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Abstract
In this study, we proposed using Bayesian nonparametric quantile mixed-effects mod-
els (BNQMs) to estimate the nonlinear structure of quantiles in hierarchical data.
Assuming that a nonlinear function representing a phenomenon of interest cannot be
specified in advance, a BNQM can estimate the nonlinear function of quantile fea-
tures using the basis expansion method. Furthermore, BNQMs adjust the smoothness
to prevent overfitting by regularization. We also proposed a Bayesian regularization
method using Gaussian process priors for the coefficient parameters of the basis func-
tions, and showed that the problem of overfitting can be reduced when the number of
basis functions is excessive for the complexity of the nonlinear structure. Although
computational cost is often a problem in quantile regressionmodeling, BNQMs ensure
the computational cost is not too high using a fully Bayesian method. Using numerical
experiments, we showed that the proposed model can estimate nonlinear structures of
quantiles from hierarchical data more accurately than the comparison models in terms
of mean squared error. Finally, to determine the cortisol circadian rhythm in infants,
we applied a BNQM to longitudinal data of urinary cortisol concentration collected at
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KurumeUniversity. The result suggested that infants have a bimodal cortisol circadian
rhythm before their biological rhythms are established.

Keywords Basis expansion · Circadian rhythm · Longitudinal data · Mixed-effects
models · Infants · Quantile regression

Mathematics Subject Classification 62G08 · 62J99

1 Introduction

Regression models are an important statistical tool for capturing the average effects
of covariance on a response variable. However, when the distribution of the response
variable dependent on the covariates is not symmetric or there exist outliers, the mean
regression is not appropriate for representing the phenomenon. In fact, real data anal-
ysis has suggested that the effects from covariates on the response variable may not
be homogeneous when there are individuals with outlying values of the response
variable. Quantile regression (Koenker and Bassett 1978) is a regression method that
enables estimation of multiple quantiles. Because of the robustness of quantiles, quan-
tile regression is known to be robust against outliers in the response variable and
asymmetry in the response variable distribution. Furthermore, since any quantile can
be used as a target of estimation, it is possible to choose a quintile for analysis based on
the objective of the particular research and to compare the estimation results of different
quantiles. In other words, quantile regression can be used to perform amore diversified
analysis than mean regression. Because of these advantages, quantile regression has
been attracting attention in recent years. In this paper, we focus on quantile regression
modeling of hierarchical data with a nonlinear structure. Note that while the proposed
model in this paper is based on longitudinal data, it can be applied to hierarchical data,
since longitudinal data are a type of hierarchical data.

Linearmixed-effectsmodels (Laird andWare 1982) have been a common choice for
the analysis of hierarchical data, including longitudinal data.Mixed-effects models are
regression models that can capture correlations in observed values within individuals
and variations between individuals. The predictor of mixed-effects models is repre-
sented by the sum of two terms, a fixed-effects term and a random-effects term. The
fixed-effects term formulates the overall trend due to an unknown parameter common
to all individuals and the random-effects term formulates the variation among individ-
uals due to an unknown parameter that differs between individuals. Using these two
terms, mixed-effects models can simultaneously estimate both the overall transition
trend of a response variable and the transitions specific to each individual, taking into
account inter-individual variability.

Although linearmixed-effectsmodels estimate conditional expectations of response
variables, studies analyzing hierarchical data have also been conducted in the frame-
work of quantile regression. For example, linear quantile mixed-effects models
assuming a univariate random effect and multivariate random effects have been pro-
posed in Geraci and Bottai (2007) and Geraci and Bottai (2014), respectively. These
models perform quantile regression in the framework of linear mixed-effects models

123



Japanese Journal of Statistics and Data Science (2022) 5:241–267 243

and inherit the advantages of these models while using arbitrary quantiles instead of
the mean value as the estimation targets.

Furthermore, Galarza et al. (2020) and Geraci (2019b) have proposed nonlinear
quantile mixed-effects models for hierarchical data with nonlinear structures. These
models are based on nonlinear mixed-effects models such as Lindstrom and Bates
(1990) and include the assumption that a nonlinear function that adequately models
the phenomenon of interest is already known. For this reason, Galarza et al. (2020)
used a three-parameter logisticmodel (Pinheiro andBates 1995), awell-known growth
curve model, as a predictor of their nonlinear quantile mixed-effects models, and
Geraci (2019b) used a bi-exponential model (Pinheiro and Bates 1995), which is a
pharmacokinetic model, as a predictor of his nonlinear quantile mixed-effects models.

However, there are not many situations in which the models are known for the
phenomena of interest. For example, our research studies the infant circadian rhythm
of cortisol secretion using longitudinal data. Since the rhythm of cortisol secretion
during infancy is unknown, it is impossible to determine the nonlinear function as a
predictor of the model in advance.

The purpose of this study was to develop a model that can estimate the transition of
quantile points of a response variable from longitudinal data with a nonlinear structure
when the nonlinear function cannot be identified in advance. To achieve this goal, we
consider a basis expansionmethod for both fixed- and random-effects terms in quantile
mixed-effects models.

Since models with basis expansions can be expressed in the same form as a linear
model, they can be treated as a special case of the linear quantile mixed-effects model,
such as those proposed by Geraci and Bottai (2007) and Geraci and Bottai (2014).
In practice, however, the computational cost of this approach is high. We first need
to determine both the number of basis functions for the fixed-effects term and the
number of basis functions for the random-effects term, and it is much more expensive
to determine the combination of two elements than just one element. Furthermore,
smoothing using basis expansions requires determining the value of the regularization
parameters, which prevent overfitting and adjust the smoothness of the function.

