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Abstract
In this paper, we develop some new classes of complementary distributions generated
from random maxima. This family contains many distributions of which comple-
mentary Weibull-geometric distribution is a special case. A three-parameter discrete
complementary Weibull-geometric distribution is introduced and studied. This dis-
tribution is a generalization of the discrete Weibull distribution and contains many
discrete submodels as particular cases. Its distributional properties including the hazard
rate function, quantile function, random number generation, and probability generat-
ing function are investigated. The unknown parameters of the model are estimated
using the method of maximum likelihood. The existence and uniqueness of the MLEs
of the parameters are established. A simulation study is carried out to check the per-
formance of the method. The new model is applied to a practical data set to prove
empirically the flexibility in data modeling.
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1 Introduction

The complementary risk problems suggested by Basu and Klein (1982) are arise in
several areas, such as industrial reliability, public health, biomedical studies, demog-
raphy, and actuarial science. In complementary risk analysis, the lifetime associated
with a specific risk may not be observable; rather, we observe only the maximum
lifetime value among all risks. In reliability studies, we observe only the maximum
component lifetime of a parallel system. That is, the observable quantities for each
component are the maximum lifetime value to failure among all risks, and the cause
of failure. Whereas in competing risk scenario, in which the lifetime associated with a
particular risk is not observable; rather, we observe only the minimum lifetime value
among all risks. One can refer Lawless (2003), Crowder et al. (1991), and Cox and
Oakes (1984) for the statistical procedures and extensive literature deal with these
problems.

A difficulty arises if the risks are latent in the sense that there is no information
about which factor was responsible for the component failure (or individual failure),
that is the latent complementary risks, which can often be observed in field data. On
many occasions, this information is not available, or it is impossible that the true cause
of failure can be specified by an expert. In reliability, the components can be totally
destroyed in the experiment. Furthermore, the true cause of failure can be masked
from our view.

In modular systems, the need to keep a system running means that a module that
contains many components can be replaced without the identification of the exact
failing component. Goetghebeur and Ryan (1995) addressed the problem of assessing
covariate effects based on a semi-parametric proportional hazards structure for each
failure type when the failure type is unknown for some individuals. Reiser et al. (1995)
considered statistical procedures for analyzingmasked data, but their procedure cannot
be applied when all observations have an unknown cause of failure. A comparison of
two partial likelihood approaches for risk modeling with missing cause of failure is
presented in Lu and Tsiatis (2005).

Louzada et al. (2011) introduced the complementary exponential geometric dis-
tribution, which is complementary to the exponential geometric model proposed by
Adamidis and Loukas (1998), based on a complementary risk problem in the presence
of latent risks, in the sense that there is no information about which factor was respon-
sible for the component failure, but only the maximum lifetime value among all risks
is observed. Louzada et al. (2013) introduced the complementary exponentiated expo-
nential geometric distributionwhich considered a generalization to the complementary
exponential geometric distribution. Jose et al. (2013) introduced the complementary
exponential power series distribution with an increasing failure rate. Tojeiro et al.
(2014) introduced the complementary Weibull geometric (CWG) as a complementary
distribution to the Weibull-geometric (WG) model proposed by Barreto-Souza et al.
(2011).

In this context, in this paper, we propose a new generalized family of complemen-
tary distributions conceived inside a latent complementary risk scenario, inwhich there
is no information about which factor was responsible for the component failure (or
individual failure), and only the maximum lifetime value among all risks is observed.
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This paper is focused on the construction of discrete version of complementary dis-
tributions, which are not studied in the literature.

The rest of the paper is organized as follows: In Sect. 2, we develop a new gener-
alization of complementary distributions with illustrations. In Sect. 3, we discuss the
various methods of discretization of continuous distributions. In Sect. 4, we introduce
the discrete complementary Weibull-geometric (DCWG) distribution and its proper-
ties are discussed in Sect. 5. The estimates of unknown parameters of the model using
maximum-likelihood estimation method are derived and their existence and unique-
ness are established. Also, a simulation study is carried out to check the performance
of theMLEs of the model parameters. These results are presented in Sect. 6. In Sect. 7,
the empirical study of the flexibility of DCWG distribution by means of a practical
data set is carried out. Finally, conclusions are presented in Sect. 8.

