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Abstract

In survey data, missing values are prevalent. In official economic statistics, where
data are obtained through surveys, ratio imputation is often utilized to deal with
missing data; however, outliers may have an influence on the imputation model. The
objective of this article is to propose a new robust ratio estimator, named the TC-
ratio estimator (ratio estimator with trimming based on Cook’s distance), which is
robust against outliers on the vertical axis (variable y), on the horizontal axis (vari-
able x), and on both axes (x and y), for missing data imputation. Also, a novel way
is suggested to automatically determine the number of outliers. To assess the perfor-
mance of the new method, Monte Carlo simulations are conducted under 160 dif-
ferent data generation processes, each repeated in 10,000 simulation runs. Relative
superiority of the new method is shown against the traditional robust ratio imputa-
tion methods, such as the ratio of medians, trimmed means, Winsorized means, and
means by M-estimators. The current study finds that the new method outperforms
these traditional methods when outliers are present only in y, only in x, and both in
x and y. Furthermore, when outliers are not present, the performance of this new
method is approximately equal to the non-robust method.

Keywords Ratio imputation - Ratio estimator - Missing - Outlier - Robust

1 Introduction

The ratio estimator is commonly used to estimate the mean or the total of a variable
of interest in many fields (Royall, 1970; Cochran, 1977, pp.150-188; Lu & Yan,
2014, p.1). Examples can be found in medical research (Wang et al., 2011), marine
science (Hoenig et al., 1997; Stock et al., 2019), forest research (Bullock et al., 2020;
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Snowdon, 1992; Zarnoch & Bechtold, 2000), population growth research (Severud
et al., 2019), and, last but not least, official statistics (Scheaffer, 2012, p.171).

When data are obtained through survey questionnaires, missing values are preva-
lent in data. For example, in official economic statistics, some enterprises do not
answer sensitive items such as turnover (sales), while the same enterprises answer
non-sensitive items such as the number of employees. Under this circumstance, to
compute the mean (or the total) of turnover, missing values are often taken care of
by imputation, where the missing values in turnover are predicted by the observed
values in the number of employees. While multiple imputation may be used for vari-
ances and covariances, single imputation can yield reasonable estimates of means
and totals (Takahashi & Watanabe, 2017, p.24; Little & Rubin, 2020, p.72). Specifi-
cally, ratio imputation is often used for missing values in official economic statistics
(de Waal et al., 2011, pp.244-245; Takahashi et al., 2017).

However, official economic statistics deal with a variety of enterprises, such as
small-and-medium size enterprises and large enterprises. Thus, it is important to
consider the effects of outliers on the imputation model when dealing with miss-
ing values. This is of great importance, because the presence of outliers biases the
parameter of the imputation model, which leads to biases in imputed data, leading
to biased results in statistical analyses. This is also important for data science in
general, because data science requires high-quality data. Official statistics is one of
the most important sources of data; however, the quality of such data is depend-
ent on how missing values are taken care of. Therefore, this research contributes to
data science in general by helping official statistics to deal with missing values that
plague the quality of data.

Traditionally, the following robust estimators are suggested: The median (de Waal
et al., 2011, p.210), the trimmed mean (de Waal et al., 2011, p.211), the Winsorized
mean (Gwet & Rivest, 1992, p.1174; Mulry et al., 2014, pp.724-725), and the mean
by M-estimators (Gwet & Rivest, 1992, p.1175; Mulry et al., 2014, pp.725-727,
Wada & Sakashita, 2017, p.3). However, the median, the trimmed mean, and the
Winsorized mean are univariate approaches to outliers. Thus, they are potentially
sensitive to bivariate outliers. We focus on bivariate outliers, but not on higher
dimensional outliers, because the ratio imputation model is intrinsically bivariate
(de Waal et al., 2011, pp.244-245). Also, the mean by M-estimators takes only the
residuals into account, which makes it potentially sensitive to outliers (high-leverage
points) on the horizontal axis in the sense of the scatter plot, where the predictor is
on the horizontal axis and the target variable for imputation is on the vertical axis.

This article proposes a new robust ratio estimator named the TC-ratio estimator,
an extension of the ratio estimator with trimming based on Cook’s distance (1977).
Also, this article applies the TC-ratio estimator to the ratio imputation model to
make it robust against outliers on the vertical axis (variable y), on the horizontal axis
(variable x), and on both axes (x and y). Furthermore, this study proposes a novel
method of automatically determining the number of outliers, based on the coeffi-
cient of determination R2. Thus, the process can be automated, which is meaningful
in the practice of official statistics, because the schedule for producing estimates in
official statistics is usually tight; thus, if a new method can detect and treat influen-
tial values in an automated manner, it is more preferable (Mulry et al., 2014, p.722).
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Monte Carlo simulations based on 1,600,000 datasets reveal that the robust ratio
imputation model by the TC-ratio estimator outperforms the traditional robust ratio
imputation models when outliers exist only in y, only in x, and both in x and y.
When outliers are not present, the performance of the robust ratio imputation model
by the TC-ratio estimator is also approximately equivalent to the non-robust ratio
imputation method.

2 The ratio estimator

Suppose that the population model is y; = fix; + €;, where y; is the target incomplete
variable, x; is an auxiliary variable (completely observed), and €; ~ N (0, o-zx?§ >,
where £ is some constant. In other words, the model is regression without an inter-
cept, also known as regression through the origin (Eisenhauer, 2003; de Waal et al.,
2011, p. 245), and the error term ¢; has the expected value of zero, but the variance
is proportional to xl.z‘f; in other words, it is heteroskedastic.

Takahashi et al., (2017) show that the weighted least squares (WLS) transform
the heteroskedastic error term ¢; into the homoskedastic error term y; = ¢; /xf, where
vi~N (0, 62). Since x‘f is a function of x;, not only the expected value of ¢; /xf is
zero, conditional on x;, but also, the variance of ¢; /xf is constant, conditional on
x;. Therefore, Eq. (1) corrects for heteroskedasticity. See Takahashi et al. (2017)
about how Eq. (1) is obtained. Note that, in this article, the sums are taken from

i=1,2,...,n, where n is the sample size, unless otherwise stated. Furthermore, the
homoskedastic error term y; is shown in Eq. (2).
1-2
ﬁ _ Z'xi éyi
WLS — 2x2(1_§) ’ (1)
i
Vi — BwrsX;
vi=T—— )
X

1

When & = 0.0, ﬁWLs reduces to the ordinary least squares (OLS) estimator ﬁOLS in
Eq. (3), and the corresponding residual ¢; is Eq. (4).

3 xil—2><0.0yi T
zxg(l—o,O) - Zx; :

4

Bovs = 3)
€=y~ ﬁOLSxi’ “

When & = 0.5, B\WLS reduces to the ratio-of-means estimator Er,mo in Eq. (5), which
is also known as the ratio estimator (Royall, 1970, p.380; Cochran, 1977, p.150),
and the corresponding residual e, ; for the ratio estimator (§ = 0.5) is Eq. (6), where
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subscript r denotes ratio. Equation (6) will be an important component to robustify
the ratio imputationmodel.