To overcome these issues,we proposed theBayesian nonparametric quantilemixed-
effects models (BNQMs), which solve these problems by using Bayesian inference. In
BNQMs, Bayesian regularization can be performed by assuming a specific distribution
of the prior for the coefficient parameters of the basis function. The Markov chain
Monte Carlo (MCMC)method is used in BNQMs to estimate the posterior of unknown
parameters. In addition, the priors or hyperpriors are assumed hierarchically for the
parameters of the priors for the coefficient parameters, and regularization parameters
can be estimated simultaneously by the MCMC method. Such a method is called a
fully Bayesian method. With this fully Bayesian method, it is no longer necessary to
repeat point estimations to determine the optimum value from the candidate values of
the regularization parameter, by comparison, using an information criterion.

In this study, we also proposed the use of a Gaussian process (GP) prior for the
coefficient parameter vectors of the basis functions. We showed that the smoothness
can be appropriately adjusted when the number of basis functions is excessive using
a GP prior for Bayesian regularization. Based on this, we can fix the number of basis
functions, and the smoothness of the regression curve can be adjusted by optimizing
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the hyperparameters of the GP, thus reducing the computational cost. In addition, since
BNQMs use the full Bayesian method, these hyperparameters can also be estimated
by the MCMC method.

A clear advantage of this approach over existing methods, including the afore-
mentioned Galarza et al. (2020) and Geraci (2019b), as well as the additive and
semiparametric models proposed by Yue and Rue (2011), Waldmann et al. (2013),
Fenske et al. (2013), and Geraci (2019a), is that the proposed regularization method
was developed by focusingmore on the problem of using basis function expansions for
random-effects terms. Here, the usefulness of the proposed regularization is confirmed
by numerical experiments.

The remainder of the article is organized as follows. Section 2 explains the details
of BNQMs. We then report our numerical experiments on BNQMs in Section 3.
After showing the usefulness of such models in numerical experiments, an application
example of a BNQM is shown by analyzing infant cortisol data in Section 4. Finally,
this article is concluded in Section 5.

2 Bayesian nonparametric mixed-effects models

2.1 Model

We take the observation of the i-th individual at the j-th measurement time ti j ,
{(ti j , yi j ); i = 1, ..., N , j = 1, ..., ni }. Then, the τ -th quantile of yi j at ti j can be
modeled as

Qyi j (τ |ti j ) =
p∑

k=1

βτkφk(ti j ) +
q∑

l=1

bτ ilψl(ti j )

= β�
τ φ(ti j ) + b�

τ iψ(ti j ), (1)

where τ ∈ (0, 1), Qyi j (·) ≡ F−1(·), and φ(t) = (φ1(t), . . . , φp(t))� and ψ(t) =
(ψ1(t), . . . , ψq(t))� are vectors of the basis functions in the fixed- and random-effects
terms, respectively, βτ = (βτ1, . . . , βτ p)

� is a p × 1 coefficient parameter vector of
φ(t), and bτ i = (bτ i1, . . . , bτ iq)� is aq×1 coefficient parameter vector ofψ(t), where
bτ i ∼ N (0,Γ τ ) is assumed. Here, Γ τ is a q × q positive-definite covariance matrix.
In the present study, Spline-based Gaussian basis functions (Kawano and Konishi
2007) were used in the numerical experiments and cortisol data analysis. For these
basis functions, equidistant points corresponding to the knots of the cubic B-spline
(de Boor 2001) are the centers.

Equation (1) can be rewritten in the form of a linear quantile mixed-effects model:

Q yi
(τ |t i ) = Φ iβτ + Ψ i bτ i , (2)

where yi = (yi1, . . . , yini )
�, and t i = (ti1, . . . , tini )

�. Here, Φ i = (φ(ti1), . . . ,
φ(tini ))

� is an ni × p design matrix in the fixed-effects term and Ψ i =
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(ψ(ti1), . . . ,ψ(tini ))
� is an ni × q design matrix in the random-effects term. For

simplicity of notation, we will omit the subscript τ in the remainder of the paper.

2.2 Estimation

2.2.1 Likelihood function

In BNQMs, we consider Bayesian estimation of the unknown parameters of Eq. (1)
using the MCMC method. Yu and Moyeed (2001) proposed a method to express
likelihood using an asymmetric Laplace distribution as aBayesian approach in quantile
regression.We assume that the conditional distribution of yi j is an asymmetric Laplace
distribution, yi j |β, bi , σ ∼ AL(μi j , σ, τ ); therefore, its probability density function
can be written as

p(yi j |β, bi , σ ) = τ(1 − τ)

σ
exp

{
−ρτ

(
yi j − μi j

σ

)}
, (3)

where μi j = β�φ(ti j )+ b�
i ψ(ti j ) is the location parameter, −∞ < μi j < ∞, σ > 0

is the scale parameter, 0 < τ < 1 is the skewness parameter, and ρτ (u) = u(τ − I (u <

0)) is the loss function with indicator function I (·).
Furthermore, Kozumi and Kobayashi (2011) proposed the following location-scale

mixture representation of the asymmetric Laplace distribution:

yi j |vi j ∼ N (μi j + aσvi j , δ
2σ 2vi j ),

vi j ∼ Exp(1),

a = 1 − 2τ

τ(1 − τ)
,

δ2 = 2

τ(1 − τ)
, (4)

where Exp(1) denotes an exponential distribution with mean 1 and μi j = φ(ti j )
�w +

