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Abstract
The objective of this study was to examine the performance of the two most popular
missing data methods (i.e., multiple imputation and maximum likelihood), as well as
newly developed machine learning framework based on random forest algorithm for
missing data under various reserach conditions. The design of the simulation study
included randomandnon-randommissingness (i.e.,MCAR,MAR, andMNAR), small
samples, and different levels of missing rates. All statistical inferences were investi-
gated using latent variable interaction modeling. Consistent with the missing data
literature, the combined effects of small sample sizes, higher missing rates, and non-
ignorable missingness along with complicated modeling structure adversely affected
the accuracy of statistical inferences. Although there is a possibility for overparame-
terization, it is a good way to select MI when convergence is concerned. If the primary
goal of research is to investigate the relationship between variables as in many stud-
ies, ML would be attractive. MF presented similar performance compared to MI and
ML across all research conditions and outperformed when estimating the variability
of parameter estimates. Other practical issues pertaining to the missing data methods
were also discussed.
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1 Introduction

One of themost common problems that researchers face in data analysis is dealingwith
missingness. If missing values are not properly managed, inaccurate inferences about
the data are obtained. To date, a wide variety of missing data studies (Allison, 2006;
Arbuckle, 1996; Baraldi & Enders, 2013; Collins et al., 2001; Enders, 2001a, 2006,
2010; Ho et al., 2001; Ji et al., 2018; Larsen, 2011; Little & Rubin, 2002; Savalei et al.,
2005; Savalei & Rhemtulla, 2012; Schafer & Graham, 2002; Shin et al., 2009; Yuan
et al., 2012a, 2012b;Wothke, 2000) have proposed severalmissing datamethodswhich
are can reduce bias as well as the efficiency and sensitivity of the statistical analysis
and examined their performance under various research conditions (e.g., longitudinal
design, quasi- or true-experimental designs, and survey nonresponses). According
to the missing data literature, maximum likelihood (ML) estimation and multiple
imputation (MI) are superior to deletion methods (i.e., listwise and pairwise deletion).
ML andMI are more efficient and yield less biased statistical inferences under missing
completely at random (MCAR) and missing at random (MAR)1 (Arbuckle, 1996;
Enders, 2001a, 2001b; Gold & Bentler, 2000; Graham et al., 1996; Rubin, 1996;
Savalei et al., 2005; Schafer, 1997, 1999; Schafer & Graham, 2002; Schafer & Olsen,
1998; Sinharay et al., 2001; Wothke, 2000). However, analyzing data with both ML
and MI under the missing not at random (MNAR)2 assumption can lead to relatively
extreme bias when the missing mechanism is truly MNAR (Shin et al., 2017).

Although MI and ML have been considered promising approaches, Tang and Ish-
waran (2017) pointed out that these methods can lead to overparameterization (Rubin,
1996) and computational issues (Loh&Wainwright, 2011; e.g., the occurrence of non-
convexity due to missing data). Also, these techniques can be inefficient to implement
in settings where mixed data (i.e., data having both nominal and categorical variables)
and the nonlinearity of variables are analyzed (Aittokallio, 2009; Doove et al., 2014;
Liao et al., 2014). In recent years, a machine learning method for missing data impu-
tation [i.e., random forest (RF) algorithm for missing data; Breiman, 2001] has been
proposed. RF originated from classification and regression trees (CART), which are
commonly used in data mining. CART constructs trees by conducting binary splits of
certain predicting variables of the data, aiming to produce homogeneous subsets of the
data concerning the outcome (Tang, 2017). However, a single CART has a weakness
in terms of instability in prediction; thus, Breiman (1996) used bagging (bootstrap
aggregation) to enhance the tree methodology. In bagging, several trees are fit to boot-
strapped or subsampled data. Averaged values or majority votes of the predictions
produced by each tree are used as predictions (Hapfelmeier, 2012). As an extension of
bagging, each split is searched for in a subset of variables in the RF (Breiman, 2001;
Breiman and Cutler, 2002). A popular choice is to randomly select the square root

1 Denoting complete data as Ycom and it partitioned as Yobs and Ymis. In missing completely at random
(MCAR), the probability of an observation being missing (R) does not depend on observed (Yobs) and
unobserved (Ymis) measurements (P(R|Ycom) = P(R)), whereas missing at random (MAR) indicates
that missingness depends on observed characteristics of the individuals but not on the missing values
(P(R|Ycom) = P(R|Yobs)) (Enders, 2010; Rubin, 1996; Shin et al., 2017).
2 Data are missing not at random (MNAR) when the probability of missing data on a variable Y can depend
on other variables (i.e., Yobs) as well as on the underlying values of Y itself (i.e., Ymis) p(R|Yobs, Ymis).
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of the number of available predictors as a candidate for the split (Díaz-Uriarte & de
Andrés, 2006). This enables a more diverse set of variables to contribute to the joint
prediction of aRF,which results in improved prediction accuracy (Hapfelmeier, 2012).
The advantages of RF include handling mixed types of missing data and addressing
nonlinearity including interactions, as well as scaling to high dimensions (Ishioka,
2013; Tang & Ishwaran, 2017).

Because RF is a newly developed missing data method, no studies have examined
the performance of MI, ML and RF for treating missing data. In addition, there is no
information about MI and ML comparing them with RF with combined research con-
ditions of missingness, small samples, and nonlinear relationships between variables.
As mentioned above, incomplete data are a common feature in applied research cir-
cumstance, and the treatment of missing data is one of the prominent topics. Another
potential challenge is an inadequate sample size leading to overestimation of the poten-
tial non-centrality parameters (Herzog & Boomsma, 2009) and fit tests (Lee & Song,
2004). Although robust techniques (e.g., robust ML) yield more precise estimates
of standard errors (SEs) and make corrections for fit statistics (Arminger & Sobel,
1990; Gold et al., 2003; Yuan & Bentler, 1998, 2000), some problems (e.g., conver-
gence failure, inaccurate parameter estimates, etc.) especially in covariance structure
methodologies may not be fully resolved. Unfortunately, the sample sizes in exper-
imental and longitudinal studies, even in observational studies driven by individual
researchers are usually small.