2 A new generalization of complementary distributions

Let X1, X2, . . . , be independent and identically distributed (i.i.d) random variables
having cumulative distribution function (cdf) F(x) and let N be an integer-valued
random variable independent of Xi ’s.
Define Z = max(X1, X2, . . . , XN ). Then, the cdf of Z is

G(z) = P(max(X1, X2, . . . , XN ) ≤ z)

=
∑

n

P(max(X1, X2, . . . , XN ) ≤ z/N = n)P(N = n)

=
∑

n

[P(Xi ≤ z)]n P(N = n)

=
∑

n

Fn(z)P(N = n) = H(F(z), (1)

where F(z) is the common cdf of Xi ’s and H(s) is the probability generating function
(pgf) of N . Thus, we have the random variable Z has complementary distribution. For
example, if Xi ’s are i.i.d Pareto random variables and N is negative binomial, then we
say that Z has complementary Pareto negative binomial distribution.

Since N be any integer-valued random variable taking values on {1, 2, 3, . . .},
we may take N as power series family or power series distribution. We know that
binomial, negative binomial or geometric, Poisson, etc. are members in power series
family. Let N be an integer-valued random variable having power series distribution
on {1, 2, 3, . . .}, and the probability mass function (pmf) of N is

P(N = n) = anθn

f (θ) − a0
, n = 1, 2, . . . , (2)

where an > 0, θ > 0 and f (θ) = ∑∞
n=0 anθ

n .
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The pgf of N is

H(s) =
∞∑

n=1

sn P(N = n)

=
∞∑

n=1

sn
anθn

f (θ) − a0
= f (θs) − a0

f (θ) − a0
. (3)

Hence, from Eq. (1), distribution function of Z = max(X1, X2, . . . , XN ),where Xi ’s
are i.i.d with cdf F(x) and N has the power series distribution is

G(z) = H(F(z)) = f (θF(z)) − a0
f (θ) − a0

. (4)

Thus, we can develop a number of families of distributions using complementary
random variables. Some examples are:

2.1 Examples

1. Complementary family of distributions generated through Binomial(n, θ) distri-
bution.
Based on Eq. (4), the family is defined through the cdf

G(z) = (1 + θF(z))n − 1

(1 + θ)n − 1
. (5)

For example, complementary exponential binomial is defined by the cdf

G(z) = (1 + θ(1 − e−λz))n − 1

(1 + θ)n − 1
, λ > 0, θ > 0, z > 0. (6)

2. Complementary family of distributions generated through Poisson (θ ) distribution.
The family, based on Eq. (4), is defined through the cdf

G(z) = eθF(z) − 1

eθ − 1
, θ > 0, z > 0. (7)

As an example, the complementary Pareto type III Poisson distribution is defined
through the cdf

G(z) = eθ zα
1+zα − 1

eθ − 1
, θ > 0, α > 0, z > 0. (8)

3. Complementary family of distributions generated through geometric (θ ) distribu-
tion.
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The family is defined through the cdf

G(z) = (1 − θF(z))−1 − 1

(1 − θ)−1 − 1
, θ > 0, z > 0. (9)

In this cdf G(z), when F(z) is Weibull, we get the complementary Weibull-
geometric (CWG) distribution (Tojeiro et al., 2014).

From the illustrations, it can be seen that we may be able to develop a number of new
families of distributions based on complementary random variables.

Now, we consider the situation where N be a discrete random variable denoting
the number of complementary risks related to the occurrence of an event of interest
following a geometric distribution with pmf

P(N = n) = p(1 − p)n−1, (10)

where 0 < p < 1 and n = 1, 2, . . . . Also, let Xi , i = 1, 2, . . . , denotes the time-to-
event due to the i th complementary risk, which are independent of N . Then, for given
N = n, the random variable Xi is assumed to be i.i.d and follows the Weibull distri-
bution W (β, α) with scale parameter β > 0, shape parameter α > 0, and probability
density function (pdf):

f (xi ;β, α) = αβαxα−1
i e−(βxi )α , xi > 0. (11)

In the latent complementary risks scenario, the number of causes N and the lifetime
Xi (associated with a particular cause) are not observable (latent variables), but only
the maximum lifetime Z = max(X1, X2, . . . , XN ) among all the causes is usually
observed. Then, using Eq. (9) with θ = 1− p, we get the CWG distribution. The cdf
and survival function of CWG distribution, respectively, are

F(z) = p(1 − e−(βz)α )

p + (1 − p)e−(βz)α
, (12)

and

S(z) = e−(βz)α

p + (1 − p)e−(βz)α
. (13)

This distribution is complementary to the Weibull-geometric (WG) distribution pro-
posed in Barreto-Souza et al. (2011).