ψ(ti j )
�bi . This representation, which uses a normal distribution and an exponential

distribution hierarchically, improves the sampling efficiency of the MCMC method.
Based on these settings, the conditional distribution of yi j in the BNQM can be

written as follows:

p(yi j |β, bi , vi j , σ ) = N (yi j |μi j + aσvi j , δ
2σ 2vi j ), (5)

where N (yi j |μi j + aσvi j , δ
2σ 2vi j ) is a probability density function of the normal

distribution with mean μi j + aσvi j and variance δ2σ 2vi j . From equation (5), the
likelihood function can be written as

p( y|β, b, v, σ ) =
N∏

i=1

ni∏

j=1

N (yi j |μi j + ασvi j , δ
2σ 2vi j ), (6)

where b = (b�
1 , · · · , b�

N )� and v = (v11, · · · , v1n1 , · · · , vN1, · · · , vNnN )�.
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2.2.2 GP prior regularization for basis expansion method

In the basis expansionmethod, regularization is important for adjusting the smoothness
of the estimated function. In the Bayesian framework, regularization can be achieved
using a specific distribution as a prior. In this study, we proposed using a GP prior for
the regularization of the coefficients of the basis functions. We will call this Bayesian
regularization method “GP prior regularization”. The proposed GP prior regulariza-
tion method is explained in this section and the advantages of using a GP prior for
regularization in the basis expansion method were demonstrated in a simple numerical
experiment, detailed later.

In the Bayesian framework, the regularization can be realized by setting a specific
prior for the coefficient parameters. For a Bayesian regularization for a p-dimensional
coefficient parameter vector β = (β1, . . . , βp)

�, a ridge regularization (l2 regulariza-
tion) assuming the followingmultivariate normal distribution forβ is often performed:

β ∼ Np(0, σ 2
β I). (7)

In this case, the hyperparameter σ 2
β is used to regulate the norm of β to prevent

overfitting.
Consider the basis expansion method expressed by the following equation:

f (t) = β1φ1(t) + · · · + βpφp(t)

= β�φ(t). (8)

In our treatment, we focused on the fact that the parameters βk, βl(k, l = 1, . . . , p)

are assumed to be independent of each other and we developed a method to set the
prior. Specifically, we considered that the smoothness of the estimation curve could
be more effectively adjusted using a prior that satisfies the assumption that the value
of the coefficient parameter is closer when the location of the corresponding basis
function is closer. For this, we assume a GP prior for the coefficient parameters of the
basis function, which can be written as

βk ∼ G P(0, k(sk, sl)), k, l = 1, . . . , p, (9)

where k(sk, sl) is a kernel function. In the GP regression, kernel functions determine
the similarity of the outputs, and Eq. (9) defines the similarity (covariance) between
βk and βl . (If k = l, the kernel function defines the variance of βk .)

We propose using the center of the basis function sk as the input of the kernel
function, which satisfies the assumption that the coefficient parameter is closer when
the corresponding basis function is closer. In this study, we use the following RBF
kernel as k(sk, sl):

k(sk, sl |α, ρ) = α2 exp

{
− 1

2ρ2 (sk − sl)
2
}

, (10)
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where α and ρ are hyperparameters (α > 0, ρ > 0), and the scale (magnitude of
amplitude) and smoothness of the function f (t) estimated by the basis expansion
method expressed as equation (8) are adjusted.

Equation (9) is equivalent to assuming the following multivariate normal distribu-
tion as the prior for β:

β ∼ N (0, K ), (11)

where K is the p × p-dimensional covariance matrix and its (k, l) element is deter-
mined by k(sk, sl).

This method addresses the problem of overfitting when the number of basis func-
tions is too large for the complexity of the nonlinear structures. To demonstrate this
advantage, we conducted a simple numerical experiment. Figures1 and2 compare the
fitting results for quantile regression using the basis expansion method when ridge
regularization expressed by Eq. (7) and GP prior regularization expressed by Eq. (9)
are used, with a change in the number of basis functions. The results show that the
smoothness can be optimized even if the number of basis functions is excessive when a
GP prior is assumed. In this method, the numbers of basis functions in the fixed-effects
term and the random-effects term are unified to a fixed value p. The fact that it is not
necessary to determine the combination of the number of basis functions based on an
information criterion drastically reduces the computational cost.

2.2.3 Prior setting of BNQM

Here, we summarize the prior setting of BNQMs. Since BNQMs are mixed-effects
models, we assume a GP prior for the coefficient parameters of the basis function in
the fixed-effects and random-effects terms, expressed as

β|α f , ρ f ∼ N (0, G),

bi |αr , ρr ∼ N (0,Γ ), (12)

where G and Γ are the p × p-dimensional covariance matrices and the (k, l) elements
of G and Γ are given by the following RBF kernels:

k f (sk, sl |α f , ρ f ) = α f
2 exp

{
− 1

2ρ f
2 (sk − sl)

2
}

,

kr (sk, sl |αr , ρr ) = αr
2 exp

{
− 1

2ρr
2 (sk − sl)

2
}

, (13)

in which α f , αr , ρ f , and ρr are hyperparameters (α f , αr , ρ f , ρr > 0). Note that
α f and αr adjust the scale of the regression curve and ρ f and ρr adjust the smooth-
ness of the regression curve. Furthermore, in this study, we estimate the posterior of
these hyperparameters by theMCMCmethod, assuming the following priors for these
hyperparameters:
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α f ∼ N+(0, σ 2
α ), αr ∼ N+(0, σ 2

α ),

ρ f ∼ I G(ga, gb), ρr ∼ I G(ga, gb), (14)

where N+(0, σ 2
α ) is the half-normal distribution and I G(ga, gb) is the inverse gamma

distribution. In addition, we assume a half-normal distribution N+(0, c2) for the prior
for σ , which is a scale parameter of the asymmetric Laplace distribution in this study.