Alongwithmissingness and small samples, nonlinear relationships such as the inter-
action effect between variables would threaten the statistical inference. For instance,
even if observed indicator and latent exogenous variables are normally distributed,
the multivariate distribution of indicators of latent endogenous variables deviates sub-
stantially from normality (Moosbrugger et al., 1997). Klein and Moosbrugger (2000,
p.458) described,

Ignoring the nonnormal distribution of indicator variables, the application of
an estimation procedure can lead to different statistical problem: either, if an
estimation procedure is used under the assumption of multivariate normality, it
must be robust against the type of nonnormality implied by latent interaction.
Or, if an asymptotical distribution-free estimation method is used, it does not
exploit the specific distributional characteristics of latent interaction models,
which might lower the method’s efficiency and power, especially when sample
size is not very high.

Numerous substantive theories within the social and behavioral sciences hypothe-
size nonlinear effects including interaction, quadratic effects or both between multiple
independent and dependent variables (Ajzen, 1987; Cronbach&Snow, 1977; Karasek,
1979; Lusch & Brown, 1996; Snyder & Tanke, 1976). For example, Ganzach (1997)
hypothesized a complex interactive and quadratic relationship between parents’
educational level and children’s educational expectations. Likewise, estimating the
interactive effect of two independent variables on an outcome variable is an important
concern in the social sciences, which has resulted in a plethora of statistical approaches
(Lin et al., 2010).Various approaches have been proposed tomanage interaction effects
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(e.g., unconstrained approach, mean-centered [un]constrained approach, orthogonal-
izing approach, etc.; Algina & Moulder, 2001; Jöreskog & Yang, 1996; Little et al.,
2006; Kenny & Judd, 1984; Marsh et al., 2004, 2006). For latent variable interaction
analysis, newer distribution analytic approaches (Klein & Moosbrugger, 2000; Klein
& Muthén, 2007) are easy to use and provide parameter estimates that can be more
efficient, yielding greater statistical power, particularly with more complex models
(Kelava et al., 2011).

The objective of this studywas to examine the performance ofMI,MLandRFunder
various research conditions. The design of the simulation study included random and
nonrandommissingness (i.e.,MCAR,MAR, andMNAR), small samples, anddifferent
levels of missing rates. All statistical inferences were investigated using latent variable
interaction modeling. The convergence rates and degrees of biases in the parameter
estimates and corrected ML standard errors were based on the evaluation of which
missing data method is preferred to others.

2 Methods for missing data

2.1 Multiple imputation (MI)

There are two simple approaches to handling missing values: (1) delete the miss-
ing cases (i.e., listwise and pairwise deletion), or (2) fill in the missing value with a
plausible one and then, continues with the statistical method as if the data are com-
pletely observed. MI falls in the latter case. Replacing missing values with a single
value cannot adequately reflect the uncertainty of missingness, and thus, yield inaccu-
rate estimates (Little, 1992). Rather, MI generates several possible values for missing
observations in the data to obtain a set of parallel completed datasets (Rubin, 1987,
1996; Schafer, 1999). MI analysis consists of three phases: the imputation-posterior
(I–P) phase, the analysis phase, and the pooling phase (Enders, 2010). For the I–P
phase, every aspect of MI is rooted in the Bayesian paradigm, which is an MCMC
algorithm (Allison, 2010; Baraldi & Enders, 2010; Croy & Novins, 2005; Kenward &
Carpenter, 2007; Lee & Song, 2004; Peugh & Enders, 2004; Taylor & Zhou, 2009).
In the first step of the I-P phase, missing scores are imputed by certain statistical mod-
els (e.g., the stochastic regression procedure). From this Bayesian perspective, these
imputed values are randomly drawn from a distribution of plausible replacement val-
ues, given the observed mean vector and covariance matrix, as well as the proceeding
mean vector and covariance matrix from the previous P-step. The P-step is essentially
a standalone Bayesian analysis that describes the posterior distributions of the mean
vector and covariance matrix (Enders, 2010, Chapter 7). From these imputed data, the
P-step is used to simulate the posterior population mean and covariance, and then gen-
erate alternate estimates of the mean vector and covariance matrix, which are drawn
from the respective posterior distributions. After drawing new values, the subsequent
I-step uses updated estimates to construct a different set of imputations (Enders, 2010;
Rubin, 2004; Schafer, 1997; Shin et al., 2017). These two steps are repeated to obtain
multiple sets of data including unique estimates of missing values.
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After obtaining multiple sets of imputed data (m sets) through thousands of iter-
ations, the completed data are then analyzed in the analysis phase. Schafer (1997)
noted that m = 5 imputed datasets typically result in unbiased estimates. If there are
five imputed datasets from the I-P phase, researchers perform the targeted statistical
analysis on each data set separately and then obtain five sets of parameters. Several
estimation techniques (e.g., ML, Bayesian, and weighted least squares estimator) are
available in this phase. The last step of MI is the pooling phase, which combines
all estimates of parameters from m sets of data based on Rubin (1987, 2004) and
Schafer’s (1997) rule. Schafer and Graham (2002) noted that MI is an alternative to
ML estimation and is the other state-of-the-art missing data technique that methodolo-
gists currently recommend. Both MI andML are more efficient than deletion methods
and yield less biased statistical inferences under MCAR and MAR (Arbuckle, 1996;
Enders, 2001a, 2001b; Savalei & Bentler, 2005; Schafer & Graham, 2002; Wothke,
2000). Several studies (e.g., Gold & Bentler, 2000; Graham et al., 1996; Rubin, 1996;
Schafer, 1997; Schafer & Olsen, 1998; Sinharay et al., 2001) have reported that MI
has performed well in handling missing data in the structural equation modeling con-
text. The MI approach is well documented and has exhibited good qualities when the
imputation model approximates the true missing data mechanism (Duncan &Duncan,
1994; Rubin, 1996, 2004).