The aim of this paper is to introduce new discrete distributions arising from com-
plementary type random variables. These types of discrete distributions are not studied
in the literature.
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3 Discretization of continuous distributions

Developing the discrete analogues of continuous distributions has drawn much atten-
tion among the researchers and a number of papers in this area are appeared in various
journals. In reliability analysis and lifetime modeling, there are situations where the
data show discrete behavior, such as, the number of rounds fired a weapon till the first
failure; the number of cycles successfully completed prior to the first failure when a
particular device works in cycles, etc.

It is well known that the geometric distribution and negative binomial distribu-
tion are the discrete analogue of the exponential distribution and gamma distribution,
respectively. Discrete version of the normal distribution was introduced in Lisman and
van Zuylen (1972) and studied in Kemp (1997). Another version of discrete normal
distributionwas studied in Roy (2003). Nakagawa andOsaki (1975), Stein andDattero
(1984), and Padgett and Spurrier (1985) have proposed three different analogues of
the discrete Weibull distribution which are further studied in Khan et al. (1989) and
Kulasekera (1994).

Recently, several forms of discrete lifetime distributions derived from continuous
distributions are proposed by many authors. Some of them are: discrete half-normal
distribution in Kemp (2008); discrete Burr and Pareto distributions in Krishna and
Pundir (2009); discrete inverse Weibull distribution in Jazi et al. (2010); discrete
generalized exponential distribution in Gomez-Deniz (2010) and Nekoukhou et al.
(2012); discrete modified Weibull distribution in Nooghabi et al. (2011); discrete
gamma distribution in Chakraborty and Chakravarty (2012); discrete additive Weibull
distribution in Bebbington et al. (2012); discrete generalized exponential distribution
of the second type in Nekoukhou et al. (2013); discrete reduced modified Weibull
distribution inAlmalki andNadarajah (2014); discrete Lindley distribution inBakouch
et al. (2014); discrete generalized Rayleigh distribution in Alamatsaz et al. (2016);
discrete Weibull-geometric distribution in Jayakumar and Babu (2018); and discrete
additive Weibull-geometric distribution in Jayakumar and Babu (2019). For more
details on discretization of continuous distributions, see Chakraborty (2015).

There are different methods available for obtaining the discrete analogue Y of a
continuous random variable X , which can be classified as follows:

(i) Difference equation analogues of Pearsonian differential equation.
(ii) The pmf of Y retains the form of the pdf of X and support of Y is determined

from full range of X .
(iii) The pmf of Y retains the form of the pdf of X and support of Y is determined

from a subset of the range of X .
(iv) Survival function (sf) of Y retains the form of the survival function of X and

support of Y is determined from full range of X .

In method (ii), the pmf of the discrete random variable Y is derived as an analogue
of the continuous random variable X with pdf f (x),−∞ < x < ∞ as

P(Y = y) = f (y)∑∞
i=−∞ f (i)

, y = 0,±1,±2, . . . . (14)
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Because of the normalizing constant, the distribution generated through this technique
may not always have a compact form. The discrete version of the complementary
family of distributions generated through the Poisson (θ ) distribution given in Eqn.(7)
is obtained as

P(Y = y) = g(y)∑∞
i=0 g(i)

= eθF(y)
∑∞

i=0 e
θF(i)

, y = 0, 1, 2, . . . . (15)

For different choices of the cdf F(y), we will get different discrete families of com-
plementary distributions generated through Poisson distribution.