2.3 Posterior

Using the likelihood of Sect. 2.2.1 and the prior of Sect. 2.2.3, the posterior of all
unknown parameters in BNQMs can be expressed by Bayes’ theorem as follows:

p(β, b, α f , αr , ρ f , ρr , σ, v| y) ∝ p( y|β, b, σ, v) ×
p(β|α f , ρ f )p(b|αr , ρr ) ×
p(α f )p(αr )p(ρ f )p(ρr )p(σ )p(v), (15)

where p(b|α f , ρr ) = ∏N
i=1 p(bi |αr , ρr ).

In BNQMs, sampling is performed with the posterior distribution of equation (15)
by the MCMC method. Specifically, the MCMC method uses an algorithm called the
No-U-Turn sampler (NUTS; Hoffman and Gelman 2014), which is an extension of
the Hamiltonian Monte Carlo (HMC) method (Duane et al. 1987). This algorithm
has been implemented as a standard in the probabilistic programming language Stan
(Stan Development Team 2020), and BNQMs have been implemented using Stan.
The details of HMC and NUTS are described in appendix B. In this study, posterior
mean values were used as point estimates of the unknown parameters, and the lower
2.5% and upper 2.5% points of the posterior were used to estimate each 95% credible
interval.

3 Numerical experiments

In this section, we evaluate the usefulness of BNQMs through numerical exper-
iments. The target quantiles of this numerical experiment are set to be τ =
(0.10, 0.25, 0.50, 0.75, 0.90). The purpose of the proposed model is to appropriately
capture the nonlinear transitions of quantiles. To evaluate whether BNQMs achieve
this purpose, two types of data structures are considered:

(S1) Symmetric distribution of y given t .
(S2) Asymmetric distribution of y given t .

For S1, the error is generated from the standard normal distribution, while for S2,
the error is generated from the chi-square distribution with three degrees of freedom
to reproduce each situation. In S1 and S2, the observation yi j at the j-th measure-
ment point of the i-th subject is generated according to the following corresponding
equations (i = 1, · · · , 10, j = 1, . . . , 50):
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Fig. 1 Comparison of fitting by nonparametric quantile regression with Bayesian ridge regularization and
GP prior regularization performed. Here, p is the number of basis functions
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Fig. 2 Comparison of fitting by nonparametric quantile regression with Bayesian ridge regularization and
GP prior regularization performed (continuation of Fig. 1). Here, p is the number of basis functions
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(S1)

yi j = 0.1 cos(3π ti j ) + bi1 sin(2π ti j ) + σεi j ,

σ = 0.2 exp{− sin(2π ti j ) + 0.01},
εi j ∼ N (0, 1), (16)

(S2)

yi j = 0.1 cos(3π ti j ) − 0.5 + bi1 sin(2π ti j ) + σεi j ,

σ = 0.01 cos(3π ti j ) + 0.1,

εi j ∼ χ2(3), (17)

where the measurement time ti j is generated from the uniform distribution U (0, 1)
and the random-effect bi1 is generated from N (0, 0.22).

From Eqs. (16) and (17), 100 sets of simulation data are generated. The data for
each structure type are shown in Fig. 3, in which the red curves represent the true
quantile structures (τ = 0.10, 0.25, 0.50, 0.75, 0.90). As shown in Takeuchi et al.
(2006), the true quantile structure Q∗

yi j
(τ |ti j ) can be expressed as a product of the

standard deviation σ and the inverse of the cumulative distribution function of the
error F−1(τ ). From this, the true fixed effects structures of the τ -th quantile in S1 and
S2 are given by the following equations:

(S1)

Q∗
yi j

(τ |ti j ) = 0.1 cos(3π ti j ) + 0.2 exp{− sin(2π ti j ) + 0.01}F−1(τ ), (18)

(S2)

Q∗
yi j

(τ |ti j ) = 0.1 cos(3π ti j ) − 0.5 + {0.01 cos(3π ti j ) + 0.1}F−1(τ ). (19)

We compared the estimation accuracy of the proposed BNQMs-GP with BNQMs-
Ridge and the Bayesian nonparametric quantile regression model: BNQ-GP.

BNQMs-GP andBNQMs-Ridge are the sameBNQMswith different regularization
methods. By comparing these two models, we verify the usefulness of our proposed
regularization using GPprior. In order to show that the method is robust in the case of
an excessive number of basis functions, we prepared cases where the numbers of basis
functions are p = 15 and p = 30 for the fixed-effects term and the random-effects
term, respectively. Although the number of basis functions 30 is considered excessive
for the nonlinear structure of the simulation data (S1, S2) that we have prepared, we
will investigate the accuracy of curve fitting in this situation.

Unlike the proposed BNQMs-GP, the BNQ-GP is not a mixed-effects model.
From the comparison of the two models, it was confirmed that the proposed model
constructed within the framework of the mixed-effects model worked better for hier-
archical data with large individual differences.
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Fig. 3 True quantile structures (fixed-effects) for S1 (left) and S2 (right) expressed by Eqs. (18) and (19),
respectively. The red curves represent the true structures when τ = 0.90, 0.75, 0.50, 0.25, 0.10, from top
to bottom

(BNQMs-GP)

Qyi j (τ |ti j ) = β�φ(ti j ) + b�
i ψ(ti j ),

βk ∼ G P(0, k f (sk, sl)), k = 1, . . . , p,

bik ∼ G P(0, kr (sk, sl)),

k f (sk, sl |α f , ρ f ) = α f
2 exp

{
− 1

2ρ f
2 (sk − sl)

