value of λ is updated using the Breslow estimator as

λ(1)(Ti ) = �iλ
(0)(Ti )eβ(0)T Zi

λ(0)(Ti )eβ(0)T Zi + λP (Ti |Zi )

⎧
⎨

⎩

n∑

j=1

Y j (Ti )e
β(1)T Z j

⎫
⎬

⎭

−1

.

By updating λ(k) and β(k) and repeating the computation and maximization of the
Q-function, the estimators λ̂ and β̂ are obtained. The corresponding estimator of the
baseline cumulative hazard function is represented by

�̂(t) =
∑

{i :Ti≤t}

�i λ̂(Ti )eβ̂T Zi

λ̂(Ti )eβ̂T Zi + λP (Ti |Zi )

⎧
⎨

⎩

n∑

j=1

Y j (Ti )e
β̂T Z j

⎫
⎬

⎭

−1

. (5)

3 Consistency

In this section,weprove the consistencyof themaximum likelihood estimator. Suppose
that β is in a compact set B and the covariance matrix of Z is positive definite. The
existence of the pair of (�, β) which maximizes the observed likelihood function (3)
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is proved in Appendix A based on the techniques using in the proof of theorem 1 of
Fang et al. (2005). The identifiability of (�, β), in the sense that L(�, β; t, δ, z) =
L(�0, β0; t, δ, z) implies (�, β) = (�0, β0) on t ∈ [0, τ ], is also shown in Appendix
A.

The semiparametric model (2) has a set of the unknown parameters (β, η),
where η = {�,�C , FZ } is the nuisance parameter. Consider parametric submodels
�h1(t; γ1) = ∫ t

0 {1 + γ1h1(u)} d�0(u) = ∫ t
0 {1 + γ1h1(u)} λ0(u)du, �C,h2(t |Z; γ2)

= ∫ t
0 {1 + γ2h1(u, Z)} d�C (u|Z) = ∫ t

0 {1 + γ2h2(u, Z)} λC (u|Z)du, and FZ ,h3

(z; γ3) = ∫ t
0 {1 + γ3h3(z)} dFZ (z)where h1(u) and h2(u, Z) are an arbitrary function

and h3(z) is a mean-zero measurable function with finite variance. The log-likelihood
function based on (2) under the parametric submodel is defined by

�n(β, γ ; h) =
n∑

i=1

�i log
[
{1 + γ1h1(Ti )} d�0(Ti )e

βT Zi + d�P (Ti |Zi )
]

−
n∑

i=1

∫ Ti

0
{1 + γ1h1(t)} d�0(t)e

βT Zi

+
n∑

i=1

(1 − �i ) log
[{1 + γ2h2(Ti , Zi )} d�C (Ti |Zi )

]

−
n∑

i=1

∫ Ti

0
{1 + γ2h2(t, Zi )} d�C (t |Zi )

+
n∑

i=1

{1 + γ3h3(Zi )} dFZ (Zi ),

where γ = (γ1, γ2, γ3)
T and h = (h1, h2, h3)T Let

W (t |Z;β,�) = d�(t)eβT Z

d�(t)eβT Z + d�P (t |Z)
.

Since the maximum likelihood estimator β̂ maximizes the likelihood and then maxi-
mizes it under any parametric submodel, it satisfies

Un(β̂; h) =
(
Un,β(β̂; h)T ,Un,γ (β̂; h)T

)T = 0 (6)

for any h, where

Un,β (β; h) = ∂

∂β
�n(β, γ ; h)

∣
∣
∣
∣
γ=0

=
n∑

i=1

∫ τ

0
ZiW (t |Zi ; β,�0)

[
dNi (t) − Yi (t)

{
d�0(t)e

βT Zi + d�P (t |Zi )
}]

,
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Un,γ (β; h) = (
Un,γ1 (β; h1),Un,γ2 (β; h2),Un,γ3 (β; h3)

)T
,

Un,γ1 (β; h1) = ∂

∂γ1
�n(β, γ ; h)

∣
∣
∣
∣
γ=0

=
n∑

i=1

∫ τ

0
h1(t)W (t |Zi ; β,�0)

[
dNi (t) − Yi (t)

{
d�0(t)e

βT Zi + d�P (t |Zi )
}]

,

Un,γ2 (β; h2) = ∂

∂γ2
�n(β, γ ; h)

∣
∣
∣
∣
γ=0

=
n∑

i=1

∫ τ

0
h2(t, Zi )dMC,i (t),

Un,γ3 (β; h3) = ∂

∂γ3
�n(β, γ ; h)

∣
∣
∣
∣
γ=0

=
n∑

i=1

h3(Zi )dFZ (Zi ),

and MC (t) = I (C ≤ t,� = 0)−∫ t
0 Y (u)d�C (u|Z) is a square integrable martingale

with respect to some filtrations (Fleming & Harrington, 1991). Then, it can be shown
that E [U1(β,�; h)] = 0 for all bounded functions h on t ∈ [0, τ ] and Z1.