The method (iv) is an easiest way to get the discrete version using the survival
function. Suppose Y is the discrete version of a continuous random variable X , then
its pmf is given by

P(Y = y) = SX (y) − SX (y + 1); y = 0, 1, 2, . . . . (16)

Using this method, the discrete version of the complementary family of distributions
generated through geometric (θ ) is given by

P(Y = y) = 1 − F(y)

1 − θF(y)
− 1 − F(y + 1)

1 − θF(y + 1)

= (1 − θ)(F(y + 1) − F(y))

(1 − θF(y))(1 − θF(y + 1))
. (17)

By selecting different distributions for F(y) in Eq. (17), we get various discrete
versions of complementary distributions generated through geometric compounding.
Now, in the next section, we study extensively one of themembers of such distributions
called the discrete complementary Weibull geometric.

4 Discrete complementaryWeibull-geometric distribution

Using the method (iv) explained in Sect. 3 and after a reparametrization, ρ = e−βα
,

the pmf of the discrete analogue, say Y , of the CWG distribution is obtained as

PY (y; p, ρ, α) = p(ρ yα − ρ(y+1)α )

[p + (1 − p)ρ yα ][p + (1 − p)ρ(y+1)α ] , (18)

where y = 0, 1, 2, . . . , p > 0, α > 0 and 0 < ρ < 1. Here, the parameter p and
ρ can be interpreted as the concentration parameters, while α is a shape parameter.
We call this distribution as the discrete complementary Weibull-geometric (DCWG)
distribution and is denoted as DCWG(p, ρ, α). Now, we present some submodels of
the DCWG distributions.
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In particular, when α = 1, the pmf becomes

PY (y; p, ρ) = p(ρ y − ρ(y+1))

[p + (1 − p)ρ y][p + (1 − p)ρ(y+1)] , (19)

which is called the discrete complementary exponential geometric distribution.
When p = 1, PY (y; ρ, α) = ρ yα − ρ(y+1)α which is the discrete Weibull distribution
of Nakagawa and Osaki (1975).
When p = 1 and α = 2, then PY (y; ρ) = ρ y2 −ρ(y+1)2 which is the discrete Rayleigh
distribution of Roy (2004).
When p = 1 and α = 1, then PY (y; ρ) = ρ y − ρ(y+1) which is the geometric
distribution with parameter ρ.

When p → 0+, the DCWG tends to a degenerate distribution at zero.

5 Structural properties of theDCWG(p,�,˛) distribution

The shape of the pmf of DCWG(p, ρ, α) distribution for various choices of parameter
values are shown in Fig. 1. It can be seen that the distribution is unimodal and highly
positively skewed. For 0 < α < 1, p > 0, and 0 < ρ < 1, we have pY (0) > pY (1) >

pY (2) > . . . ., and hence, pY (y) is strictly decreasing function. Also note that when
α = 1, pY (y) is geometric, and when α > 1, pY (y) is initially increasing to the
maximum point and then decreasing.

5.1 Recurrence relation for probabilities

The recurrence relation for probabilities of DCWG(p, ρ, α) distribution is as follows:

PY (y + 1) = (ρ(y+1)α − ρ(y+2)α )(p + (1 − p)ρ yα
)

(ρ yα − ρ(y+1)α )(p + (1 − p)ρ(y+2)α )
PY (y). (20)

From Gupta et al. (1997), the distribution is

(a) log-concave if and only if
{ PY (y+1)

PY (y)

}
y≥0 is decreasing,

(b) log-convex if and only if
{ PY (y+1)

PY (y)

}
y≥0 is increasing, and

(c) geometric if
{ PY (y+1)

PY (y)

}
y≥0 is constant.

All the above three cases are justified to the DCWG distribution based on the values
of the parameters as shown by plots of pmf.
The cdf of DCWG(p, ρ, α) distribution is obtained as

F(y) = P(Y ≤ y) = 1 − SZ (y + 1) = p(1 − ρ(y+1)α )

p + (1 − p)ρ(y+1)α
, (21)

where y = 0, 1, 2, . . . ; p > 0, 0 < ρ < 1 and α > 0.
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Fig. 1 Shape of pmf for various choices of parameter values

Remark 1 The cdf of DCWG(p, ρ, α) distribution can be expressed as

F(y) = 1 − ρ(y+1)α

1 −
(
p−1
p

)
ρ(y+1)α

. (22)

This becomes the discrete Weibull-geometric distribution of Jayakumar and Babu
(2018), if 0 <

p−1
p < 1 and is satisfied only if p ∈ (1,∞).