2
}

,

kr (sk, sl |αr , ρr ) = αr
2 exp

{
− 1

2ρr
2 (sk − sl)

2
}

. (20)

(BNQMs-Ridge)

Qyi j (τ |ti j ) = β�φ(ti j ) + b�
i ψ(ti j ),

βk ∼ N (0, λβ), k = 1, . . . , p,

bik ∼ N (0, λb),

λβ ∼ N (0, 1)

λb ∼ N (0, 1) (21)

(BNQ-GP)

Qyi j (τ |ti j ) = β�φ(ti j ),

βk ∼ G P(0, k(sk, sl)), k = 1, . . . , p,

k(sk, sl |α, ρ) = α2 exp

{
− 1

2ρ2 (sk − sl)
2
}

. (22)
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Here, p = 15, 30, α f ∼ N+(0, 1), αr ∼ N+(0, 1), ρ f ∼ I G(6.28, 1.35), and
ρr ∼ I G(6.28, 1.35). Themethod for setting these hyperpriors is described in detail in
A.As theweakly informative prior for the scale parameterσ of the asymmetric Laplace
distribution, the half-normal distribution σ ∼ N+(0, 1) was used. The estimation
accuracy of each model is evaluated using the mean and standard deviation of the
mean square error (MSE) and the coverage probability of 95% credible intervals.
Here, MSE is expressed by the following equation:

1

Nm

N∑

i=1

m∑

j=1

{Q∗
yi j

(τ |ti j ) − Q̂yi j (τ |ti j )}2, N = 10, m = 50, (23)

where Q̂yi j (τ |ti j ) is the estimated value of the fixed-effects term of each compar-
ison model and Q∗

yi j
(τ |ti j ) is the true value. Note that the coverage probability of

95% credible intervals is the percentage of the 95% credible interval that contained
Q∗

yi j
(τ |ti j ).

Tables 1 and 2 show the mean and standard deviation (SD) of 100 MSEs and the
coverage probabilities obtained by fitting comparison models. A small MSE indicates
an accurate estimation and a small SD indicates a stable estimation. For both S1 and
S2, BNQMs-GP shows smaller mean values of MSEs at all quantiles than BNQMs-
Ridge and BNQ-GP. These results show that the estimation accuracy of BNQMs,
which are mixed-effects models, is higher than BNQ-GP, which is not a mixed-effects
model. For BNQMs, the variation due to individual differences could be regarded as
a random-effects term by the mixed-effects modeling, and thus a more accurate and
stable estimate could be obtained. Since BNQ-GP is not a mixed-effects model, it
cannot account for variations due to individual differences, resulting in large varia-
tions in estimated values. These results show that BNQMs can estimate the nonlinear
structure of quantiles from hierarchical data more accurately than a non-mixed-effects
model. Furthermore, it can be seen that the accuracy of BNQMs-Ridge drops signifi-
cantly when the number of basis functions is p=30, while BNQMs-GP shows almost
no change. This indicates that GPprior can be used to adjust the smoothness of the
function appropriately when the number of basis functions is excessive, even though
this is a complex task of performing quantile regression in a mixed-effects model.

The coverage probabilitywas also the closest to 95%forBNQM-GP.However, there
were cases where the coverage probability was lower than 95%, and this occurred
at the edges of the distribution. This may be due to the characteristics of quantile
regression. Note that Yang et al. (2016) argue that interval estimation may not work
well if confidence intervals are obtained directly from the posterior distribution with
ALD as the working likelihood, because the posterior inference is not asymptotically
valid. At this time, we do not deal with this existing underlying problem and consider
it as future work, but more reliable interval estimation may be possible, for example,
using bootstrap confidence intervals. As a result, we were also able to further assert
the good points of the proposed method through this additional experiment. That
is, the proposed method can maintain the accuracy of estimation at the edges even
when the number of basis functions is excessive. When the number of basis functions
is excessive, the regularization by Ridge makes the estimation quite unstable and the
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Table 1 Mean (×10−3) and SD (×10−3) of MSE, and coverage probability in S1