Theorem 1 Under the assumptions (A1) and (A2), the maximum likelihood estimators
are consistent; as n → ∞, β̂ converge in probability to β0 and �̂(t) converge in
probability to �0(t) uniformly in t ∈ [0, τ ].
Proof The estimator (5) is represented by

�̂(t) =
∫ t

0

1
∑n

j=1 Y j (u)eβ̂T Z j

n∑

i=1

W (u|Zi ; �̂, β̂)dNi (u).

Letting h1(t) = 1 in the score equation (6) leads to this estimator. Since the vector of
covariates Z is bounded and the parameter spaceB is compact, eβT Z is bounded, and
its upper bound is denoted by Ku . By the uniform low of large number (Pollard, 1990,

page 41), n−1 ∑n
j=1 Y j (u)eβT Z j converges almost surely to E

[
Y (u)eβT Z

]
∈ (0, Ku],

uniformly in t ∈ [0, τ ]. By this result and W (t |Z;�,β) ∈ [0, 1] for all t ∈ [0, τ ] and
Z , W (t |Z;�,β) and n−1 ∑n

j=1 Y j (u)eβ̂T Z j are uniformly bounded on [0, τ ]. Then,
we can use the procedures for proof of the consistency in Murphy et al. (1997). We
give a sketch of the proof of consistency of β̂ and �̂(t).

Define

�̃(t) =
∫ t

0

1
∑n

j=1 Y j (u)eβT
0 Z j

n∑

i=1

W (u|Zi ;�0, β0)dNi (u).

By the Lenglart inequality (Fleming and Harrington, 1991, page 113) and the uniform
law of large numbers, we see that �̃(t) converges almost surely to �0(t), uniformly
in t ∈ [0, τ ] as n → ∞. Since �̂ and β̂ are the maximum likelihood estimator,

n−1
n∑

i=1

{
log L(�̂, β̂; Ti ,�i , Zi ) − log L(�̃, β0; Ti ,�i , Zi )

}
≥ 0,
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where L(�, β; Ti ,�i , Zi ) is defined in (4). Since �̂(t) and �̃(t) are bounded, the
ratios of their jump sizes are bounded and those ratios are of bounded variation as
n → ∞ in t ∈ [0, τ ], we can use the results of the equation (A.5) in Murphy et al.
(1997), and then those results imply that

E
[
log L(�̂, β̂; Ti ,�i , Zi ) − log L(�̃, β0; Ti ,�i , Zi )

]
≥ −oP (1). (7)

The function �̂(t) is non-decreasing and bounded function. By Helly’s lemma (van
der Vaart, 2000, page 9) and the compactness of B, any subsequence indexed by n
(n = 1, 2, · · · ) possesses a further subsequence satisfying β̂ → β∗ for some β∗ and
�̂(t) → �∗(t) for any t ∈ [0, τ ] and some monotone function �∗(t). Therefore, for
any (t, δ, z),

log L(�̂, β̂; t, δ, z)
− log L(�̃, β0; t, δ, z) P−→ log L(�∗, β∗; t, δ, z) − log L(�0, β0; t, δ, z). (8)

By the dominated convergence theorem, the expectation of the right-hand side of Eq.
(8) under the true parameters �0 and β0, which is a minus of the Kullback–Leibler
divergence, is nonpositive, and then by the result of the equation (7), it holds that

E
[
log L(�∗, β∗; T ,�, Z) − log L(�0, β0; T ,�, Z)

] = 0.

By the identifiability of � and β and the lemma of (van der Vaart, 2000, page 62), we
can conclude �∗ = �0 and β∗ = β0. Because any subsequence contains a further
subsequence for which β̂ and �̂ converge uniformly to β0 and �0, respectively, their
uniform convergence also holds for the entire sequence. ��

4 Asymptotic normality and variance estimation

In this section, the asymptotic normality of the maximum likelihood estimator is
presented. To do so, we apply the semiparametric theory, and a consistent estimator
of asymptotic variance is presented along the semiparametric theory.