S~ X5 Yy Xy/n
ﬁratio = 12(1_0 5)l = - = : =
Yx XX Xx/n

L

=11<I

, 5)

~

i ﬁratioxi

=T =
Vi

Since f,,, is based on arithmetic means, it does not take the rocket scientist to

e

(6)

imagine that f

.tio 15 sensitive to outliers. This is the problem that the current study
seeks to solve.

3 Definition of outliers and influential observations

The definition of outliers is vague, because outliers are only defined in relation to
other observations in the remaining data. Suffice it to say that outliers are those
observations that appear to be different from the rest of the data (Ghosh-Dastidar &
Schafer, 2006, p.487; Wooldridge, 2020, p.317). In statistical analyses, the presence
of outliers may imply that the model sufficiently describes the majority of observa-
tions, but it does not describe a small number of observations. Under this circum-
stance, the data may be modeled as a mixture of two types of distributions (Schafer,
1997, p.385).

There are a variety of reasons why outliers exist in data, but two distinctions are
important: (1) outliers are incorrect observations (errors); (2) outliers are correct but
unusual observations (Gwet & Rivest, 1992 p.1174; Bonate, 2011, p.71). If outli-
ers are incorrect observations, then these outliers should be corrected in the edit-
ing process before imputing missing values (de Waal, 2013; Di Zio & Guarnera,
2013; Ghosh-Dastidar & Schafer, 2006). On the other hand, the types of outliers in
the current study are correct but unusual observations. If an observation is correct
but has an excessive effect on an estimate of a parameter, then the observation is
regarded as influential (Mulry et al., 2014, p.721). As is the case with Mulry et al.
(2014, p.721), the focus of this study “is on influential values that remain after all
the data have been verified or corrected, so these unusual values are true and not the
result of reporting or recording errors.” This is important to consider, because if out-
liers are correct but influential observations, these outliers remain in missing data at

the imputation stage. Then, //i;aﬁo is influenced by outliers and [fmﬁo is biased, which
leads to biases in the imputed data, which further leads to biased results in statistical
analyses based on imputed data.

Then, a natural question is what are the influential observations? To discuss
this issue, let us first consider unconditional (univariate) outliers and conditional
(bivariate) outliers (Fox, 2020, p.40). Suppose that heights are normally distrib-
uted with the mean of 170 cm and the standard deviation of 6 cm. If someone’s
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height is 200 cm, then this is an unconditional (univariate) outlier, because it is
five standard deviations above the mean. Also, suppose that weights are normally
distributed with the mean of 60 kg with the standard deviation of 10 kg. If the
same person’s weight is 110 kg, then this is again an unconditional (univariate)
outlier, because it is five standard deviations above the mean. However, this per-
son is unlikely to be a conditional (bivariate) outlier. Conditional on the value of
the person’s height (200 cm), this person’s weight (110 kg) is a likely value of the
weight.

In the context of regression analysis by OLS, Fox (2020, p.41) notes that the com-
bination of high leverage on the horizontal axis and the unusual size of residuals on
the vertical axis exerts influence on the regression coefficients. In other words, influ-
ence is a function of unusualness with respect to both horizontal and vertical axes
in the sense of the scatter plot (McClendon, 1994, p.52; Bonate, 2011, pp.73-74).
These influential observations are the kinds of outliers against which the current
study proposes a robust ratio estimator. See Sect. 7.3 for concrete examples.

4 Traditional robust ratio estimators

This section briefly surveys the traditional methods of robust ratio estimators,
against which the performance of the proposed method will be tested in Sects. 7 and
8.

4.1 Ratio of medians

B\mﬁn is estimated by the ratio of arithmetic means. As a well-known fact, the arith-
metic mean is sensitive to outliers while the median is insensitive to outliers. It is
natural that the median is commonly used as an outlier robust measure of location
(de Waal et al., 2011, p.210). Therefore, if we replace ﬂ:atio by //J\med in Eq. (7), it is
the ratio-of-medians estimator, where med(e) denotes the median.

~  med(y)

med ™ med(x;)

(N

4.2 Ratio of trimmed means

The trimmed mean is also one of the commonly used outlier robust measures of
location (de Waal et al., 2011, p.211). While the median is insensitive to outliers, the
median is inefficient because it utilizes information from very few observations. The
trimmed mean can be regarded as a compromise between the arithmetic mean and
the median (DeGroot & Schervish, 2002, p.579).

Let y;,y,,...,y, be a random sample of size n, which satisfies the following con-
dition: y; <y, < -+ <y,. Also, let k be a positive integer such that k < n/2. Sup-
pose that we delete from the data the k smallest observations y;,y,, ..., Y, and the k
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largest observations y, i, ..., Y1, Y, Lhen, the average of the remaining n — 2k
middle observations is the k-th level trimmed mean, which is Eq. (8) (DeGroot &
Schervish, 2002, p.578).

- 1
Vuim = =7 2, i ®)

Therefore, if we replace f,,;, by fim in Eq. (9), it is the ratio-of-trimmed-means
estimator, where X, is defined in a manner similar to y,.

~ yrim
Preim = = )

trim

4.3 Ratio of Winsorized means

The Winsorized mean is also one of the commonly used outlier robust measures of
location (de Waal et al., 2011, p.211). In Winsorization, rather than deleting the low-
est and largest k values, as done by the kth level trimmed mean, they are set equal
to the smallest or largest value not trimmed (Mair & Wilcox, 2020, p.465). Again,
let y;,y,,...,y, be a random sample of size n, which satisfies the following condi-
tion: y, <y, < -+ <y,. Also, let k be a positive integer such that k < n/2. Suppose
that we set the k smallest observations y;, ¥, ..., Y = Yi» Vi - -- » Vi and the k larg-
est observations ¥, i, 1s - Yu_1sYn = Ynektls - Ynka1> Ynks1- Lhen, the Winsorized
mean is Eq. (10).

n—k

_ 1

Ywinsor = ;(kyk + Z yi+ kyn—k+1>' (10)
i=k+1

A~ A~
Therefore, if we replace f,,, by .
means estimator, where X,

insor 1N Eq. (11), it is the ratio-of-Winsorized-
is defined in a manner similar to y;,o-

winsor

~ y insor
ﬁwinsor = —W—so' (11)

winsor

4.4 Ratio of means by M-estimators

Rather than deleting a fixed amount of data or setting it to one value, M-estima-
tors provide a more flexible method to deal with outliers, where M stands for max-
imum likelihood type, because M-estimators are found by maximizing a function
that might not be the likelihood (DeGroot & Schervish, 2002, pp. 579-581; Mair &
Wilcox, 2020, pp. 465-466).

In the context of regression analysis based on OLS, the sum of squared errors is a
weighted average of errors, where the weights are their own values. The idea behind
M-estimators is to replace these weights by some weights that do not keep growing
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in magnitude as the errors grow. Essentially, robust methods such as M-estima-
tors give less weights to observations with larger residuals (Kennedy, 2003, p. 375;
Wooldridge, 2020, p. 323).