BNQMs-GP BNQMs-Ridge BNQ-GP
p MSE Coverage MSE Coverage MSE Coverage

τ = 0.10 15 5.18 (4.42) 91.0% 8.56 (6.03) 88.7% 11.6 (8.30) 52.1%

30 5.75 (4.65) 89.8% 19.5 (11.2) 82.6% 11.8 (8.25) 42.8%

τ = 0.25 15 3.08 (3.00) 94.1% 10.1 (2.96) 92.1% 5.20 (5.07) 64.8%

30 3.02 (2.90) 94.1% 6.98 (4.45) 90.9% 5.24 (5.04) 64.8%

τ = 0.50 15 2.57 (3.11) 93.0% 2.71 (2.44) 91.7% 3.39 (4.10) 72.8%

30 2.63 (3.07) 93.3% 3.07 (2.17) 91.1% 3.42 (4.13) 73.4%

τ = 0.75 15 3.74 (4.10) 92.0% 5.13 (4.43) 90.6% 5.60 (5.31) 63.7%

30 3.81 (4.14) 91.8% 7.68 (4.90) 91.2% 5.64 (5.28) 64.0%

τ = 0.90 15 5.25 (5.41) 91.6% 8.41 (6.36) 89.1% 10.4 (6.38) 53.0%

30 5.80 (6.05) 90.7% 19.0 (10.4) 82.3% 10.7 (6.51) 53.1%

Table 2 Mean (×10−3) and SD (×10−3) of MSE, and coverage probability in S2

BNQMs-GP BNQMs-Ridge BNQ-GP
p MSE Coverage MSE Coverage MSE Coverage

τ = 0.10 15 1.97 (2.15) 94.8% 2.60 (2.19) 91.8% 8.44 (6.08) 42.5%

30 2.02 (2.21) 94.5% 4.02 (2.31) 92.4% 8.46(6.06) 42.8%

τ = 0.25 15 2.17 (2.19) 94.4% 2.83 (2.17) 92.2% 2.95 (2.83) 64.9%

30 2.21 (2.24) 94.1% 3.65 (2.34) 93.1% 2.96(2.85) 64.7%

τ = 0.50 15 2.56 (2.15) 94.6% 3.59 (2.18) 92.1% 2.97 (2.78) 71.5%

30 2.60 (2.18) 94.6% 5.54 (2.43) 92.1% 2.98(2.79) 71.2%

τ = 0.75 15 3.40 (2.46) 95.0% 4.44 (2.37) 93.0% 4.87 (3.83) 69.0%

30 3.46 (2.47) 94.9% 5.97 (2.52) 91.2% 4.92(3.86) 69.9%

τ = 0.90 15 6.54 (3.48) 95.9% 8.81 (3.84) 91.9% 8.27 (5.66) 65.1%

30 7.61 (3.93) 90.4% 15.1 (4.29) 78.8% 8.73(6.03) 66.3%

coverage immediately becomesworse at once. On the other hand, the proposedmethod
was able to suppress the decline of the coverage at the edges of the distribution. This
is a value merit of the proposed method that is not found shared with other methods.

4 Application

In this section, we present a real data analysis using the proposed model. To clarify
the cortisol secretion circadian rhythm in infants, longitudinal data of urinary cortisol
concentrations were collected at Kurume University School of Medicine. The sample
size of these data was 455 and the subjects comprised 12 infants aged 31 to 124
days after birth (approximately 1–4 months of age) whose urinary cortisol levels were
repeatedly measured over several days. The data are color-coded in Fig. 6 by subject.
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Fig. 4 Boxplots of 100 MSEs for S1

Since the number ofmeasurement points per day and themeasurement interval vary,
and are sparse for each individual, a mixed-effects model is considered to be suitable.
Although the secretion rhythm of cortisol is known to have a nonlinear structure, the
secretion rhythm of infants has not been clarified (deWeerth et al. 2003), so a nonlinear
equation cannot be assigned to the model in advance. Therefore, the proposed model,
which can estimate the nonlinear structure from the data by basis expansions, is useful
in this situation. The role of a BNQM in an application to cortisol data is to estimate
the overall nonlinear structure (namely, the circadian rhythm) as a fixed-effects term
while capturing fluctuations due to individual differences as a random-effects term.
In addition, the proposed model estimates the quantile transitions of cortisol values.
This has two main advantages. The first advantage is that the model can appropriately
handle the problem that the distribution of cortisol concentration is asymmetric. There

123



256 Japanese Journal of Statistics and Data Science (2022) 5:241–267

Fig. 5 Boxplots of 100 MSEs for S2

was a small number of individuals with extremely high cortisol concentrations in these
data. In other words, the distribution of cortisol concentrations has a long right tail.
The mean is greatly influenced by these extreme values, but quantile regression can
instead focus on the transition of the median (50th quantile), which is less sensitive.
The second advantage is that it is possible to capture the difference in rhythm based
on the cortisol concentration itself. It is possible to compare the estimation results
of multiple quantiles, and we expect to obtain useful information that could not be
obtained by looking at the average. In this study, the 10th, 25th, 50th, 75th, and 90th
quantiles were analyzed, and the rhythm differences between high, middle, and low
cortisol levels were considered.

123



Japanese Journal of Statistics and Data Science (2022) 5:241–267 257

Fig. 6 Line graph of cortisol secretion over time with the lines color-coded by subject. The upper graph
shows all of the infants, and the three lower graphs show individual infants as examples. Some patterns,
such as ID3, stay at a low value, while others, such as ID6 and ID8, are highly variable

The settings of the BNQM used in the analysis are as follows:

Qyi j (τ |ti j ) = β�φ(ti j ) + b�
i ψ(ti j ),

βk ∼ G P(0, k f (sk, sl)), k = 1, . . . , p,

bik ∼ G P(0, kr (sk, sl)),

k f (sk, sl |α f , ρ f ) = α f
2 exp

{
− 1

2ρ f
2 (sk − sl)

2
}

,

kr (sk, sl |αr , ρr ) = αr
2 exp

{
− 1

2ρr
2 (sk − sl)

2
}

, (24)
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Fig. 7 Estimation curves and 95% credible intervals

where the response variable yi j is the urinary cortisol concentration at the j-th
measurement point of the i-th subject, and ti j is the corresponding measurement time.
Note that yi j and ti j were normalized to have a maximum value of 1 and a minimum
value of 0 before theywere analyzed. Specifically, the normalized value x∗

i is expressed
by the following formula, where x is the data to be normalized and xi is the i-th value
of x:

x∗
i = xi − min(x)

max(x) − min(x)
. (25)

Then, the result was determined by converting inversely. Again, p = 15, α f ∼
N+(0, 1), αr ∼ N+(0, 1), ρ f ∼ I G(6.28, 1.35), and ρr ∼ I G(6.28, 1.35), as
described in appendix A. As the weakly informative prior for the scale parameter
σ of the asymmetric Laplace distribution, the half-normal distribution σ ∼ N+(0, 1)
was used.

Cortisol has a role as a biomarker of biological rhythms (Weitzman et al. 1971).
After a biological rhythm has been established, the secretion rhythm of cortisol is
monophasic, with the highest level in themorning and the lowest level aroundmidnight
(Krieger et al. 1971). However, the subjects in this study were infants between 31 and
124 days old, which is an ambiguous period when biological rhythms are beginning to
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be established (Kinoshita et al. 2016; Kidd et al. 2005). Therefore, we analyzed their
circadian rhythms using the proposed model and considered the results.