The survival function of DCWG(p, ρ, α) distribution is given by

S(y) = P(Y > y) = 1 − P(Y ≤ y) = ρ(y+1)α

p + (1 − p)ρ(y+1)α
. (23)
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Hazard rate function (hrf) is given by

h(y) = P(Y = y)

P(Y ≥ y)
= 1 − ρ(y+1)α−yα

1 − p−1
p ρ(y+1)α

, (24)

provided that P(Y ≥ y) > 0.
Here note that as y → 0, h(y) → p(1−ρ)

p+(1−p)ρ . When p = 1, the distribution becomes
the discrete Weibull distribution and has the following properties:

– Decreasing failure rate for 0 < α < 1;
– Increasing failure rate for α > 1;
– Constant failure rate for α = 1.

For α = 1, we have limy→∞ h(y) → 1 − ρ, and for 0 < α < 1, limy→∞ h(y) → 0,
and for α > 1, limy→∞ h(y) → 1. The shape of hazard rate function for various
choices of parameter values are shown in Fig. 2. The hazard rate function is also
showing the bathtub and unimodal (upside down bathtub) shapes.

5.2 Quantile function

The uth quantile φ(u) of the DCWG(p, ρ, α) distribution is obtained as

φ(u) = �yu� =
⌈(

ln(p(1 − u)) − ln(p + (1 − p)u)

ln(ρ)

) 1
α − 1

⌉
, (25)

where �yu� denotes the smallest integer greater than or equal to yu .
The median is

φ(0.5) = �y0.5� =
⌈(

ln(p) − ln(p + 1)

ln(ρ)

) 1
α − 1

⌉
. (26)

Let u followU (0, 1) distribution, and then, using the expression given in Eq. (25), we
can generate random samples from the DCWG(p, ρ, α) distribution.

5.3 Probability generating function

The pgf of DCWG(p, ρ, α) distribution is

PY (s) = 1 + (s − 1)
∞∑

y=1

sy−1ρ(y+1)α

p + (1 − p)ρ(y+1)α
. (27)

The expressions for mean and variance are

E(Y ) =
∞∑

y=1

ρ(y+1)α

p + (1 − p)ρ(y+1)α
, (28)
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Fig. 2 Shape of hrf for various choices of parameter values

and

V (Y ) =
∞∑

y=1

(2y − 1)ρ(y+1)α

p + (1 − p)ρ(y+1)α
−

[ ∞∑

y=1

ρ(y+1)α

p + (1 − p)ρ(y+1)α

]2
. (29)

The mean, variance, skewness, and kurtosis of DCWG(p, ρ, α) distribution for var-
ious choices of parameter values are numerically computed and presented in Table 1.
The results show that this distribution is suitable for modeling both over- and under-
dispersed data.
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Table 1 Mean, variance, skewness, and kurtosis of the DCWG(p, ρ, α) distribution for various parameter
values

Parameters α → 0.5 1.0 1.5 2.0

p = 0.5
ρ = 0.5

Mean
Variance
Skewness
Kurtosis

6.419
149.154
5.144
54.088

1.529
2.814
1.589
6.696

0.975
0.785
0.760
3.435

0.788
0.418
0.323
2.695

p = 1.0
ρ = 0.5

Mean
Variance
Skewness
Kurtosis

3.788
85.699
6.695
89.298

1.00
2.00
2.121
9.500

0.672
0.638
1.151
4.275

0.564
0.379
0.660
2.746

p = 1.5
ρ = 0.8

Mean
Variance
Skewness
Kurtosis

28.983
5728.556
7.787
120.295

3.162
16.094
2.350
11.255

1.609
2.463
1.283
5.059

1.159
0.959
0.751
3.435

p = 2.0
ρ = 0.2

Mean
Variance
Skewness
Kurtosis

0.274
1.441
9.973
188.106

0.137
0.181
3.846
22.100

0.117
0.114
2.832
10.624

0.112
0.101
2.537
7.741

6 Inference on parameters of theDCWG(p,�,˛) distribution

Consider a random sample (y1, y2, . . . , yn) of size n from DCWG(p, ρ, α). Then,
the likelihood function is given by

L =
n∏

i=1

p
[
ρ yα

i − ρ(yi+1)α
]