Theorem 2 Suppose that β0 is in the interior of B. Under the assumptions (A1) and

(A2),
√
n

{
β̂ − β0

}
converge to a mean-zero Gaussian distribution with the variance

�β(β0,�0; h∗)−1, where

�β(β,�; h∗) = E

[{∫ τ

0

{
Z − h∗(t)

}
W (t |Z;β,�)dM(t)

}⊗2
]

,

h∗(t) =
E

[
W (t |Z;β0,�0)Y (t)ZeβT

0 Z
]

E
[
W (t |Z;β0,�0)Y (t)eβT

0 Z
] , (9)
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M(t) = N (t) − ∫ t
0 Y (u)

{
d�0(u)eβT

0 Z + d�P (u|Z)
}
is a square integrable martin-

gale with respect to some filtrations (Fleming & Harrington, 1991), and V⊗2 = VV T

for any column vector V . A consistent estimator of the asymptotic variance (9) is given
by

�̂β(β̂, �̂) = 1

n

n∑

i=1

∫ τ

0

⎧
⎨

⎩
Zi −

∑n
k=1 W (t |Zk; β̂, �̂)Yk(t)Zkeβ̂T Zk

∑n
j=1 W (t |Z j ; β̂, �̂)Y j (t)eβ̂T Z j

⎫
⎬

⎭

⊗2

× W (t |Zi ; β̂, �̂)Yi (t)e
β̂T Zi d�̂(t). (10)

Proof The nuisance tangent space for the nuisance parameter η = {�,�C , FC } is
given by a direct sum of three orthogonal linear spaces,

 = 1 ⊕ 2 ⊕ 3,

where

1 =
{∫ τ

0
h1(t)W (t |Z;β0,�0)dM(t) for all function h1(t)

}

,

2 =
{∫ τ

0
h2(t, Z)dMC (t) for all function h2(t, Z)

}

,

3 = {h3(Z) such that E [h3(Z)] = 0} .

And the orthogonal complement of the nuisance tangent space  is written as

⊥ =
{∫ τ

0

{
h1(t, Z) − h∗

1(t)
}
W (t |Z;β0,�0)dM(t) for all function h1(t, Z)

}

,

where

h∗
1(t) =

E
[
h1(t, Z)W (t |Z;β0,�0)Y (t)eβT

0 Z
]

E
[
W (t |Z;β0,�0)Y (t)eβT

0 Z
] .

Details of the derivation of these nuisance tangent spaces and their orthogonal com-
plements are given in Appendix B.

The efficient score function for β is constructed by orthogonal projection of the
score function U1,β(β0; h) onto the orthogonal space of , and it is given by

Uef f
1,β (β0; h∗) =

∫ τ

0

{
Z1 − h∗(t)

}
W (t |Z1;β0,�0)dM1(t),
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where

h∗(t) =
E

[
W (t |Z;β0,�0)Y (t)ZeβT

0 Z
]

E
[
W (t |Z;β0,�0)Y (t)eβT

0 Z
] .

Since the maximum likelihood estimator β̂ satisfiesUn(β̂; h) = 0, it is the solution to

n∑

i=1

∫ τ

0
{Zi − h(t)}W (t |Zi ;β,�0)

[
dNi (t) − Yi (t)

{
d�0(t)e

βT Zi + d�P (t |Zi )
}]

= 0

with any bounded function h including h∗. The efficient influence function for i th
subject is defined by

ψi (β0,�0; h∗) = �β(β0,�0; h∗)−1
∫ τ

0

{
Zi − h∗(t)

}
W (t |Zi ;β0,�0)dMi (t),

(11)

where �β(β0,�0; h∗) is given as (9). Therefore, it holds that
√
n

(
β̂ − β0

)
=

n−1/2 ∑n
i=1 ψi (β0,�0; h∗)+oP (1) and it converges in law to themean-zeroGaussian

distribution with the variance function �β(β0,�0; h∗)−1.
The asymptotic variance (9) can be consistently estimated by replacing the theoret-

ical quantities with the empirical ones. Then, a consistent estimator is given by (10).
��

5 Simulation study

We conducted a simulation study to examine the behavior of the two variance esti-
mators by (10) and Louis’ method. The simulation settings were set by mimicking
real cancer registry data and life tables. We considered four covariates, age, gender ,
year , and X . They were the age at diagnosis, the gender, the year of diagnosis,
and a continuous variable. Age, gender , year , and X were generated from the nor-
mal distribution N (60, 102), the Bernoulli distribution B(1/2), the discrete uniform
distribution U (2000, 2010), and the standard normal distribution N (0, 1), respec-
tively. We generated TE and TP from the exponential distributions with hazard rate
λE (t |Z) = 0.20 exp{log 1.3×st(age)+log 1.25×gender+log 0.8×st(year)+βX X}
and λP(t |Z) = 0.02 exp{log 2.0× st(age) + log 1.25× gender + log 0.9× st(year)},
respectively, where st(age) = (age − 60)/10 and st(year) = (year − 2000)/10. We
considered four scenarios on the magnitude of the association between TE and X ;
βX = log 1.0, log 1.1, log 1.2, or log 1.3 in Datasets 1-4, respectively. In all datasets,
TE and TP were conditionally independent given the covariates Z . The potential cen-
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soring time C was generated from the uniform distribution on (0, 30). We set the
number of subjects n=200 or 1000. For each scenario, 1000 datasets were simulated.

We fitted the Cox model (1) with Z = {st(age), gender, st(year), X} in analy-
ses. The regression coefficients were estimated by applying the maximum likelihood
method with the EM algorithm by Perme et al. (2009), and the variance of those were
estimated by the estimator (10) and the estimator from Louis’s method. Because the
survival function for the other cause death SP (t |Z) is regarded as a known function
in the general cancer registry analyses, we used the true SP (t |Z) with t = 1, 2, . . .
in the analyses. We matched three covariates age, gender, and year to extract Sp(t |Z)

for each cancer patient. We evaluated empirical mean of variance estimates, empirical
power, and coverage probabilities (CP) for each regression coefficient.

The results for n = 200, 500, and 1000 cases are summarized in Tables 3, 4,
and 5, respectively. The coverage probabilities of the proposed method (10) were
close to the nominal level of 95% with n = 500 and n = 1000, whereas a little anti-
conservativeness was observed with n = 200. The average and the empirical coverage
probability for the variance estimates were almost identical between the method (10)
and Louis’s method throughout the simulation scenarios. It suggested that the two
methods gave very similar estimates. To see that, we show the cross-plots the standard
errors by the two methods in Fig. 1 for n = 200. For all the variables, the standard
errors are laid near the diagonal line, indicating agreement between the two methods.

6 Illustration

We illustrate the proposed method with cancer registry data from the Surveillance,
Epidemiology, and End Results (SEER) Program. We focused on a subgroup of all
adult aged 60–69 years, who was diagnosed as stomach, lung, or liver cancers from
2005 to 2010 in 17 areas covering approximately 26.5% of the U.S. All patients
were followed up to 10 years after diagnosis. The data were analyzed by cancer sites
(stomach, lung, and liver). For each cancer site, the model (1) was applied with six
covariates as explanatory variables; age at diagnosis, gender, year at diagnosis, race
(White/Black/Others), stage (Localized/Regional/Distant), and income < $ 55,000,
was applied. The regression coefficients were estimated by the EM-based method in
Perme et al. (2009), and their variance were calculated by Louis’s method or (10). To
calculate SP (t |Z), we used the population life table of U.S., which is released from
the SEER projects and it has information on annual survival by age, gender, year and
race. For each cancer patient in the cancer registry, SP (t |Z) was extracted matching
the four covariates of age, gender, year, and race.

In Table 6, we summarize patients’ characteristics of the SEER database by cancer
sites. For stomach, lung and liver cancers, 3987, 48,741 and 4608 patients were died
among 5313, 56,412 and 5446 registered ones. The results of parameter estimation
were summarized in Table 7. The two variance estimators gave very similar 95% CIs
and p values.
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Fig. 1 Comparison of the standard error estimates between two methods for the 1000 simulated data in
dataset 4with n = 200; the horizontal line is for Louis’method and vertical line is for Semiparametric-based
method