Figure7 shows the 10th, 25th, 50th, 75th, and 90th quantile curves estimated by
the BNQM. Furthermore, the 95% credible interval for the estimated curve of each
quantile was determined and is included in Fig. 7. As shown, cortisol secretion tends
to increase twice, in the morning and evening. This suggests that the cortisol secretion
rhythm of the infants in this study was bimodal. This result could be obtained due to
the use of the basis expansion method. In addition, the range of variation increases
with the quantile. In other words, at higher cortisol levels, the variation in cortisol
level is greater. Identifying this trend is a contribution of quantile regression.

5 Conclusion

In this study, we proposed Bayesian nonparametric quantile mixed-effects models
(BNQM), which enable quantile regression considering the hierarchical structure of
data by mixed-effects modeling. Furthermore, using a basis expansion method for
both the fixed-effects term and random-effects term, it is possible to deal with cases
in which the nonlinear structure differs greatly between subjects.

In the mixed-effects model based on the basis expansion method, it is necessary
to optimize the combination of the number of basis functions and the regularization
parameters, which is usually difficult from the viewpoint of computational complexity.
Therefore, for BNQMs, we proposed using a new Bayesian regularization method, in
which the coefficient parameters of the basis functions are assumed to follow a Gaus-
sian process (GP) prior. Using this regularization method, BNQMs can appropriately
adjust the smoothness of the regression curves even when the number of basis func-
tions is too large for the complexity of the nonlinear structure. Using BNQMs can
also reduce the burden of selecting the number of basis functions. Moreover, because
BNQMs are based on a fully Bayesian method, they do not require repeated point
estimation for determining the optimum value from candidate values of the hyperpa-
rameter of the GP prior by comparison using an information criterion. The proposed
method also has the advantage that a credible interval can be estimated directly, instead
of the confidence interval being approximated by the bootstrap method, which is an
iterative method.

The performance of BNQMs was evaluated by a Monte Carlo simulation. The
proposed BNQMs showed the highest estimation accuracy for each data structure and
were shown to be useful as a quantile regression technique in hierarchical data with
a nonlinear structure. Then, a BNQM was applied to longitudinal data of cortisol in
infants. The results suggested that the cortisol secretion rhythm in infancy is bimodal,
and the magnitude of the amplitude increases as the cortisol level itself increases.

Finally, we discuss future work. In this study, we adopted the asymmetric Laplace
distribution as the working likelihood because it is the most commonly used. How-
ever, studies that include distributions of the SKD family, mentioned in Galarza et
al. (2017) and Wichitaksorn et al. (2014), as a working likelihood option would be
useful for further improving the estimation accuracy of the model. Also, in this study,
the credible interval was obtained directly from the posterior distribution, whereas
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it is inherently ideal to adjust the posterior variance for cases where the asymmetric
Laplace distribution is incorrectly specified, as argued by Yang et al. (2016), because
the posterior inference would not be asymptotically valid. Discussions of the choice of
working likelihoods and the associated asymptotic validity of the posterior distribution
such as these are beyond the scope of the present paper, but certainly an interesting
topic for future research. The next step could also be to go beyond simple curve fitting
and extend the method to additive or semi-parametric models with more terms added
to the current model in order to adjust for confounding.

Acknowledgements This research was supported in part by the Japan Society for the Promotion of Science
20K11707 for YA and 20H00102 for OI.

A Setting of hyperpriors

Here, we describe the method of setting the prior for α and ρ, which are parameters
of a GP prior, based on Gelman et al. (2020) and Betancourt (2020).

A.1 Prior predictive checks

In this study, when using a GP prior for the coefficient parameter vector β =
(β1, · · · , βm)� of the basis function φ(t) = (φ1(t), · · · , φm(t))�, the following RBF
kernel was used as the kernel function:

k(sk, sl |α, ρ) = α2 exp

{
− 1

2ρ2 (sk − sl)
2
}

. (26)

By assuming the priors of the hyperparameters α and ρ (α, ρ > 0) defined in the RBF
kernel, the posteriors of α and ρ can be estimated by the MCMC method.

The hyperparameter α determines the amplitude of the sampled function f (t), and
ρ determines the smoothness of f (t), where f (t) = β�φ(t). Note, however, that it is
not f (t) but β that is sampled directly from the GP prior. Figure8 shows the change
in amplitude of the function f (t) due to changes in the value of α, and Fig. 9 shows
the change in smoothness of the function f (t) due to changes in ρ. For these prior
predictive checks, spline-based Gaussian basis functions are used as basis functions,
and the number of basis functions is m = 15. Each sample ti (i = 1, · · · , 500)
generated from the uniform distribution U (0, 1) was used as the input of the basis
functions.

The results of Figs. 8 and 9 can be used to select a prior for hyperparameters in
a GP, and Gelman et al. (2020) notes that these prior predictive checks constitute a
useful method for understanding the effects of priors.

Here, the above setting of the range of input t of 0 ≤ t ≤ 1 corresponds to the
range of time points in the numerical experiment in Sect. 3 and the analysis of infant
cortisol data in Sect. 4. In other words, the prior predictive check of this section is
the prior predictive check for the numerical experiment in Sect. 3 and the analysis of
infant cortisol data in Sect. 4. (In the analysis of infant cortisol data, normalization
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processing was performed in advance so that data with a maximum value of 1 and
minimum value 0 were obtained.)