[
p + (1 − p)ρ yα

i

] [
p + (1 − p)ρ(yi+1)α

] . (30)

The log-likelihood function is

ln L = n ln(p) +
n∑

i=1

ln
[
ρ yα

i − ρ(yi+1)α
]

−
n∑

i=1

ln
[
p + (1 − p)ρ yα

i

]
−

n∑

i=1

ln
[
p + (1 − p)ρ(yi+1)α

]
. (31)

The likelihood equations are respectively

∂ ln L

∂ p
= n

p
−

n∑

i=1

1 − ρ yα
i

p + (1 − p)ρ yα
i

−
n∑

i=1

1 − ρ(yi+1)α

p + (1 − p)ρ(yi+1)α
= 0, (32)
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∂ ln L

∂ρ
=

n∑

i=1

yα
i ρ yα

i −1 − (yi + 1)αρ(yi+1)α−1

ρ yα
i − ρ(yi+1)α

− (1 − p)
n∑

i=1

yα
i ρ yα

i −1

p + (1 − p)ρ yα
i

−(1 − p)
n∑

i=1

(yi + 1)αρ(yi+1)α−1

p + (1 − p)ρ(yi+1)α
= 0, (33)

and

∂ ln L

∂α
=

n∑

i=1

ln(ρ)[yα
i ρ yα

i ln(yi ) − (yi + 1)αρ(yi+1)α ln(yi + 1)]
ρ yα

i − ρ(yi+1)α

−(1 − p) ln(ρ)

n∑

i=1

yα
i ρ yα

i ln(yi )

p + (1 − p)ρ yα
i

−(1 − p) ln(ρ)

n∑

i=1

(yi + 1)αρ(yi+1)α ln(yi + 1)

p + (1 − p)ρ(yi+1)α
= 0. (34)

The likelihood equations do not have explicit solutions and have to be obtained numeri-
cally using statistical softwares like nlm package inR programming. Let the estimators
be θ̂ = ( p̂, ρ̂, α̂)T . Here, the DCWG family satisfies the regularity conditions which
are fulfilled for the parameters in the interior of the parameter space, but not on
the boundary. Hence, the vector θ̂ is consistent and asymptotically normal. That is,√
IY (θ)[θ̂ − θ ] converges in distribution to multivariate normal with zero mean vec-

tor and identity covariance matrix. The Fisher’s information matrix can be computed
using the approximation

IY (θ̂) ≈

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

− ∂2 ln L
∂ p2

∣∣∣
θ̂

− ∂2 ln L
∂ p∂ρ

∣∣∣
θ̂

− ∂2 ln L
∂ p∂α

∣∣∣
θ̂

− ∂2 ln L
∂ρ∂ p

∣∣∣
θ̂

− ∂2 ln L
∂ρ2

∣∣∣
θ̂

− ∂2 ln L
∂ρ∂α

∣∣∣
θ̂

− ∂2 ln L
∂α∂ p

∣∣∣
θ̂

− ∂2 ln L
∂α∂ρ

∣∣∣
θ̂

− ∂2 ln L
∂α2

∣∣∣
θ̂

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (35)

where θ̂ is the MLE of θ . The existence and uniqueness of MLEs of the parameters
of the DCWG(p, ρ, α) distribution are established when the other parameters are
known as suggested in Popović et al. (2016) and are explained in the Theorems 1,2,
and 3 (see Appendix).

6.1 Simulation study

This section explains the performance of the MLEs of the model parameters of the
DCWG distribution using Monte Carlo simulation for various sample sizes and for
selected parameter values. The algorithm for the simulation study is given below:

Step 1. Input the value of replication (N);
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Step 2. Specify the sample size n and the values of the parameters p, ρ and α;
Step 3. Generate ui from U (0, 1), i = 1, 2, . . . , n;
Step 4. Obtain the randomobservations from theDCWGdistribution using Eq. (25);
Step 5. Compute the MLEs of the three parameters;
Step 6. Repeat steps 3–5, N times;
Step 7. Compute the parameter estimate, standard error of estimate, average bias,

mean square error (MSE), and coverage probability (CP) for each parameter.