2.2 Maximum likelihood estimation (ML)

With the wise acceptance of the principle of drawing inferences from a likelihood
function, ML algorithms for use with missing data are becoming commonplace. In the
likelihood formulas, candidate parameter estimates are repeatedly replaced, and for
each replacement, the likelihood (or log-likelihood) value is computed using the sam-
ple data (Anderson, 1957;Dempster et al., 1977; Finkbeiner, 1979;Hartley&Hocking,
1971; Wilks, 1932). Then, it identifies the set of parameter estimates that produce the
highest likelihood. Although the likelihood function can be maximized directly with-
out iteration especially under monotone pattern missing data (Little & Rubin, 2002,
Chapter 7), missing data analyses generally require iterative optimization algorithms,
with the well-known ML approach being the expectation and maximization (EM)
algorithm (Enders, 2010; Shin et al., 2017). The EM algorithm uses a two-step itera-
tive procedure in which missing observations are filled in or imputed, and unknown
parameters are subsequently estimated (Dempster et al., 1977). In the first step (expec-
tation [E]-step), missing values are replaced with the conditional expectation of the
missing data given the observed data and an initial estimate of the covariance matrix.
The purpose of the E-step is to fill in the missing values in a manner that resembles
stochastic regression imputation (Enders, 2010). The second step (maximization [M]-
step) uses the expected value of the sum of variables to estimate the population mean
and covariance. The process cycles back and forth until the estimates do not change
substantially (Pigott, 2001).

Traditional missing data methods, such as listwise and pairwise deletion, require
the strict assumption that the missing data are MCAR for valid inferences, whereas
more accurate results are obtained by both MI and ML with the weaker assumption
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(i.e., MAR). Even under MCAR, ML yields estimates with lower sample variability
than others (Enders, 2001a). At the same time, both MI and ML share two statistical
assumptions: the multivariate normality of the joint distribution of the data and ignor-
able missing data mechanisms (i.e., MCAR and MAR). Multivariate normality plays
an integral role in every aspect of ML analysis, while distributions of real data tend to
be skewed and have heterogeneous marginal kurtosis (Miccéri, 1989). Thus, several
extensions and variations of the EM algorithm to deal with the issue of non-normal
missing data have been developed.King et al. (2001) investigated amethod for improv-
ing the convergence of these EM-type algorithms. In addition, EM can be applied to
non-normal missing data in a way that adds estimated standard errors and model fit
statistics to the ML parameter estimates (Arminger & Sobel, 1990; Enders, 2001b;
Gold et al., 2003; Savalei & Bentler, 2009; Yuan & Bentler, 1998, 2000). However,
Shin et al. (2009) noted that the combined effects of non-normality, small samples
and non-ignorable missingness would still threaten the proper performance of the ML
method. Compared to MI, some studies (e.g., Allison, 2006; Enders, 2006; Larsen,
2011; Yuan et al., 2012a, 2012b) insist that ML is better than MI, and ML estimation
is more straightforward, whereas others (e.g.„ Cham et al., 2013; Collins et al., 2001;
Ho et al., 2001) suggest that MI is comparable with ML. Recently, Shin et al. (2017)
examined ML versus MI for the effect of specifying informative priors in the I–P
phase along with Bayesian estimation in the analysis phase. They concluded that ML
appears to be preferable to MI in research conditions with small missing samples and
multivariate non-normality, regardless of whether strong prior information for the I–P
phase analysis is available.

2.3 Random forest algorithm (RF) for missing data

According to Tang and Ishwaran (2017, p. 3), there are three general strategies used
for RF missing imputation:

(A) Preimpute the data; grow the forest; update the original missing values using
proximity of the data. Iterate for improved results.

(B) Simultaneously impute data while growing the forest; iterate for improved
results.

(C) Preimpute the data; grow a forest using in turn each variable that has missing
values; predict the missing values using the grown forest. Iterate for improved
results.

Proximity imputation and on-the-fly-imputation use strategies (A) and (B) respec-
tively. missForest (MF), which is considered in this study, uses strategy (C). MF is a
nonparametric imputation method applicable to any type of data, as well as nonlinear
relations, complex interactions and high dimensionality (Stekhoven, 2016). Data were
fitted to the observed part by RF and then predicting the missing data for the depen-
dent variable using a fitted forest (Tang & Ishwaran, 2017). The proximity approach
is used to define the closeness between pairs of cases. Breiman (2003) defined the
data proximity as follows: the (i, j) element of the proximity matrix produced by a
RF is the fraction of trees in which elements i and j fall in the same terminal node.
The intuition is that similar observations should be in the same terminal nodes more
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often than dissimilar ones (Ishioka, 2013; Liaw &Wiener, 2002). For continuous pre-
dictors, the imputed value is the weighted average of the non-missing observations,
where the weights are the proximities. For categorical predictors, the imputed value
is the category with the largest average proximity and this process is iterated a few
times (Ishioka, 2013; Liaw & Wiener, 2002).

After each iteration the difference between the newly imputed data matrix and the
previous one is assessed and the stopping criterion is defined such that the imputation
process is stopped as soon as both differences become larger once (Stekhoven, 2016).
For the continuous variables, the normalized root mean square error is used to eval-
uate the performance (Oba et al., 2003). Stekhoven and Bühlmann (2012) used the
proportion of falsely classified entries over categorical missing values. In both cases,
0 indicates the good performance and bad performance leads to a value of approxi-
mately 1.When fitting RF to the observed part of the data for each time, the out-of-bag
(OOB) error estimate of RF is given. The performance of this estimation is obtained
by averaging the absolute difference between the true imputation error and the OOB
imputation error estimate in all simulation runs (Stekhoven & Bühlmann, 2012).