7 Discussion

Similarly to the standard survival analysis, the regression models play very impor-
tant roles in analysis of cancer registry data. Many regression models were proposed
in the relative survival setting (Rubio et al., 2018; Lambert et al., 2005; Cortese &
Scheike, 2008; Bolard et al., 2002; Gorgi et al., 2003). With the substantial popularity
of the original Cox proportional hazards model (Cox 1972), the Cox excess hazards
regression would be one of the most important and appealing regression models in
cancer registry data analysis. Successful introduction of a simple EM-based algorithm
(Perme et al., 2009) for the maximum likelihood estimator is really appreciated and
of practical value, and it was successfully applied in a real population study (Alle-
mani et al., 2018). On the other hand, formal theoretical justification was left unclear.
This paper contributes to fill the gap by showing consistency, asymptotic normality,
and semiparametric efficiency. Although our theoretical justification covered only the

123



Japanese Journal of Statistics and Data Science (2023) 6:337–359 353

Table 6 Summary of SEER data by cancer sites (stomach, lung, and liver); the age at diagnosis, year at
diagnosis, and the survival time were summarized by median with interquartile range (median [IQR]), and
the other variables were summarized by the frequency and the proportion

Stomach Lung Liver
(n = 5313) (n = 56,412) (n = 5446)

Age at diagnosis 64 [62, 66] 64 [62, 66] 64 [61, 66]

Male (%) 3647 (68.6) 31,079 (55.1) 4154 (76.3)

Year at diagnosis 2007 [2006, 2008] 2007 [2006, 2008] 2007 [2006, 2009]

Race (%)

White 3785 (71.2) 47,090 (83.5) 3756 (69.0)

Black 752 (14.2) 6296 (11.2) 669 (12.3)

Other 776 (14.6) 3026 ( 5.4) 1021 (18.7)

Stage (%)

Localized 1454 (27.4) 10,620 (18.8) 2836 (52.1)

Regional 1830 (34.4) 13,846 (24.5) 1618 (29.7)

Distant 2029 (38.2) 31,946 (56.6) 992 (18.2)

Income < $ 55,000 (%) 1046 (19.7) 16299 (28.9) 932 (17.1)

Survival time 1.33 [0.42, 7.58] 0.92 [0.25, 3.17] 0.83 [0.17, 3.17]

Death (%) 3978 (74.9) 48741 (86.4) 4608 (84.6)

variance estimator (10), it also suggested the validity of Louis’ estimator with the
agreement between them observed in the simulation studies.

A typical way to use the regression model for cancer registry data is to evaluate
conditional hazards given potential confounders as done by Derks et al. (2018); Schuil
et al. (2018); Allemani et al. (2018). In recent years, studies combining cancer reg-
istry data with data from other databases have been conducted, and the search for
factors that affect cancer prognosis has become increasingly important (Woods et al.,
2021; Li et al., 2021). On the other hand, in making inference on marginal hazards,
regression models also play very important roles. For example, Komukai and Hattori
(2017, 2020) proposed doubly-robust inference procedures for the marginal net sur-
vival and relative survival ratio in the presence of covariate-dependent censoring, in
which regression models for censoring time and the survival time were very crucial
roles. Estimation of causal quantities under the relative survival setting was discussed
based on the regression standardization bySyriopoulou et al. (2021). To incorporate the
Cox excess hazards model in these settings, the sound theoretical basis of the model is
very important. More specifically, the consistency and the efficient influence function
(11) results for the estimators will be very useful theoretical results when showing the
consistency and deriving the asymptotic variance of estimators incorporating the Cox
excess hazards model, respectively. Our development would be helpful in developing
rigorous methods for such incomplete data analysis of marginal quantities.

Finally, we conclude our paper by discussing the assumption (A1). It is a fundamen-
tal assumption in the analysis of cancer registry data, like the independent censoring
assumption (Fleming and Harrington,1991, page 128) in the standard survival anal-
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Table 7 Results for analyses of the SEER data by cancer sites (stomach, lung, and liver); the Cox propor-
tional excess hazard model with covariates listed below as explanatory variables were applied by cancer
sites