To find M-estimators, we often need to use the method of iteratively reweighted
least squares (IRLS) (Mulry et al., 2014, p. 727). In the current study, based on
Wada and Sakashita (2017, p. 3), whose method was applied to the 2016 Japa-
nese Economic Census, we replace ﬁmo by ﬁIRLS in Eq. (12), where w; is Tukey’s
biweight function defined in Eq. (13), e, ; is in Eq. (6), and y is an arbitrary constant
ranging from 4 (more robust) to 8 (less robust). For the choice of y, see Wada and
Tsubaki (2020, p.3). For more information on a robust ratio estimator by M-estima-
tors (IRLS), also see Gwet and Rivest (1992), Pannekoek (2018), Wada (2020), and
Wada et al. (2021).

~ Zwiyl

Pris = T (12)
W= [1 -(%) ] iflel v (13)

0 ifle,;| > w

5 Cook’s distance for ordinary least squares (OLS)

This section briefly reviews the mechanism of Cook’s distance for OLS. If we want
to know whether an observation is influential or not, then an obvious way is to delete
an observation one at a time and to recalculate how parameter estimates change.
Apparently, this requires an iterative procedure such as IRLS; however, there is a
method that can directly assess the influence of the ith observation with no itera-
tions (Bonate, 2011, p.75). This method is Cook’s distance (Cook, 1977), which is
originally a composite score that evaluates an observation’s influence on a set of
regression parameters in the context of OLS (McClendon, 1994, p.107; Bonate,
2011, p.76).

Specifically, Cook’s distance C; is shown in Eq. (14) (Cook, 1977, p.16; Fox,
2020, p. 49), where p is the number of parameters in the model, and e; is the studen-
tized residual in Eq. (15), which deals with outliers on the vertical axis. Note that e,
is the OLS residual in Eq. (4), and s is the standard error of the regression (Wool-
dridge, 2020, pp. 49-50) defined in Eq. (16). Note that s is also called an estimate of
the error standard deviation, depending on academic fields. Also, #; is the hat value
in Eq. (17), which deals with the leverage on the horizontal axis (Fox, 2020, p.45).

Ci=—1x——, (14)
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“= ioh (1)

5= 2 (16)

1 (=¥
h=— 4 —— (17)
" Zj"l:l(xj_x)z

Therefore, if an observation has a large value of Cook’s distance, this means that
the observation is influential in the OLS regression model, in terms of the vertical axis
(measured by elfz), the horizontal axis (measured by ), or the combination of both.

6 Algorithm of the TC-ratio estimator
6.1 Extending Cook’s distance to the ratio estimator

This section presents how Cook’s distance can be extended to the ratio estimator as the
TC-ratio estimator. First, we estimate ﬁmﬁo in Eq. (5) as if there were no outliers. Sec-
ond, we calculate e, ;, the residual of the ratio estimator in Eq. (6). As we saw in Sect. 2,
[/i\raﬁo is a weighted least squares estimate, where the weight is 1/ \/)Tl . Therefore, Eq. (6)
is different from the OLS residual in Eq. (4), because we need to take the weight into
account. Equation (6) is the key component of extending Cook’s distance to the ratio
estimator. Third, we calculate the studentized residual e: ; in Eq. (18), where e, is the
residual of the ratio estimator in Eq. (6) and s, is the standard error of the regression
(Wooldridge, 2020, pp.49-50) for the ratio model in Eq. (19), where p = 1, because
there is only one parameter in the ratio model. Again, note that s, is also called an esti-
mate of the error standard deviation, depending on academic fields. Also, note that, as
long as p is the number of parameters in the model, the formula for the standard error
of the regression is the same with or without an intercept (Eisenhauer, 2003, p.78).
Note that e; is the residuals for the OLS regression model defined in Eq. (4), while e, ;
is the residuals for the ratio model defined in Eq. (6). These residuals are the key differ-
ence between s in Eq. (16) and s, in Eq. (19).

er,i = —" (18)

s, = (19)
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Fourth, we calculate Cook’s distance C, ; in Eq. (20), where p = 1, e ; 1s the stu-
dentized residual in Eq. (18), and #; is exactly the same as Eq. (17). Therefore as
was the case with Cook’s distance for OLS, if an observation has a large value of
C,,» this means that the observation is influential in the ratio model, in terms of the
vertical axis (measured by e’r i.), the horizontal axis (measured by #;), or the combina-
tion of both.

o
Cr,i = 7 X m (20)

Based on the values of C,;, we trim the identified outliers, where outliers
are defined as large values of C, ;. Let D; = (xi, y,-) be a random sample of size n
(i=1,2,...,n). Also, let A and k be positive integers. When C,J- > A, trim D;, and
when C, ; S A, do not trim D;, where j means the j-th observation. Suppose that
we trim k observations from the data. This means that we have D, ; = (x,cr,i, ym’,-),
where i = 1,2, ...,n —k and the subscript fcr stands for TC-ratio. Then, the aver-
age of the remaining n — k observations is the kth level trimmed mean based on the

robust TC-ratio estimator. Thus, ﬁm is given in Eq. (21), y,,, in Eq. (22) and ¥,,, in
Eq. (23).

Vier
By = 0 Q1
-1 2 @)
ytcr - n— k < ytc‘r,l,
n—k
xtcr = n— xlcr,i' (23)

i=1

Finally, we compute the imputed values based on y; = /?w,xl-, which is the robust
ratio imputation model based on the TC-ratio estimator. This estimator is expected
to work better than the traditional approaches, such as the ratio of medians, trimmed
means, and Winsorized means, because the proposed estimator can detect both uni-
variate (unconditional) and bivariate (conditional) outliers, while the traditional
approaches (ratio of medians, trimmed means, and Winsorized means) can only
detect univariate (unconditional) outliers.

6.2 Automatic method to determine the number of outliers

In the previous section, 4 is defined as a positive integer that is to be used as a cut-
off to determine whether an observation is an outlier or not. In general, there is “no
clear guidance on the percentage of trimming to be done” (Young & Mathew, 2015,
p.78). Therefore, the choice of 4 is often arbitrary.
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Traditionally, a cutoff for Cook’s distance is proposed as 4., = 4/(n — p), where
n is the number of observations and p is the number of parameters (Fox, 2020, p.51).
However, this cutoff is so simple that it does not take into account the characteris-
tics of data in hand, because it is only a function of the number of observations and
parameters. The current study proposes a novel method of automatically determin-
ing a cutoff based on the coefficient of determination R?, by exploiting the fact that
deleting an outlier is likely to increase R?, because the model will have a better fit to
the remaining data. Also, this study suggests a scree-like plot to graphically assess
where the cutoff can be found.

For illustration purposes, we will use the following small dataset in Table 1,
where the last two observations (id=41 and 42) are added to the data as outliers.
Based on the values of C, ;, the data are sorted in an increasing order.

Since we have 42 observations and there is only one parameter,
Aok =4/(n—p)=4/(42—-1)=0.098. In this case, we detect ID 38, 39,
40, 41, and 42 as outliers. Alternatively, since C,; is univariate, we may try
using the common measure of univariate outliers, i.e., UL = Q5+ 1.5 XIQR,
where UL is the upper limit, Q5 is the third quartile, and IQR is the inter-quar-
tile range (Weiss, 2005, p.122). Q; in C,; is 0.013 and IQR in C,; is 0.012; thus,
UL =0.013+1.5%0.012 =0.031. We detect ID 36, 37, 38, 39, 40 41, and 42
as outliers. Either way, we detect too many observations as outliers. These sim-
ple methods do not work, because they do not take the characteristics of data into
account. .