The new algorithm RF has been presented to allow for missing value imputation
(Breiman, 2001; Ishioka, 2013; Pantanowitz & Marwala, 2008). A few studies (e.g.,
Liaw &Wiener, 2002; Shah et al., 2014; Stekhoven & Bühlmann, 2012; Waljee et al.,
2013; Tang& Ishwaran, 2017) have suggested thatMF is a better method for moderate
to high missingness and for some missing mechanisms, including MNAR, than other
RF based imputation methods. However, there are almost no studies that compare
performance of the most popular and traditional methods (i.e., MI and ML) and MF.
Therefore, this simulation study investigated which method amongMI, ML andMF is
preferred under different missing rates, three types of missing mechanisms, and small
to medium sample sizes.

2.4 Latent variable interactionmodeling

In behavioral research analysis, theory suggests that the effect of a latent exogenous
variable on a latent endogenous variable is moderated by a second exogenous variable
(Klein&Moosbrugger, 2000). Several researchers have called for methods to estimate
latent interaction effects in structural equation models (Aiken &West, 1991; Cohen &
Cohen, 1975; Jaccard et al., 1990; Schmitt, 1990). Many approaches for the estimation
of interaction models with continuous variables have been developed. One of the most
basic techniques is the product indicator (PI) approach developed by Kenny and Judd
(1984). It simply identified the latent interaction term as being measured by the prod-
ucts of each latent variable’s indicators. Unfortunately, this approach has rarely been
used by researchers. One reason is that the PI approach involves the specification of
nonlinear parameter constraints that are difficult for researchers to implement (Kelava
et al., 2011). To overcome the problem of PI, several other models (e.g., unconstrained
approach, extended unconstrained approach), which freely estimate factor loadings,
measurement error variances, as well as the variance of the latent nonlinear effect,
have been considered (Kelava, 2009; Kelava&Brandt, 2009;Marsh et al., 2004, 2006;
Moosbrugger et al., 2009). However, these traditional product indicator approaches
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still suffer from the violated assumption of multivariate normally distributed variables.
Thus, distribution-analytic approaches have been developed to address the non-normal
distributions. Klein and Moosbrugger (2000) developed a latent moderated structural
equations (LMS) approach that employs a unique model specification that does not
involve PIs. LMS produces asymptotically correct standard errors for nonlinear effects
(Kelava et al., 2011). Because this approach becomes computationally (numerically)
intensive as the number of nonlinear effects increases, Klein and Muthén (2007) sub-
sequently developed a quasi-maximum likelihood (QML) approach. QML permits
the estimation of multiple nonlinear effects with a smaller increase of computational
burden by taking a small loss of precision because a “quasi” likelihood (described
later) is maximized. It approximates the likelihood of a multivariate non-normally
distributed indicator vector using a normal and a conditionally normal distribution.
The parameter estimates are obtained using the Newton–Raphson algorithm (Kelava
& Brandt, 2009).

In this study, we focus on a LMS approach to estimate parameters with missing
scores for small samples. Klien and Moosbrugger (2000) described that in LMS, the
density function of the joint indictor vector (x, y) is represented as a finite mixture of
normal densities, and LMS utilizes the model-implied mean vectors and covariance
matrices of themixture components for an iterative estimation of themodel parameters
with the EM algorithm. They added that LMS takes the non-normality of distribution
explicitly into account based on the distribution analysis of the joint indicator vector
(p. 467). Several studies (Coenders et al., 2008; Klein & Muthén, 2007; Klein et al.
2009; Little et al., 2006; Wall & Amemiya, 2000) have noted that LMS is superior
to other approaches including constrained PI, unconstrained PI, orthogonalizing PI
(OPI) developed by Little et al. (2006), and double-mean-centering strategies by Lin
et al. (2010).

3 Methods

In this simulation study, we compared the performance of three missing data methods,
MI, ML and MF under various research conditions. We investigated the combined
effects of three independent variables (sample size, missing rate, and missing mecha-
nisms) on three dependent variables (convergence rate, bias of parameter and standard
error estimates).

3.1 Populationmodel

Data were obtained fromKang and Shin (2015). They explored the direct, indirect and
moderation effects among adolescents’ stress, depression, social support, and suici-
dal ideation. A total of 372 students were randomly selected from four high schools
located in the largest urban school district of Korea. The population model for this
simulation study reflected some of the properties of the hypothesized model. As seen
in Fig. 1, depression (F3) was influenced by stress (F1), and social support (F2) was
considered as themoderated variable in the relationship between stress and depression.
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Fig. 1 Population latent variable interaction modeling

For depression, Children’s Depression Scale (CDS) by Kovacs (1983) was utilized.
Depression was further subcategorized as loneliness (seven items), helplessness (11
items), and no value (seven items). The daily stress questionnaire, developed by the
Korean Youth Policy Institute (2007) was used to measure students’ stress. The instru-
ment consisted of 18 itemsmapped onto three subordinate constructs: school life stress
(six items), stress among peers (six items) and parents (six items). Lastly, the revised
Dubow and Ullman’s (1989) Social Support Evaluation Scale for youth was assessed
to measure social support. It consisted of peer (five items), family (five items) and
teacher (five items) supports. Responses to all scales were selected on a five-point
Likert scale to indicate agreement.