Semiparametric-based Louis’ method

Site Variable HR 95% CI p value 95% CI p value

Stomach Age 1.035 1.019–1.051 < 0.001 1.018–1.051 < 0.001

Male 1.011 0.925–1.104 0.812 0.923–1.106 0.816

Year 0.963 0.936–0.992 0.011 0.935–0.992 0.013

Race

Black 1.053 0.939–1.181 0.378 0.936–1.184 0.39

Other 0.842 0.742–0.955 0.007 0.740–0.958 0.009

Stage

Regional 2.226 1.919–2.582 < 0.001 1.911–2.592 < 0.001

Distant 7.348 6.410–8.424 < 0.001 6.387–8.454 < 0.001

Income 1.202 1.088–1.328 < 0.001 1.085–1.332 < 0.001

Lung Age 1.009 1.006–1.013 < 0.001 1.006–1.013 < 0.001

Male 1.225 1.203–1.246 < 0.001 1.202–1.248 < 0.001

Year 1.002 0.996–1.008 0.584 0.995–1.008 0.609

Race

Black 1.087 1.058–1.116 < 0.001 1.056–1.118 < 0.001

Other 0.828 0.796–0.860 < 0.001 0.794–0.863 < 0.001

Stage

Regional 1.992 1.935–2.052 < 0.001 1.926–2.061 < 0.001

Distant 5.377 5.232–5.526 < 0.001 5.215–5.544 < 0.001

Income 1.171 1.149–1.194 < 0.001 1.148–1.195 < 0.001

Liver Age 1.01 0.996–1.024 0.150 0.996–1.025 0.158

Male 1.134 1.038–1.238 0.005 1.036–1.241 0.006

Year 0.957 0.933–0.981 < 0.001 0.932–0.982 < 0.001

Race

Black 1.088 0.977–1.210 0.124 0.975–1.213 0.132

Other 0.842 0.761–0.932 < 0.001 0.759–0.934 0.001

Stage

Regional 2.210 2.029–2.408 < 0.001 2.025–2.413 < 0.001

Distant 4.239 3.866–4.648 < 0.001 3.859–4.657 < 0.001

Income 1.184 1.079–1.299 < 0.001 1.077–1.301 < 0.001

HR indicates the hazard ratio from the model (1)

ysis. To make the assumption (A1) satisfied, a simple idea is to collect and include
many covariates so that (A1) holds. However, it also brings a difficulty specific to
cancer registry data; even if additional covariates are collected in the cancer registries,
the population life tables may not have them. This newmissing data problem has been
handled by Touraine et al. (2020) and Rubio et al. (2021). However, their develop-
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ment is not satisfactory, and further research is warranted possibly with an EM-based
method like the proposed method in this paper.
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Appendix

Appendix A: Existence of themaximum likelihood estimator and iden-
tifiability ofˇ0 and30

The existence of the pair of the parameters (β,�)maximizing the observed likelihood
(3) is proved by using the similar arguments to the proof of theorem 1 in Fang et al.
(2005). In this Appendix, along this line, we prove the identifiability of (β0,�0) in
the sense that L(�, β; t, δ, z) = L(�0, β0; t, δ, z) implies β = β0 and �(t) = �0
for all t ∈ [0, τ ].

Suppose the parameter space B ∈ Rp of β is compact, where p is the dimension
of β. Since the vector of covariates Z is bounded, eβT Z is also bounded, and its lower
and upper bounds are denoted by Kl and Ku , respectively. Let t1 < t2 < · · · < tk be
the distinct failure times. Then, for any right-continuous and non-decreasing function
�(t), it holds that

0 ≤ L(β,�) ≤
n∏

i=1

{Ku�(Ti ) + �P (Ti |Zi )}�i e−�(Ti )Kl

≤
∏

i :Ti<tk

{
Ku

Kl
+ �P (Ti |Zi )

}�i

×
∏

i :Ti=tk

{
Ku�(tk)e

−�(tk )Kl + �P (Ti |Zi )
}�i

. (12)

Because forcing �(Ti ) = �(tk) for all Ti ≥ tk will increase the likelihood if tk is
sufficiently large value satisfying �(tk) ≥ 1, it suffices to restrict the space of �(t) to
the space �0, where
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�0 = {� : �(t) is the right continuous and non-decreasing function

with �(t) = �(tk) for all t ≥ tk} .

Let AM = {� ∈ �0 : �(tk) ≤ M} for any 0 < M < ∞. Because L(β,�) is
continuous in β and �, it has a maximum in the compact subspace B × AM for any
given M . Let L(M) be the maximum value of L(β,�) inB× AM . By e−MKl M → 0
as M → ∞, there exists an M0 ≥ 1 such that the right-hand side of (12) is less than
L(M0) for all� out of AM0 . Therefore, the likelihood evaluated at any sequence�m of
� with �m(tk) diverging to infinity asm → ∞ will not approach the maximum value
of L(β,�). As a consequence, when maximizing the observed likelihood (3), we can
restrict the compact subspace B × AM0 . The existence of the maximum likelihood
estimator can be proved by the continuity of the likelihood.