If we calculate R? in 3; = ffx; among the 42 observations in Table 1, R* = 0.518.
Note that we are not interested in interpreting the model fit per se, but we are inter-
ested in how the model fit changes when we delete an observation with large C, ;.
Let R]% be the coefficient of determination when we trim the k largest observations,
where “largest” refers to the size of C,;. Since C, 4, = 0.529 is the largest value
of Cook’s distance, if we trim observation 42 from the data, R% = 0.605, which is
larger than R* = 0.518 by 0.086. Since C, 4, = 0.527 is the second largest, if we trim
observation 41 from the data, R% = 0.798, which is larger than R% = 0.605 by 0.194.
Since C, 4 = 0.239 is the third largest, if we trim observation 40 from the data,

= 0.809, which is larger than R = 0.798 by 0.011. Since C, 3o = 0.143 is the
fourth largest, if we trim observation 39 from the data, Ri = 0.815, which is larger
than Ri = 0.809 by 0.006. We can continue this process until the last two observa-
tions are left. See R} in Table 1.

Naturally, RZ tends to go up, as we trim more and more outliers. However, the
speed of growth in Ri decreases as we trim outliers. This can be used as a method
of determining where we should stop trimming outliers. Notice that the increase was
0.086, 0.194, 0.011, and 0.006, which means that, after trimming the two largest
outliers, the speed of growth in R2 dramatically decreased. See RI% - RZ ., in Table 1,
which is the difference between the two adjacent R2

Graphically, the left-hand panel in Fig. 1 plots 1 /R2 based on 42 observations
in Table 1 against the number of trimmed observatlons k. Figure 1 is analogous
to the scree plot in principal component analysis (Bartholomew et al., 2002,
pp-124-125). In the left-hand panel of Fig. 1, there is an elbow at two trimmed
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Table 1 Example dataset to illustrate how a cutoff can be automatically found

Id v X; C,; k R R —-R 1/R:
1 32.0 16.5 0.000008 0 0.518 1.929
2 432 232 0.000009 1 0.605 - 0.086 1.654
3 28.3 15.4 0.000022 2 0.798 - 0.194 1.253
4 69.9 339 0.000166 3 0.809 —0.011 1.236
5 922 43.2 0.000409 4 0.815 - 0.006 1.227
6 58.6 35.5 0.000409 5 0.809 0.006 1.236
7 472 21.3 0.000599 6 0.801 0.008 1.248
8 83.0 37.1 0.000751 7 0.812 —0.011 1.231
9 82.4 51.3 0.000875 8 0.830 -0.017 1.205
10 29.9 204 0.001136 9 0.827 0.003 1.209
11 63.9 27.0 0.001348 10 0.828 —0.001 1.208
12 42.0 30.7 0.001790 11 0.839 —-0.012 1.192
13 62.7 44.7 0.001949 12 0.842 —0.003 1.188
14 24.8 20.5 0.002867 13 0.855 —-0.013 1.169
15 17.9 15.4 0.003021 14 0.867 -0.012 1.153
16 1.6 29 0.003170 15 0.873 —0.006 1.145
17 36.8 32.6 0.003797 16 0.885 —-0.012 1.130
18 92.0 342 0.004012 17 0.865 —0.009 1.118
19 126.3 48.6 0.004378 18 0.904 —0.009 1.106
20 18.9 19.4 0.015095 19 0.914 —-0.010 1.094
21 76.6 26.9 0.015569 20 0.915 —0.001 1.093
22 25.8 27.8 0.015902 21 0.924 —0.010 1.082
23 139.0 51.8 0.016299 22 0.929 —0.005 1.077
24 14.2 20.1 0.018529 23 0.936 —0.007 1.069
25 62.8 57.3 0.018721 24 0.940 —0.004 1.064
26 159 22.8 0.018847 25 0.949 —-0.010 1.053
27 37.6 44.8 0.018872 26 0.957 —0.007 1.045
28 95.8 30.8 0.019223 27 0.960 —0.003 1.042
29 16.9 28.5 0.010692 28 0.964 —0.004 1.038
30 16.9 31.3 0.011711 29 0.968 —0.005 1.033
31 156.3 52.1 0.012599 30 0.973 —0.005 1.027
32 10.1 24.1 0.013503 31 0.980 —0.006 1.021
33 86.8 732 0.026459 32 0.982 —0.002 1.019
34 194.2 68.7 0.021497 33 0.985 —0.003 1.015
35 39.4 63.5 0.030814 34 0.990 —0.005 1.010
36 58.3 73.4 0.039814 35 0.991 —0.001 1.009
37 158.3 113.2 0.058631 36 0.991 —0.001 1.009
38 280.4 102.7 0.098627 37 0.993 —0.002 1.007
39 104.1 106.2 0.143047 38 0.998 —0.005 1.002
40 90.6 110.4 0.238638 39 1.000 —0.002 1.000
41 294.5 13.0 0.526751 40 1.000 —0.000 1.000
42 314.3 18.6 0.529118 41 1.000 —0.000 1.000
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Fig. 1 Examples of the scree-like plot to detect the number of potential outliers for Table 1

observations. This means that trimming the rest of observations has similar R2,
which further means that they each explain a similar proportion of the total vari-
ance of y,. Therefore, graphically, we can decide that there are two outliers in the
data. On the other hand, if Table 1 did not have ID 41 and 42 in the first place,
and if we calculate G, and Ri based on the first 40 observations, the scree-like
plot would be the right-hand panel in Fig. 1, which shows no elbows, meaning
that there are no outliers in the data.

Next, we locally calculate the vertical distance from one dot to another in
Fig. 1, so that we numerically and automatically decide the number of outliers.
This is done by calculating RZ - RiH. When these vertical distances, Ri - Riﬂ,
are close enough to zero, then we trimmed enough outliers in the data. Most
of these values are close to zero. In fact, the mean is —0.012, the median is —
0.005, the first quartile (Q;) is —0.010, and IQR is 0.008. Since Ri —RiH is
univariate, we can simply use the common measure of univariate outliers, i.e.,
LL = Q, — 1.5 XIQR, where LL is the lower limit and Q, is the first quartile
(Weiss, 2005, p.122). Therefore, LL = —0.010 — 1.5 x 0.008 = —0.021. Since
R(Z) - Rf = —0.086 and R% - R; = —0.194 are smaller than LL = —0.021, we can
numerically and automatically decide that outliers are up to the second largest
C,;- On the other hand, if Table 1 did not have ID 41 and 42, and if we calculate
C,,; and Rz based on the first 40 observations, LL = —0.018. None of Ri - Ri+1
would be smaller than —0.018; thus, we numerically and automatically conclude
that there are no outliers in the data.

Additionally, in the actual implementation, the moving average of order 3 is
used to avoid haphazard idiosyncrasies (large jump from & to k + 1).