According to aprevious study (Kang&Shin, 2015), these theory-driven factor struc-
tures in all instruments fit well with given set of data. Along with the high-reliability
coefficients, these CFA results demonstrated unidimensionality of sub-factors, and
thus, scores for each subscale can be calculated by averaging the items from that par-
ticular subscale. This indicates a single score represented by the characteristics of each
construct. Then, the calculated scores (Y1 through Y9) of depression, stress and social
support scales were used for this simulation study. The parameter estimates for factor
loadings and regression coefficients including the interaction term (F1 by F2) obtained
by the hypothesized model, were adopted as the population parameters. In addition,
descriptive information (i.e., mean and variance) of measured variables (Y1–Y9) was
set to the starting values when simulating the data. The population information is
presented in Table 1, and Fig. 1 displays the path diagram for the population model.
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Table 1 Descriptive information and population parameters

Descriptive information Population parameters

Mean Standard deviation Estimates Standard deviation

Y1 2.27 0.96 F1–Y1a 1.00 –

Y2 2.46 1.04 F1–Y2 1.16 2.72

Y3 2.59 1.21 F1–Y3 1.33 2.76

Y4 3.57 1.10 F2–Y4a 1.00 –

Y5 3.50 1.00 F2–Y5 1.13 1.08

Y6 3.62 0.94 F2–Y6 1.01 1.01

Y7 1.96 1.42 F3–Y7a 1.00 –

Y8 1.74 1.32 F3–Y8 1.08 1.34

Y9 1.50 1.11 F3–Y9 0.86 1.49

F1–F3 1.29 4.47

Interaction–F3 −0.87 4.32

aIndicates the fixed parameters

3.2 Research design and data generation

For the simulation, the sample sizes were selected to represent both experimental and
non-experimental research: 75, 100, 200, 300, and 500. Based on Fig. 1, Mplus 8.2
(a Monte Carlo option; Muthén & Muthén, 2018) was used to generate the complete
data along with the descriptive information (i.e., means and variances of variables;
Table 1). Then, three types of missing data mechanisms (MCAR, MAR, and MNAR)
were simulated using the multivariate amputation procedure of the R programming
(ampute of R function; Schouten et al., 2018; van Burren, 2012). The steps of ampute
missing generation are followed (Brand, 1999; Brand et al., 2003; van Buuren et al.,
2006). First, the amputation procedure startswith the researchers decidingwhat kind of
missing data patterns on desires to establish. The study considered nine combinations
of variables with missing values and variables remaining complete, as shown in Table
2. Second, the complete data set is randomly divided into k subsets based on the number
of missing data patterns k. Then, the missing candidate is defined when calculating the
weighted sum score. Theseweight sum scores are used to determinewhether a data cell
is missing, and based on its weighted sum score, each candidate receives a probability
of being missing for a given variable (Schouten et al., 2018, pp. 2914–2915). For
MCAR, the candidates have an equal probability to have missing values. Rather,
for MAR and MNAR, the allocation of the probabilities is applied by four logistic
distribution functions on the weighted sum scores (van Burren, 2012). For example,
for a “right” like mechanism, scoring in one of the higher quantiles should have high
missing odds, whereas higher probability values are given to the candidates with low,
average, or extreme weighted sum scores, respectively with a left-tailed, centered, and
both-tailed (Schouten et al., 2018; van Burren, 2012). A right-tailed type of missing
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Table 2 Missing patterns

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

Pattern 1 M M O M O M M M O

Pattern 2 M O O M O O M O O

Pattern 3 O M M O M M O M M

Pattern 4 O M O O M O O M O

Pattern 5 O O M O O M O O M

Pattern 6 M O M M O M M O M

O observed values, M missing values

data was used in this study. Lastly, two levels of missing rates (i.e., 10% and 20%)
were considered within R-function “ampute”.

3.3 Model estimation and analysis

For the simulation analysis of MI and ML, Mplus and MplusAutomation (Hallquist
& Wiley, 2017) within the R programming language (RStudio, version 1.1.463) were
implemented. Following suggestions from previous MI studies (e.g., Graham et al.,
2007; Rubin, 1987; Schafer, 1997; von Hipple, 2007), five imputed data sets per
single MI analysis were used. In the ML missing data analysis, factor loadings and
regression parameterswere analyzed using theEMalgorithm and the correctedmethod
(SML; Satorra &Bentler, 1988; Yuan&Bentler, 2000). Similar toML, the parameters
form the MI analysis are also obtained from ML and SML. Using missForst package
(Stekhoven, 2016; version 1.4), missing values were imputed for MF analysis. The
maximum number of iterations to be performed given the stopping criterion and the
number of trees to grow in each forest was set to 10 and 100, respectively. Then,
the MF parameters were again estimated using ML and SML. The latent interaction
regression coefficients were obtained from the LMS technique.

3.4 Evaluation criteria

Based on the default criteria (iteration = 1000; convergence criteria = 0.00001) of
Mplus, the performances of MI, ML and MF were first evaluated by the convergence
rate. In the case of MI, the main criterion used in Mplus to determine the convergence
of the MCMC sequence is based on the potential scale reduction (Asparouhov &
Muthén, 2010; Gelman & Rubin, 1992). Mplus runs 100MCMC iterations by default.
Then, the convergence criterion is checked every 100th iteration using the default
value of 0.05. Second, the average bias in the parameter and standard error (SE)
estimates was assessed to measure the degree of bias. The bias statistic was computed

as
∑n

i=1(θ̂i−θ)

n where θ̂i is the corresponding parameter and standard error estimates
for each replication i. θ is the true population parameter, and n is the number of all
converged cases for each cell condition. Based on the population distribution of growth
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parameters, the standard deviation of the parameters refers to the extent to which
the estimates vary from sample to sample. Since our missing samples were random
samples from the population, the statistics of these samples should have distributions
determined by the population parameters. At this point, the standard errors of the
parameter estimates of each sample were also determined by population parameters.
With the population standard deviations given in Table 1, population standard errors
were separately computed for each sample design (e.g., SEN=75 = SDpop√

75
where SDpop

indicates population standard deviation). Then, biases of corrected SE estimates by
three missing data methods were investigated. In addition, the root mean squared
relative difference (RMSRD, Alkasawneh et al., 2007; Chiarella et al., 2014; Kroll &
Stedinger, 1996)was examined to evaluate the recovery of parameters andSEestimates

(i.e., parameter estimation error). This was calculated as RMSRD

√
1
n

∑n
i=1

(θ̂i−θ)
2

θ2
.