A.2 Select of prior for˛

In this study, we used the following prior for α:

α ∼ N+(0, σ 2
α ),

where N+(0, σ 2
α ) is a half-normal distribution. In particular, we used σα = 1 in

the numerical experiment (Sect. 3) and the analysis of infant cortisol data (Sect. 4).
Figure10 shows the probability density function of α ∼ N+(0, 1).

From Fig. 10, it can be inferred that the prior α ∼ N+(0, 1) gives the prior infor-
mation that the value of α will be approximately in the range less than 2. From the
amplitudes of the estimated curves for the case of 0 < α < 2 in Fig. 8, we consider that
this is a weakly informative assumption that is appropriate for samples of numerical
experiments and infant cortisol data (after normalization).

A.3 Select of prior for�

In this study, we used the following prior for ρ, referring to Betancourt (2020):

ρ ∼ I G(ga, gb), (27)

where I G(ga, gb) is the inverse gamma distribution. In the GP, if the value of ρ is too
small, overfitting occurs, and if the value of ρ is too large, non-identifiability occurs.
Therefore, the inverse gamma distribution is suitable because it can suppress both
the upper and lower limits of ρ. In particular, the Monte Carlo simulation in Sect.
3 and the analysis of infant cortisol data in Sect. 4 used ga = 6.28 and gb = 1.35,
respectively, and the method for setting these values is described in the following,
based on Betancourt (2020). The prior predictive check shown in Fig. 9 confirms the
smoothness of the function for various values of ρ, and we can use this prior predictive
check to determine the lower l and upper u limits for each value of ρ. In this study,
l = 0.1 and u = 0.7 were used. Betancourt (2020) expressed l as the lower limit and
u as the upper limit using the lower probability and upper probability as

∫ l=0.1

0
p(ρ|ga, gb)dρ = 0.01,

∫ ∞

u=0.7
p(ρ|ga, gb)dρ = 0.01. (28)

The parameters simultaneously satisfying these two conditions are defined as ga and
gb. By solving this optimization problem of the simultaneous equations, ga ≈ 6.28
and gb ≈ 1.35 are obtained.
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Fig. 8 Change in the sampled functions f (t) = β�φ(t) for different values of α for ρ = 0.1

B HMC and NUTS

Let θ = (β�, b�, α f , αr , ρ f , ρr , σ, v�)� be the vector of the unknown parameters
in a BNQM (see equation (15)). Using θ , the posterior can be rewritten as p(θ | y). It
is necessary to estimate the unknown parameter vector θ in the posterior inference.
Here, we summarize the algorithm of HMC and NUTS when there is a d-dimensional
unknown parameter θ = (θ1, · · · , θd)� for any Bayesian model, based on Hoffman
and Gelman (2014) and the Stan reference manual (Stan Development Team 2020).
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Fig. 9 Change in the sampled functions f (t) = β�φ(t) for different values of ρ for α = 0.2

B.1 HMC

Step 1: Initial setting

Setting for t = 1. Initialize the parameters θ (1) and set ε, L,	. (Here, ε and
L are the width of one small discrete transition and the number of repetitions
in the leapfrog integrator (step 3), respectively, and 	 is the covariance matrix
of the multivariate normal distribution used to generate random samples.)

Step 2: Random sample generation

Draw ρ(t) from the following d-dimensional multivariate normal distribution:

ρ(t) ∼ N (0,	).
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Fig. 10 Half-normal distribution N+(0, 1)

Fig. 11 Inverse gamma distribution I G(6.28, 1.35)

Step 3: Leapfrog Integrator

Set ρ = ρ(t), θ = θ (t) and repeat the following updates L times:

ρ = ρ − ε

2

∂ − log p(θ | y)
∂θ

,

θ = θ + ε	ρ

ρ = ρ − ε

2

∂ − log p(θ | y)
∂θ

.

Then, denote the final θ and ρt by θ∗ and ρ∗, respectively.
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Step 4: Metropolis accept step

Accept the candidate (θ (t+1) = θ∗) with the following probability and other-
wise maintain the current state (θ (t+1) = θ (t)):

min(1, r),

where r = exp{log(ρ, θ) − log(ρ∗, θ∗)}.
Step 5: Determine whether to continue HMC

If t = T (where T is the number of HMC iterations.), end sampling; otherwise
set t = t + 1 and return to step 2.

B.2 NUTS

The HMC algorithm in the previous section has parameters ε, L , and 	, which need
to be set and affect the sampling efficiency. The advantage of the HMC algorithm is
that the average transition distance can be increased.

For the same L , increasing ε increases the transition distance in the leapfrog inte-
grator but decreases the acceptance rate. Increasing L and decreasing ε increases the
transition distance and acceptance rate but increases the computational cost. Depend-
ing on the value of L , the transition may make a U-turn, resulting in a shorter travel
distance. For such situations, Hoffman and Gelman (2014) proposed using the NUTS
algorithm, an extension of the HMC algorithm. Their proposed algorithm uses half
the squared distance between the current parameter θ and the candidate point θ∗ to
determine whether a transition makes a U-turn:

1

2
(θ∗ − θ)�(θ∗ − θ).

Specifically, the criterion that the first derivative with respect to time t of half the
squared distance becomes less than 0 (meaning that half the squared distance does not
increase even if the number of updates L is increased) is used:

d

dt

1

2
(θ∗ − θ)�(θ∗ − θ) = (θ∗ − θ)� d

dt
(θ∗ − θ) = (θ∗ − θ)�ρ.

Thus, the NUTS algorithm can automatically set L . For more details on the algorithm,
see Hoffman and Gelman (2014) and the Stan reference manual (Stan Development
Team 2020).
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