Therefore, it is demonstrated in this subsection that we can determine the
number of outliers based on the speed of change in Rz. This mechanism allows
the TC-ratio estimator to be fully automated in the process of outlier detection,
because no processes involve human decisions.
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7 Monte Carlo simulation: settings

Monte Carlo simulation is useful especially when assumptions of a model are
violated, but there are no easy analytical solutions available (Mooney, 1997, p.1).
Analyses in this study are carried out using R version 4.0.2. In this simulation
study, the sample size n is set to 1000, and the number of simulation runs is set
to 10,000. Since the means and totals are considered the most important products
in official statistics (de Waal et al., 2011, p.245), the parameter of interest in the
simulations is set to the mean of a target variable, .

7.1 Settings of population data

The Monte Carlo simulations are carried out using five different artificially gener-
ated populations of values (x,-, y,-), whose values are generated by a gamma distri-
bution, a normal distribution, or a uniform distribution.

A random variable X follows a gamma distribution with parameters ¢ and o,
where x > 0, ¢ > 0, w > 0 if its density function is given by Eq. (24), and I'(¢) is
the gamma function defined in Eq. (25). Also, from Egs. (26) and (27), the mean
is ¢w and the variance is ¢w? (DeGroot & Schervish, 2002, p-297; Ross, 2006,
pp-237-239). A gamma distribution is one of the commonly used population set-
tings for ratio imputation (Lee et al., 1994, p.236; Rao & Sitter, 1995, p.455; Sit-
ter & Rao, 1997, p.69; Haziza & Valée, 2020).

S S —X
X =2 = exp( =), (24)
[(¢) = / x?~exp(—x)dx, (25)
0
_ [T g x\? —x\1,
50 [ i (5) () = oo @)
var(X) = g’ (¢p + 1) — P>’ = pw’. 27)

Specifically, a set of 1000 x-values are generated by a gamma distribution with
mean ¢ = 48 and variance ¢w? = 768. Then, for each fixed value of x, the cor-
responding value of y is generated by a gamma distribution with mean p, = bx
and variance o2 = d?x*, where the values of b, d, and g are shown in Table 2.
Also, p is the correlation between x and y, and Hy is the true population value of
y. This follows the population settings used in Lee et al., (1994, p.236). Also, the
online appendix A reports additional simulation runs based on a gamma distribu-
tion with mean ¢ = 24 and variance ¢pw’ = 768, where the expected value of X
is set to half.
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Table 2 Characteristics of the three populations (gamma distribution)

Population b d g p Hy

1.5 1.84 0.75 0.75 72
2 1.5 5.13 0.50 0.75 72
3 1.5 13.78 0.25 0.75 72

These specific values of b, d, g, p, and My are based on Lee et al., (1994, p.236)

Lee et al., (1994, p.236) show that ¢» and w can be defined as Eqgs. (28) and (29).

(bx)*

o= (28)
d2 2g

= b’; . (29)

Therefore, the relation between x; and y; can be adequately captured by the ratio
estimator model y, =fx;+¢;, where f=15 (b=15 in Table 2) and

g ~N (0, c? \/71 ) Also, the online appendix B reports additional simulation runs

based on f = 3.0, where the true ratio is set to double.

Sections 8.1 and 8.2 display the results for population 1. The results for popula-
tions 2 and 3 can be found in the Appendix (Sects. 11.1 and 11.2). Furthermore,
in discussing the ratio estimator, some authors (Zou et al., 2010, p.871; Wada &
Sakashita, 2017, p.3) assume that x-values are generated by a uniform distribution,
and some authors (Zou et al., 2010, p.871; Lui, 2020, p.140) assume that x-values
are generated by a normal distribution. Therefore, to make the simulations more
general (free of distributional assumptions), the Appendix has extra results for popu-
lation 4 (uniform distributions) and population 5 (normal distributions).

Under population 4, a set of 1000 x-values are generated by a uniform distribu-
tion U(0.1,2.1). Under population 5, a set of 1,000 x-values are generated by a nor-
mal distribution N(20, 16). Since x-values must be positive for the ratio estimator, in
case that x-values are generated as negative, they are replaced by the minimum value
among the positive x-values. In both populations 4 and 5, y; = 3.9x; + 4/x;€;, where
g; ~ N(0, 1). All of these settings for populations 4 and 5 follow the simulation stud-
ies by Zou et al., (2010, p.871), slightly changing x;¢; to 4/x;€;, because their simula-
tions assume the population for the mean of ratios, not the ratio of means which the
current study assumes.

7.2 Settings of missing data
Let y; be the target incomplete variable for imputation, x; be completely observed in
all of the situations to be used as the auxiliary variable, and u, ; and u, ; be two con-

tinuous uniform random variables ranging from 0 to 1 for the missingness mecha-
~ _——
nism. This means that missing occurs in y;, the numerator in the ratio, f,,;, = y/x.
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Each of the artificially generated datasets is made incomplete using the following
two types of missing data generation processes based on missing at random (MAR),
where the missingness of y; depends on the values of x;, u; ;, and u, ;, i.e., the con-
ditional probability of missing data after controlling for observed data is the same
as the probability of observed data (Allison, 2002, p.4; Enders, 2010, p.11; Little
& Rubin, 2020, p.14). The average missing rates are set to 30%. It is reported that
the family incomes and personal earnings in the National Health Interview Survey
(1997-2004) have approximately 30% of missingness (Schenker et al., 2006, p.925).
Therefore, 30% is a realistic value as a missing rate. Note that, while any specific
real survey may have different rates of missingness, the specific settings on the miss-
ing rates should not be much of a concern. The average missing rates are 30% under
10,000 simulation runs, which means that some simulation runs have missingness
less than 30%, and other simulation runs have missingness more than 30%. On aver-
age across 10,000 runs, it is 30%. Therefore, this setting is supposed to cover a rea-
sonable range of missing rates.

In the first type of missing data generation process under MAR, y; is missing if
x; < med(x;) and u,;; < 0.5, and y; is missing if x; > med(x;) and u,; < 0.1, where
med(e) denotes the median. For example, suppose that y; is turnover (sales) and x;
is the number of employees. The assumption in this setting is that more values are
missing among small-and-medium size enterprises than large enterprises, because
the missing values of turnover for large enterprises are collected through recontacts
in official statistics. Therefore, y based on missing data overestimates the true value
of y. Let us call this MARI.

In the second type of missing data generation process under MAR, y; is miss-
ing if x; < med(x;) and u;; < 0.1, and y; is missing if x; > med(x;) and u,; < 0.5.
Again, for example, suppose that y; is turnover and x; is the number of employees.
The assumption in this setting is that large enterprises are more likely to refuse to
answer turnover than small-and-medium size enterprises, possibly because of some
tax-related concerns. Therefore, y based on missing data underestimates the true
value of y. Let us call this MAR2.

Both of these two scenarios intuitively sound plausible and we do not expect, a
priori, which of the scenarios is more realistic in a given survey of official statistics.
Therefore, we use these two types of missing data scenarios. These two types of
missing data can be understood as MAR via censoring.

Under the assumption of missing completely at random (MCAR), the probability
of missing data does not depend on data, and observed data are a simple random
sub-sample of complete data (Allison, 2002, p.3; Enders, 2010, p.7; Little & Rubin,
2020, p.13). Since MAR is a “less restrictive assumption than MCAR” (Little &
Rubin, 2020, p.14), in reality, it is safer that we assume MAR rather than MCAR.
This takes us back to the case of MAR. Therefore, the current study does not con-
sider the assumption of MCAR.