4 Results

4.1 Proportion of convergence successes

The percentages of convergence by sample sizes, missing mechanisms, and miss-
ing rates are given in the Table 3. As expected, the convergence failures increased
as the sample size decreased. Even when the completed data sets were generated,
sample sizes of 75 failed to obtain the proper solutions more than 30 percent of the
times. Boomsma (1985) noted that the seriousness of the non-convergence problem
depends heavily on the sample size. Anderson and Gerbing (1984) and Enders and
Bandalos (2001) added that sample sizes of 100 or less resulted in higher rates of non-
convergence. Missing rates and nonignorable missingness also negatively impacted
the convergence (i.e., the effect of the missing mechanism increased as the missing
rates increased). Thus, the proportion of convergence was the worst in the condition
of sample size= 75, missing rate= 20%, andMNAR. A large amount of missing data
can lead to a covariance or correlation matrix that is not positive definite (Arbuckle,
1996; Shin et al., 2009; Wothke, 2000). Moreover, the singularity properties of the
information matrix can be frequently found in the presence of MNAR (Copas & Li,
1997; Jansen et al., 2006; Lee, 1993; Rotnitzky et al., 2000). Singularity problems
causing negative variance and linear dependency among factors are more likely to
occur with MNAR and small sample sizes (Shin et al., 2017). Another reason for the
higher rates of non-convergence may originate from the population model and param-
eters. The computational process for the nonlinear relationshipmodel is more complex
and the variances of the latent factor are relatively small. Thus, the structure of the
latent interaction model and small effects cause improper results for some replications
in both the complete and incomplete simulations.

Among the missing data methods, MI resulted in the highest percentage of admis-
sible solutions across all cell designs. When comparing ML and MF, ML tended to
show higher convergence rates especially in unfavorable research conditions (i.e.,
small samples, MAR andMNARwith higher missing rate percentages). However, the
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differences between the two missing data methods were relatively small. An inter-
esting result in the analysis of convergence is that MI presented higher convergence
rates than even in the analysis of complete data cases. The lowest MI convergence rate
was approximately 10% higher than that of the complete data. Rather, ML and MF
showed similar proportions of convergence success compared to the complete cases.
The superiority of MI over other missing data methods in proportion of convergence
success is unclear.A theoretical fundamental formofMI is repeated imputation (Rubin,
1987, pp. 75–76). As noted in the introduction, these repeated imputations could be
“superefficient” from the perspective of the data analyst because the imputation use
extra information (Rubin, 1996). Although these imputations would effectively pro-
vide additional data values (then, contribute to a better estimate), the procedure also
leads to reparameterization or overparameterization. In other words, this MI strategy
has some advantages, which are much less susceptible to becoming stuck near zero
variance parameter values than other algorithms, while it may cause “overdoing when
unnecessary or undesirable”.

4.2 Bias and recovery of parameter estimates

Only models that converged within iterations and had admissible parameter estimates
were included in the evaluation of the parameter estimates. For this reason, screening
mechanisms were implemented to identify unreasonable solutions. The indication of
non-convergence and unacceptable results for each replication was evident from the
error messages of the Mplus program. Figures 2, 3, 4 and 5 show the biases of free
factor loadings and regression coefficient parameter estimates by sample size, missing
rates, missing data mechanisms, and missing data methods. The results of parameter

Fig. 2 Average bias of loadings of variables Y2 and Y3 to F1
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Fig. 3 Average bias of loadings of variables Y5 and Y6 to F2

Fig. 4 Average bias of loadings of variables Y8 and Y9 to F3

estimation errors (i.e., recovery of parameter estimates) are presented in Figs. 6, 7, 8
and 9.

As expected, the bias of parameter estimates of all missing data methods was close
to the population parameters with sufficient sample sizes. However, the presence of
large missing rates and MNAR along with small samples had negative effects on the
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Fig. 5 Average bias of regression coefficients of F1 and interaction (F1 × F2) on F3

Fig. 6 RMSRD of loadings of variables Y2 and Y3 to F1

degree of bias in the parameter values. No missing data methods significantly out-
performed the others, and the differences among them were relatively small. ML was
more likely to yield a smaller bias especially in regression coefficients including the
interaction effect. When examining the number of cells, which indicates the smallest
bias across research designs, ML had the most, followed by MI and MF. Again, the
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Fig. 7 RMSRD of loadings of variables Y5 and Y6 to F2

Fig. 8 RMSRD of loadings of variables Y8 and Y9 to F3

differences were sometimes based on three decimal places. The amount of parameter
estimation error (RMSRD) had similar patterns to the bias of estimates. Small samples
and largemissing rateswithMNAR led to largerRMSRDvalues. For the analysis of the
RMSRD, all missing data techniques yielded similar performance. MI tended to have
smaller errors in MCAR, whereas ML was more likely to present smaller RMSRDs
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Fig. 9 RMSRD of regression coefficients of F1 and interaction (F1 × F2) on F3

in MAR. MF showed slightly better results with smaller sample sizes and MNAR.
In general, ML showed slightly fewer parameter estimation errors in the regression
coefficients. However, the differences were negligible and both MI and ML yielded
very similar RMSRDs especially for larger sample sizes. In the analysis of MF, it
tended to show somewhat inconsistent results compared to MI and ML indicating that
it yielded relatively less bias and RMSRD values in some conditions, while larger bias
and RMSRD values were sometimes found. In other words, the differences between
MI and ML were very small across all conditions, whereas MF sometimes presented
somewhat different results regardless of whether we had less ormore biased outcomes.

4.3 Bias and recovery of standard error estimates

The exclusion rules stated above were used in the analysis of the standard error esti-
mates. Figures 10, 11, 12, 13, 14, 15, 16 and 17 show the biases and RMSRDs in the
standard error estimates for each missing data method.