We prove that both of β0 and�0 are identifiable. By considering L(�, β; t, 0, z) =
L(�0, β0; t, 0, z), we have that �(t)/�0(t) = e−(β−β0)

T Z for all t ≤ τ and Z such
that Pr(T > τ |Z) > 0. Therefore, since (β − β0)

T Z is constant for all Z , it hold
that β = β0 if the covariance of Z is nondegenerate, and also we have �(t) = �0(t)
for all t ≤ τ . By considering L(�, β; t, 1, z) = L(�0, β0; t, 1, z), we also have
d�(t) = d�0(t) for all t ≤ τ .

Appendix B: Nuisance tangent space and its orthogonal complement

Let H be a Hilbert space consisted of all p-dimensional measurable functions of
(T ,�, Z) with mean-zero and finite variance equipped with inner product 〈h1, h2〉 =
E

[
hT1 (T ,�, Z)h2(T ,�, Z)

]
. To derive the nuisance tangent space for the nui-

sance parameter η = {�,�C , FZ }, we consider parametric submodels �h1(t; γ1),
�C,h2(t |Z; γ2), and FZ ,h3(z; γ3) for�,�C , and FZ , respectively, which were defined
in Sect. 3, where γ1, γ2, and γ3 are the finite-dimensional nuisance parameters.
Then, the nuisance tangent spaces for each nuisance parameter will be derived as
the mean-square closure of all parametric submodel nuisance tangent spaces. Since
the derivations of the nuisance tangent spaces 2 and 3 in Sect. 4, which are for the
nuisance parameters �C and FZ , respectively, are the same as those of Section 5.2 in
Tsiatis (2006), we only derive here the nuisance tangent space 1, which is for the
nuisance parameter �, in Theorem 1.

Again, we consider a parametric submodel �h1(t; γ1) = ∫ t
0 {1 + γ1h1(u)} d�0(u)

= ∫ t
0 {1 + γ1h1(u)} λ0(u)du, where h1(u) is an arbitrary p-dimensional bounded

function. The contribution to the log-likelihood function under the parametric sub-
model is

�n(β, γ1; h1) =
n∑

i=1

�i log
[
{1 + γ1h1(Ti )} d�0(Ti )e

βT Zi + d�P (Ti |Zi )
]

−
n∑

i=1

∫ Ti

0
{1 + γ1h1(t)} d�0(t)e

βT Zi .
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Taking derivatives of �n(β, γ1; h1) with respect to γ1, and evaluating β = β0 and
γ1 = 0, we obtain the score function

Un,γ1(β0; h) =
n∑

i=1

∫ τ

0
h1(t)W (t |Zi ;β0,�0)dMi (t).

Then, the score function for this parametric submodel is in the nuisance tangent space
1. Since any element ofH can be approximated by a sequence of bounded function
(Tsiatis 2006, Section 4), the score function with parametric submodel without the
boundedness of h1(t) is also in 1.

For any parametric submodel �(t; γ1) = ∫ t
0 λ(u; γ1)du, the score function with

respect to γ1, setting γ1 = 0 and β = β0, is expressed as

U1,γ1(β0) =
∫ τ

0

{
∂

∂γ1
log λ(t; γ1)

∣
∣
∣
∣
γ1=0

}

W (t |Z;β0,�0)dM(t).

Then, this score function is in the nuisance tangent space 1. On the other hand, we
can demonstrate that the score function for the some parametric submodel included
in 1, such as �h1(t; γ1) = ∫ t

0 {1 + γ1h1(u)} d�0(u), is an element of a parametric
submodel nuisance tangent space. Therefore, it holds that the nuisance tangent space
for �(t) is equal to 1.

1 ⊥ 2 can be easily proved under the assumption (A2) and i ⊥ 3 (i = 1, 2)
can be also proved by E[αT

i h3(Z)] = 0, where αi ∈ i (i = 1, 2) and h3(Z) ∈ 3.
Then the nuisance tangent space for the nuisance parameter η = {�,�C , FZ } is given
by the direct sum of three orthogonal spaces,  = 1 ⊕ 2 ⊕ 3. The orthogonal
complement ⊥ is obtained by applying the almost same procedures as the proof of
Theorem 5.5 in Tsiatis (2006).
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