Under the assumption of not missing at random (NMAR, also known as miss-
ing not at random: MNAR), the missingness of y; depends on the values of y;, u, ;,
and U, ;, even after controlling for x;, i.e., the conditional probability of missing data
after controlling for observed data is not the same as the probability of observed
data (Allison, 2002, p.5; Enders, 2010, p.11; Little & Rubin, 2020, p.14). Graham
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(2009, p.567) states that all missing data are a continuum between pure MAR and
pure NMAR. The current study focuses on the case of pure MAR, because the cur-
rent study is concerned with the influence of outliers on the imputation model under
the situation where the imputation model can eliminate the bias due to missing data.
In the case of pure NMAR, the literature recommends the use of the selection model
and the pattern mixture model (Allison, 2002, pp.77—-84; Enders, 2010, pp.290-301;
Little & Rubin, 2020, pp.351-355). How the TC-ratio estimator can be extended by
way of the selection model or the pattern mixture model is left for future research.
Nevertheless, Scheuren (2005, p.317) contends that, in official statistics, about
10-20% are MCAR, about 50% are MAR, and the rest is NMAR. Thus, the assump-
tion of MAR may cover the majority (up to 70%) of the situations that we may
encounter in official statistics.

7.3 Settings of outliers

Figure 2 in the current study graphically shows the patterns of 5% outlier settings,
where white circles represent usual observations and red triangles represent outli-
ers generated by our outlier model, which is described below. Outliers in y; follow
U(0.7max [yi],max [yi] ), where the associated values of x; are less than med(xi).
Outliers in x; follow U (0.7max [xi] , max [xi] ), where the associated values of y; are
less than med(y; ).

Furthermore, the cases where outliers exist in both x and y can be divided
into three patterns: equal percentage (50:50) in Fig. 2, less outliers in x than in
y (25:75) and more outliers in x than in y (75:25) in Fig. 3. In official statistics,
ratio imputation is applied to different subpopulations, which is known as group
ratio imputation (de Waal et al., 2011, p.245). Some subpopulations may have
outliers on the vertical axis, while other subpopulations may have outliers on the
horizontal axis, or the combination of both.

Therefore, if a ratio imputation model is robust against outliers anywhere in
the scatter plot, it will be beneficial.

The percentage of outliers is set to 1%, 5%, and 10%. This means that we will
add 10 outliers to 1000 observations (n = 1010 in total for 1% outliers), 50 outli-
ers to 1,000 observations (n = 1050 in total for 5% outliers), and 100 outliers to
1,000 observations (n = 1100 in total for 10% outliers). Note that these outliers
will not be missing in the simulations, because we are interested in the influence
of outliers on the parameter of the imputation model when outliers are indeed
present in data. Also, the online appendix C reports additional simulation runs,
where outliers are also missing.

Therefore, there are 10 types of data without outliers (5 population types and
2 missingness types) and 150 types of data with outliers (5 population types, 2
missingness types, 5 types of outlier locations, and 3 types of outlier percent-
ages). Additionally, in the online appendices, we have 194 types of data. Each of
these 354 types of data is repeated 10,000 times. Thus, we have 3,540,000 differ-
ent types of data in total.
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7.4 Evaluation criteria for simulations

Let 6 be the true population parameter and 8 be an estimator of 6. If Bias(é\ > =0in

Eq. (30), the expected value of 0 is equal to the true 6. Then, this estimator 6 is an
unbiased estimator of true parameter 8 (Mooney, 1997, p.59; Gujarati, 2003, p.899).

Therefore, Bias(@) indicates whether the method is good on average.
Bias<§> = E<§> —6. (30)

Oftentimes, however, there is a situation where one estimator has smaller bias
and larger variance than another estimator. The root mean squared error (RMSE) in
Eq. (31) measures the dispersion around the true value of the parameter, taking a
balance between bias and efficiency into account (Mooney, 1997, p.59; Gujarati,

2003, p.901-902; Carsey & Harden, 2014, pp.88-89). Therefore, RMSE(§> indi-

cates whether the method is good across 10,000 runs, taking both bias and efficiency
into account.

RMSE(§> - E(é— 9)2. 31)

Thus, an estimator 8 in this study is considered good if it has Bias(é\ ) close to

zero and RMSE<§ ) close to zero.

7.5 Competing methods in the simulations

Table 3 displays the abbreviations about the competing methods used in the simula-
tions. For each of the traditional robust ratio imputation models, see Sect. 4.

Comp is complete data, which are supposed to be ideal, but unavailable in real-
ity. LD is listwise deletion, which throws away all of the rows that contain missing

Table 3 List of the competing methods in the simulations

Abbreviations Methods

Comp Complete data

LD Listwise deletion

Ratio Regular ratio imputation (non-robust)

M-1 Ratio imputation by M-estimator IRLS (y = 8, less robust)
M-2 Ratio imputation by M-estimator IRLS (y = 4, more robust)
Med Ratio-of-medians imputation

Trim Ratio-of-trimmed-means imputation (5% trimming)

Wins Ratio-of-Winsorized-means imputation (5% Winsorizing)
C-1 Ratio imputation by Cook’s distance (proposed TC-ratio estimator)
C-2 Ratio imputation by Cook’s distance (cutoff=4/(n — p))
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values. This is the result we obtain if we do not deal with missing values. In the lit-
erature of missing data analysis, this method is also known as complete case analy-
sis (Little & Rubin, 2020, pp.47-48). Both Comp and LD are not affected by outli-
ers, because there are no imputation models.

Ratio is the non-robust ratio imputation model. Ratio is expected to work best
among imputation methods when outliers are not present, while it is expected not to
work well when outliers are present.

M-1 and M-2 are the ratio imputation models by M-estimators. These are the
methods implemented in the 2016 Economic Census in Japan (Wada & Sakashita,
2017). This study chooses two values for the tuning constant y that represent less
robust (y = 8) and more robust (y = 4), respectively, because y cannot be prede-
termined. For the information on the choice of y, see Wada and Tsubaki (2020, p.3).

Med is the ratio-of-medians imputation. Trim is the ratio-of-trimmed-means
imputation. Wins is the ratio-of-Winsorized-means imputation. In trimming outliers,
there are no clear rules about the percentage of trimming. We set 5% as a cutoff for
the trimmed and the Winsorized means. Therefore, these two methods are expected
to work well when outliers are 5% in the simulations, but work less well under 1%
and 10%

C-1 is the proposed TC-ratio estimator, where outliers are detected by modified
Cook’s distance and the number of outliers is determined by the inverse Rl%. C-2 uses
4/(n — p) as a cutoft.

7.6 Motivating example for simulation settings

Populations 1, 2, and 3 follow the simulation settings by Lee et al. (1994, p.236). A
natural question is to ask whether these settings are realistic. As a real-world exam-
ple, this subsection uses the anonymized data of the 2004 Japanese National Sur-
vey of Family Income and Expenditure, which is based on the actual microdata of
the survey and is offered for the purpose of academic analyses. As of this writing,
2004 is the latest version of the anonymized data of the National Survey of Family
Income and Expenditure.