As he sample size increased, the bias and RMSRDs for standard error esti-
mates decreased. In addition, when the missing rates became larger and the missing
mechanism was MNAR, all methods tended to increase bias and estimation errors.
Significantly, MF yielded more accurate standard error estimates with smaller errors
than other missing data methods. However, ML presented relatively similar (or some-
times better) results with MF especially with respect to the analysis of regression and
interaction coefficients. For larger sample sizes, the results obtained from all missing
data methods tended to be close to each other. ML was more likely to show bet-
ter performance than MI specifically under larger missing rates and for estimates of
regression and interaction coefficient estimates, whereas the differences again tended
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Fig. 10 Average bias of standard error for loadings of variables Y2 and Y3 to F1

Fig. 11 Average bias of standard error for loadings of variables Y5 and Y6 to F2

to be small consistent with the analysis of parameter estimates. Smaller biased stan-
dard error estimates of MF originate from the nearest neighbor algorithms. In RF, the
basic idea is to compute a distance measure between each pair of observations based
on non-missing variables. Then the k-nearest observations that have non-missing val-
ues for that particular variable are used to impute a missing value through a weighted
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Fig. 12 Average bias of standard error for loadings of variables Y8 and Y9 to F3

Fig. 13 Average bias of standard error for regression coefficients of F1 and interaction (F1 × F2) on F3

mean of the neighboring values (i.e., for continuous variables, the values are imputed
using the proximity weighted average non-missing values; Waljee et al., 2013). This
bootstrapped aggregation of multiple trees may lead to accurate prediction, while the
variability between imputed missing values and complete ones would be relatively
small.
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Fig. 14 RMSRD of standard error for loadings of variables Y2 and Y3 to F1

Fig. 15 RMSRD of standard error for loadings of variables Y5 and Y6 to F2

5 Discussion

Sincemissing values inmost social and behavioral studies aremore often the norm than
the exception, dealing with missing data effectively is of great importance to applied
researchers. To date, MI and ML are very useful tools for handling missingness and
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Fig. 16 RMSRD of standard error for loadings of variables Y8 and Y9 to F3

Fig. 17 RMSRD of standard error for regression coefficients of F1 and interaction (F1 × F2) on F3

several studies (e.g., Allison, 2003; Arbuckle, 1996; Croy & Novins, 2005; Enders,
2001a, 2001b, 2010; Gold et al., 2003; Larsen, 2011; Little & Rubin, 2002; Kenward
&Carpenter, 2007; Rubin, 2004; Savalei &Bentler, 2005; Savalei &Rhemtulla, 2012;
Schafer & Graham, 2002; Shin et al., 2009, 2017; Ho et al., 2001; Yuan & Bentler,
2000; Yuan et al., 2012a, b) demonstrated that these twomissing data methods provide
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less bias and greater efficiency inmany circumstances. Recently, a RF based algorithm
was proposed and a series of studies (e.g., Shah et al., 2014; Stekhoven & Bühlmann,
2012; Tang & Ishwaran, 2017; Waljee et al, 2013) suggested that a machine learning
method represents a potentially attractive solution to missing data problem. However,
no systematic studyofRFprocedures,which comparesMI andML, has been attempted
in various missing data settings. Thus, the primary goal of this simulation study was
to investigate the performance of MI, ML and MF under as close to real research
conditions as possible. These assumptions included small to moderate sample sizes,
twomissing rates and threemissingdatamechanisms.These conditionswere examined
for nonlinear modeling (i.e., latent interaction variable modeling) and the effects of
these factors on convergence rate and bias of parameter estimation.

The proportion of convergence success showed that the degree of sample size and
missing rates with nonignorable missing data mechanism had major impacts on the
convergence rate of the methods. When the sample size is over 300, the convergence
does not make a significant impact even with complicated modeling structures (e.g.,
nonlinear relationships) and smaller variances (e.g., close to near 0) for latent factors.
However, as expected, the combination of small sample sizes, larger missing rates and
MNAR prevented valid statistical inferences. Across all the cell designs, MI yielded
higher convergence rates. ML and MF showed lower rates, while the results regarding
convergence success were very similar to those when generating the complete data.
Because failure of data augmentation is one of the prominent problems in missing
data analysis, being able to yield higher and stable convergence rates must be very
important when selecting a missing data method. Thus, MI may be superior to other
methods when accounting for the uncertainty brought about by the presence of miss-
ing values. Black et al. (2011) also indicated that analysts who use ML may face
problems with convergence more often than those who use MI. The MI data argumen-
tation algorithm belongs to a family of MCMC procedures (Jackman, 2000). MCMC
simulates random draws from non-informative prior distribution for the covariance
matrix. Then, to avoid convergence failure underMI analysis, the ridge prior, which is a
semi-informative distribution, contributes additional information about the covariance
matrix and effectively reduces the convergence problem (Enders, 2010). Moreover,
MI is repeated imputation indicating that it has additional information about the data.
Although Rubin (1996) noted that adding random noise to data is only being used
to handle missing information, there is no doubt that the imputations use an extra
source of information. MI with additional data values could lead to valid inferences
for a variety of estimates. In particular, when the variance estimate is near zero (or
varies around zero), the pooling phase (i.e., averaging over estimates of multiple sets
of data) may be able to avoid negative variances with smoothing information in the
distribution of data. Thus, strong superefficiency is one of the great advantages of MI
over others. However, one would be concerned with whether MI estimates too much
(overparameterization). As shown in Table 3, some convergence failures were found
even when the complete data were generated. Thus, is it supposed to have similar (or
same) convergence rates in the analysis of the missing data method? In other words, if
a negative variance is estimated in one certain complete data, is it fair that the missing
data method with incomplete data, in which missing scores are generated based on
the complete data, yield a negative variance? We might need to be more careful about
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this advantage of MI. Within the framework of ML and MF, using auxiliary vari-
ables chosen based on theory and previous experience may be helpful in gaining more
knowledge about missingness as well as model estimation information (Asparouhov
& Muthén, 2008; Yuan et al., 2015). Another consideration is that the rate of conver-
gence depends on the parameters used, such as the stop criterion and the number of
growing trees. Since the default values of iteration and convergence criteria were set,
the convergence results obtained in this simulation study would be only a guide.

In the analysis of parameter estimates, abnormal research conditions (i.e., small
sample sizes, higher missing rate, and MNAR) had negative influence on the per-
formance of missing data methods. The factor loading estimates obtained from both
MI and ML were very similar to each other, while ML was more likely to yield less
biased estimates for regression and interaction coefficients than MI. In addition, ML
tended to show the smallest estimation errors compared to others. According to pre-
vious studies (Allison, 2003, 2010; Dong & Peng, 2013; von Hipple, 2016; Yuan
et al., 2012a, 2012b), MI does not generate consistent results because of its lack of
a mechanism for handling mis-specified distributions and ML outperformed MI in
small samples. Larsen (2011) also suggested that ML is superior to MI as it correctly
estimates standard errors in the analysis of hierarchical modeling (i.e., second-level
dependency model). Shin et al. (2017) noted that ML showed better performance and
provided more diverse corrected model fit statistics under non-normality. However,
we confirmed that the differences between MI and ML became negligible as sam-
ple sizes increased, in the line with the study of Collins et al., (2001, p. 336). The
simulation study presented MF as a good competitor in the analysis of missingness.
Across all research designs, MF provided a similar degree of bias and efficiently
estimated parameters in MCAR and MAR as both MI and ML did. However, one
concern is that MF tended to have unstable performance indicating that it showed
the largest degree of bias especially for regression and interaction coefficients in the
most severe research conditions (i.e., small sample sizes, higher missing rates, and
MNAR). Shah et al. (2014) noted that the MF algorithm aims to predict individual
missing values accurately rather than take random draws from a distribution (i.e., non-
parametric approach), so the imputed values may lead to biased parameter estimates in
statistical models. In summary, although the differences among missing data methods
tended to be small and all methods showed similar recovery of estimates, ML tended
to yield slightly less biased parameter estimates (especially regression and interaction
coefficients) and smaller parameter estimation errors than others in MAR andMNAR.

The biggest advantage of MF over other methods is the accurate estimation of the
standard errors. Across almost all conditions, the MF yielded less biased SE estimates
with small errors. As explained in the results section, this feature originates from the
RF based algorithm. According to Breiman (2003), Ishwaran et al. (2008) and Liaw
and Wiener (2002), RF first roughly imputes the data; missing values for continu-
ous variables are replaced with the median of complete values or data are imputed
using the most frequent complete data for categorical variables). RF then analyzed the
roughly imputed data using proximity measures. Finally, imputed data for continuous
variables is selected based on the proximity-weighted average of the complete data
(the integer value having the largest average proximity over no missing data for cate-
gorical variables). With a small prediction error, this approach may lead to a smaller
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variability in the data. However, this benefit should be examined under the conditions
of multivariate non-normality. Theoretically, non-normality leads underestimation of
standard errors of parameter estimates and overestimation of the chi-squared statistic
leading to inflated statistics and hence possibly erroneous attributions of the signifi-
cance of specific relationships in themodel (Muthén&Kaplan, 1985). Thus, theremay
be a higher chance that the RF-based missing data algorithm (MF) underestimates the
standard error especially under the violation of the normal distribution assumption. In
this study, the MF only underestimated the standard error estimates for the regression
and interaction coefficients compared to MI and MF. Further MF studies are required
to examine the impact of non-normality.

6 Conclusion

Thefindings of this simulation study verified the past applied statistical literature in that
the combined effects of small sample sizes, higher missing rates, and non-ignorable
missingness along with complicated modeling structure adversely affected the accu-
racy of statistical inferences. Although there is a possibility for overparameterization,
it is a good way to select MI when convergence is concerned. If the primary goal
of the research is to investigate the relationship between variables as in many stud-
ies, ML would be attractive. ML produces a deterministic result and yields smaller
sampling variance than MI estimates. MF presented similar performance compared
to MI and ML across all research conditions and outperformed when estimating the
variability of parameter estimates. However, it requires an additional check for this
accuracy of standard error estimation especially under non-normality research condi-
tions. Although our results confirmmuch theoretical and simulation work, few caveats
that should be considered. First, the performance of missing data methods should be
investigated under complicated modeling structures and categorical missing variables,
as well as mixed-type variables. Liao et al. (2014) claimed that one of the most ben-
eficial effects of MF over MI is the effective analysis of the interaction effect with
various types of variables. To handle the interaction between observed variables prop-
erly in MI, Enders (2010) suggested that the imputation model include the product of
the two variables if both are continuous. For categorical variables, Enders suggested
performing MI separately for each subgroup defined by the combination of the levels
of categorical variables. However, this procedure needs to be verified not only in terms
of computational bothersome but also in terms of accuracy. Rather, likelihood-based
methods do not require these additional steps for analysis of interaction. One concern
of ML is that it may not fit as log-linear models with categorical variables due to
distributional assumption (Didelez, 2002; Raghunathan, 2004). Peng and Zhu (2008)
described that MI has a clear advantage over ML-based methods in the analysis of
logistic regression (i.e., categorical variables), and Asparouhov and Muthén (2010)
also suggested thatMI is preferable for categorical responses. Recently, some pioneers
(Cho & Rabe-Hesketh, 2011; Dong & Yin, 2017; Edwards et al., 2018; Jeon & Rij-
men, 2014) have developed ML estimators with new algorithms (e.g., Fuch’s model,
Plackett–Luce model, variational maximization-maximization, alternating imputation
posterior) for categorical variable analysis. However, these devised ML approaches
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must be a refreshing topic for applied researchers, and it is worthwhile to conduct
further studies under research conditions with nonlinearity and mixed-type variables.
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