Figure 4 displays the distributions of net expenditure and yearly income. Note
that yearly income is measured on a yearly basis in the unit of 10,000 Japanese yen,
while net expenditure is measured on a monthly basis in the unit of 1 Japanese yen.
To make them comparable, net expenditure is divided by 10,000 and multiplied by
12, so that net expenditure is also on a yearly basis in the unit of 10,000 Japanese
yen. Since these are sensitive real data from official statistics, for the purpose of dis-
closure limitation, the axes in Fig. 4 are intentionally hidden. Please pay attention to
the shapes of the distributions, not the values of each data point.

Suppose that some values of yearly income are missing and all of the values of
net expenditure are observed. Then, we may predict the missing values of income;
by expenditure;, using income; = § X expenditure; + €;, where f is estimated by the
ratio of means. Note that the prediction in the imputation model does not require a
causal specification (King et al., 2001, p.51), meaning that the imputation model
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Fig.4 Characteristics of expenditure and income. Note that the vertical line is med (net expenditure)
and the horizontal line is med (yearly income). Axes are intentionally hidden for disclosure limitation
purposes

does not claim that expenditure; is the cause of income;. It simply states that missing
values of income; may be predicted by expenditure;.

Figure 4 shows that each variable is skewed to the right, and the bivari-
ate distribution is also heteroskedastic. The mean of income is 669.5 and the
mean of expenditure is 379.6. Let y be income and x be expenditure. Then,
p=y/x=669.5/379.6 = 1.76, which is slightly higher than the value of b,
defined in Table 2. The correlation between income and expenditure is 0.46,
which is lower than p, defined in Table 2, but this is still coherent in the sense
that the correlation is positive. One of the reasons why the correlation is low is
that income is top coded at the value of 2500, which makes correlation lower
than it actually must be. Note that the real data already contain some potential
outliers. If we trim these potential outliers by the TC-ratio estimator, § = 1.80
and p = 0.64, which are quite close to the theoretically defined values in Table 2.
Therefore, it is demonstrated in this subsection that the simulation settings above
are realistic.

Note that, based on the Statistics Act (Japan), the author obtained the
anonymized data of the 2004 National Survey of Family Income and Expenditure
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from the National Statistics Center (NSTAC). Also, note that the analyses in this
article are the author’s own and are different from the officially published results
by the Japanese government. For the information on the extended use (secondary
use) of official statistics in Japan, see https://www.soumu.go.jp/english/dgpp_ss/
seido/2jiriyou.htm.

8 Monte Carlo simulation: results
8.1 MART1 in population 1

Table 4 presents the results of the simulations for population 1 (Gamma distribution,
d = 1.84, g = 0.75) under MARI.

Although there are no absolute criteria to judge the size of bias, Schafer and Gra-
ham (2002, p.157) state, “A rule of thumb that we have found useful is that bias
becomes problematic if its absolute size is greater than about one half of the esti-
mate’s standard error.” In Table 4, one standard error of the mean in complete data
is about 1.7, which can be found in the column of Comp under RMSE, because

RMSE is V variance + biasz; thus, for an unbiased estimator, RMSE is the standard
error. Therefore, if the absolute value of bias is smaller than 1.7/2=0.850, then we
deem the method unbiased and put it in italics.

Also, there are no absolute criteria to judge the size of RMSE, which is meaning-
ful only in comparative terms (Carsey & Harden, 2014, p.89). The smallest RMSE
indicates that the estimator is comparatively best among the competing estimators.
Thus, the smallest value of RMSE is shown in italics for each outlier setting. Note
that Comp is excluded from the comparison of RMSE, because Comp is always the
best, but unavailable method.

Under all situations, listwise deletion (LD) is severely biased (bias=9.005,
9.062). In fact, listwise deletion is always biased under MAR. Therefore, the task is
to correct the bias of about 9 points by way of imputation.

When there are no outliers (%X=0.00, %Y=0.00), the regular ratio imputation
model (ratio) is unbiased and most efficient (bias=— 0.012, RMSE=1.852). All of
the robust ratio imputation models are slightly more biased than the regular ratio
imputation model, but most of them, except Med and C-2, can also correct the bias
in listwise deletion within half of one standard error. Thus, we consider M-1, M-2,
Trim, Wins, and C-1 unbiased, using the rule of thumb by Schafer and Graham
(2002, p.157).

In the case of the equal number of outliers in both x and y (%X =0.50, %Y =0.50),
the bias in the regular ratio imputation model is small (Bias=0.261). However, as
the percentages of outliers increase, the bias in the regular ratio imputation model
becomes large (bias=1.029 for %X=2.50, %Y=2.50; bias=1.746 for %X=5.00,
%Y=15.00).

In 13 out of 16 cases, the bias of the TC-ratio estimator (C-1) is smaller than half
of one standard error. Most importantly, when the bias of the regular ratio impu-
tation model is larger than half of one standard error in 13 cases, the bias of the
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TC-ratio estimator is smaller than half of one standard error in 10 out of these 13
cases. In the case of (%X=7.50, %Y=2.50), the bias of the TC-ratio estimator is
larger than half of one standard error, but it is still comparatively smaller than the
biases of the other competing methods. The two scenarios (%X =0.00, %Y=10.00;
%X=10.00, %Y=0.00) are found too hard to deal with, because no methods can
adequately handle these two scenarios.

Taking both bias and efficiency into account, RMSE shows that the TC-ratio
estimator is almost always best among the competing robust ratio imputation meth-
ods. In fact, the TC-ratio estimator is judged best in 10 out of 16 patterns. For the
remaining six patterns, the differences in RMSE are quite small. The remarkable
characteristic of the TC-ratio estimator is that RMSE is quite stable under most situ-
ations, ranging from 1.841 to 2.085 in 14 patterns.

Furthermore, when outliers are present, the TC-ratio estimator outperforms the
regular ratio imputation model; and when there are no outliers, the TC-ratio esti-
mator (bias=-0.326, RMSE=1.878) works approximately equally well compared
to the regular ratio imputation model (bias=-0.012, RMSE =1.852). Also, the TC-
ratio estimator (C-1) outperforms C-2 in 12 out of 16 patterns with 1 tie in terms
of both bias and RMSE. When the proportion of outliers is 1%, the performance of
the TC-ratio estimator (C-1) and the usual criterion of 4/(n — p) (C-2) is similar;
therefore, if we are certain that the proportion of outliers is low, the usual criterion
of 4/(n — p) might be enough. However, when we want to automate the process of
imputation, there is uncertainty as to the proportion of outliers. Therefore, in case
that the proportion of outliers is high, the TC-ratio estimator (C-1) is more prefer-
able than the usual criterion of 4/(n — p) (C-2).

8.2 MAR2 in population 1

Table 5 presents the results of the simulations for population 1 (Gamma distribution,
d =1.84, g = 0.75) under MAR2.

In Table 5, if the absolute value of bias is smaller than 0.850 (half of one standard
error), then it is shown in italics. Also, the smallest value of RMSE is shown in ital-
ics. The overall conclusions are similar to the ones in Sect. 8.1.

Remember that, under MAR2, the missing rates of y, are higher when
x; > med(x;). This means that larger values of y; tend to be missing. Also, x; and y;
both follow gamma distributions, which are skewed to the right with right long tails.
This further means that many missing values are scattered among very large values
of y;. Therefore, the situation is more difficult to handle than in Sect. 8.1. In fact, the
absolute size of biases of the regular ratio imputation model (ratio) tend to be larger
than in MARI.

When there are no outliers, the biases of M-1, Trim, Wins, and C-1 are smaller
than half of the standard error; thus, we consider them unbiased.

When the bias of the regular ratio imputation model is large in 14 cases, the TC-
ratio estimator (C-1) corrects the bias within half of one standard error in 8 cases. In
the four cases (%X=0.00, %Y=5.00; %X=5.00, %Y=0.00; %X=2.50, %Y="7.50;
%X=1.50, %Y=2.50), the biases of the TC-ratio estimator are comparatively
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smaller than those of the competing methods. The two scenarios (%X=0.00,
%Y=10.00; %X=10.00, %Y =0.00) are, again, found too hard to deal with, because
no methods can adequately handle these two scenarios.

In terms of RMSE, the TC-ratio estimator is judged best in 9 out of 16 patterns.
For the remaining seven patterns, the differences in RMSE are quite small. Again,
the remarkable characteristic of the TC-ratio estimator is that RMSE is quite stable
under most situations ranging from 1.937 to 2.579 in 14 patterns. Also, the TC-ratio
estimator (C-1) outperforms C-2 in 12 out of 16 patterns in terms of bias, and in 11
out of 16 patterns in terms of RMSE.

9 Summary of the overall results

Table 6 summarizes the results of all the 160 different data patterns. The row, “Unbi-
ased,” shows the number of times the bias of each method was less than half of one
standard error. The row, “RMSE,” shows the number of times the RMSE of each
method was smallest among the competing methods.

The TC-ratio estimator is deemed unbiased in 114 out of 160 patterns, and the
relative performance of the TC-ratio estimator is best in 106 out of 160 patterns in
terms of RMSE. Therefore, the TC-ratio estimator is remarkably robust under a vari-
ety of outlier settings, missing data types, and distributional assumptions. Against
C-2, in terms of RMSE, C-1 wins 121 times and loses 31 times, with 8 ties, in 160
patterns. For the results of specific data types, see the Appendix in Sect. 11.

10 Conclusion

This article proposed a new robust ratio imputation model based on the TC-ratio
estimator, which extended Cook’s distance to the ratio estimator. Simulation stud-
ies showed that the new robust ratio imputation model is robust against many types
of outliers under a variety of settings. This method works better than the traditional
robust methods (the ratio of medians, trimmed means, Winsorized means, and
means by M-estimators) when outliers are on the vertical axis. This method works
far better than the traditional robust methods when outliers are on the horizontal axis
(high-leverage points). Also, this method works approximately equally well com-
pared to the non-robust method when there are no outliers. This is true regardless of

Table 6 Summary of the overall results in 160 data patterns

Comp LD Ratio M-1 M-2 Med Trim Wins C-1 C-2

Unbiased 160 0 39 55 57 39 55 41 114 60
RMSE NA 3 11 22 18 4 8 9 106 26

For RMSE comparisons, Comp is excluded; thus, displayed as NA (not applicable)
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the distributional assumptions (gamma, uniform, and normal distributions: also see
the Appendix in Sect. 11). Therefore, the TC-ratio estimator is comparatively a more
robust ratio estimator than the traditional robust methods.

Furthermore, since M-estimators are iterative methods, whether the algorithm
converges depends on the choice of parameter settings in M-estimators (Mulry et al.,
2014, p.733). In case the algorithm does not converge, the literature suggests a need
to have a backup strategy (Mulry et al., 2014, pp.744-745). The TC-ratio estimator
in the current study is not an iterative method. Therefore, even if M-estimators are
chosen for a particular survey as a method of imputation, the TC-ratio estimator can
be a reliable back-up method of imputation for M-estimators. Also, it is reported that
developing an automatic data-driven method for M-estimators is challenging due
to the difficulties in setting the initial value of the tuning constant y (Mulry et al.,
2018, p.483). The TC-ratio estimator in the current study is a fully automatic data-
driven method. In this sense, too, the proposed method is highly useful.

The following is out of scope for this article. The current study proposed an out-
lier resistant single imputation method, because the goal was to compute the means
(or the totals). If the goal is to make an inference about the population parameters
based on sample statistics, then we may need to consider either of the following
two methods. One is multiple imputation (Carpenter & Kenward, 2013, p.35; van
Buuren, 2018, p.25). For this, Takahashi (2017a) and Takahashi (2017b) proposed
multiple ratio imputation based on the expectation—maximization with bootstrap-
ping, which is known to be a fast and reliable multiple imputation algorithm (Taka-
hashi, 2017¢). How multiple ratio imputation can be robustified by the TC-ratio
estimator will be an important future research topic. Another strategy is to use vari-
ance estimation procedures for singly imputed data (Deville & Sérndal, 1994, p.389,
p-392; Haziza & Vallée, 2020). How these variance estimation procedures for singly
imputed data can be applied to the TC-ratio estimator will be also another important
future research topic.

Let us end this article with a final remark on the potential limitation of the pro-
posed method. Just as Young and Mathew (2015, p.93) note, this article does not
necessarily suggest a panacea for outlier treatments in all survey settings. While
Cook’s distance is known as one of the most well-established methods to detect indi-
vidually influential observations, Cook’s distance may overlook the mutually influ-
ential observations or a group of influential observations (Lawrance, 1995, p.181).
This problem is known as masking. In cases where observations are jointly influen-
tial, Cook’s distance can be sequentially applied, but even the sequential approach
may not be always successful (Fox, 2020, p.51). There are two ways to deal with
this problem. First, Lawrance (1995, p.184) proposed a conditional approach as a
measure of the masking in Cook’s distance. How the TC-ratio estimator can incor-
porate the conditional approach by Lawrance (1995) is left for future research. Sec-
ond, due to the possibility of masking, the literature suggests to complement out-
lier detection techniques with graphical methods (Fox, 2020, pp.52-53; Filliben &
Heckert, 2013). In fact, by examining outliers in detail, we may find “omitted vari-
ables, incorrect functional forms, ..., or other neglected aspects of a study” (Bollen,
1989, p.31). Whenever possible, subject matter knowledge should be incorporated
into statistical analysis in dealing with outliers (de Waal et al., 2011, p.230; Young
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& Mathew, 2015, p.77). The current study focused on the side of statistical analysis
only. If we incorporate subject matter knowledge in the process of outlier treatments
for imputation, the findings of this study will be further strengthened.

11 Appendix

This appendix displays the results for the other four populations (gamma with
d=5.13, g =0.50; gamma with d = 13.78, g = 0.25; uniform [0.1, 2.1]; and nor-
mal with mean=20, variance=16). In the following tables, unbiased results
(smaller than half of one standard error) are shown in italics. The information
on the standard error in each table can be found in the column of Comp under

RMSE. Again, see Schafer and Graham (2002, p.157) for this rule of thumb to
judge the size of bias. Also, the smallest RMSE value is shown in italics.

11.1 Results of the simulations for populations 2-5 in MAR1

See Tables 7, 8, 9, 10.

11.2 Results of the simulations for populations 2-5 in MAR2

See Tables 11, 12, 13, 14.
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