Here, the expected value of the estimator is

E(θ̂) = 1

N

N∑

i=1

θ̂i , E(SE(θ̂ )) =
√√√√ 1

N

N∑

i=1

(
− ∂2 log(L)

∂θ2i

)
,

Average Bias = 1
N

∑N
i=1(θ̂i − θ), MSE(θ̂) = 1

N

∑N
i=1(θ̂i − θ)2 and

CP = Probability of θi ∈
(

θ̂i ± 1.96
√

− ∂2 log(L)

∂θ2i

)
.

We take random samples of size n = 50, 100, 200, and 500, respectively. TheMLEs of
the parameter vector θ = (p, ρ, α)T are determined bymaximizing the log-likelihood
function in Eq. (31) using the optim package in R programming based on each gen-
erated sample. This simulation is repeated 1000 times, and the average estimate and
its standard error, average bias, MSE, and CP are computed and presented in Table 2.
From Table 2, it can be seen that, as sample size increases, the estimates of bias and
MSE decrease. Also note that the CP values are quite closer to the 95% nominal level.

7 Data application

In this section, we analyze a real-life data set to prove empirically the flexibility of the
DCWG distribution. We compare the fit of the DCWG distribution with the following
discrete life time distributions:

(a) DiscreteWeibull-geometric (DWG)distribution (Jayakumar&Babu, 2018) having
pmf

P(X = x) = (1 − p)(ρxα − ρ(x+1)α )

(1 − pρxα
)(1 − pρ(x+1)α )

;
α > 0, 0 < p < 1, 0 < ρ < 1, x = 0, 1, 2, . . . .

(b) Exponentiated discreteWeibull (EDW) distribution (Nekoukhou&Bidram, 2015)
having pmf

P(X = x) = (1 − p(x+1)α )β − (1 − px
α

)β;
0 < p < 1, α > 0, β > 0, x = 0, 1, 2, . . . .
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Table 2 The parameter estimate, standard error, average bias, MSE, and CP for given parameters

Parameter(θ) Samples (n) E(θ̂ )(E(SE(θ̂ ))) Average bias MSE CP

p = 0.5

50
100
200
500

0.3481(0.1202)
0.3992(0.0911)
0.4235(0.0531)
0.4807(0.0327)

−0.151
−0.101
−0.077
−0.018

0.049
0.011
0.006
0.003

86.4
88.3
90.6
92.5

ρ = 0.9

50
100
200
500

0.5861(0.1925)
0.6032(0.1322)
0.7864(0.1103)
0.8429(0.1051)

−0.324
−0.288
−0.104
−0.061

0.099
0.089
0.013
0.001

83.8
85.1
90.6
93.2

α = 0.5

50
100
200
500

0.5886(0.1317)
0.5432(0.0633)
0.5277(0.0432)
0.5013(0.021)

0.091
0.034
0.028
0.011

0.008
0.003
0.002
0.001

90.3
92.6
93.8
94.5

p = 0.8

50
100
200
500

0.4138(0.1316)
0.5883(0.1172)
0.7114(0.1082)
0.7938(0.0922)

−0.391
−0.201
−0.089
−0.016

0.147
0.045
0.008
0.001

88.2
89.3
91.6
94.1

ρ = 0.5

50
100
200
500

0.4832(0.1132)
0.4891(0.1071)
0.4986(0.0192)
0.4993(0.0112)

−0.017
−0.011
−0.009
−0.007

0.019
0.012
0.002
0.001

90.7
92.6
93.1
94.6

α = 1.5

50
100
200
500

2.1336(0.2218)
1.9817(0.1677)
1.7926(0.1281)
1.6013(0.0927)

0.534
0.451
0.283
0.101

0.402
0.238
0.088
0.010

87.9
89.8
91.3
93.9

(c) Discrete modified Weibull (DMW) distribution (Nooghabi et al., 2011) having
pmf

P(X = x) = ρxαcx − ρ(x+1)αc(x+1);
0 < ρ < 1, α > 0, c ≥ 1, x = 0, 1, 2, . . . .

(d) Discrete Weibull (DW) distribution (Nakagawa & Osaki, 1975) having pmf

P(X = x) = ρxα − ρ(x+1)α ;
0 < ρ < 1, α > 0, x = 0, 1, 2, . . . .

(e) Geometric (G) distribution having pmf

P(X = x) = (1 − ρ)ρx ; 0 < ρ < 1, x = 0, 1, 2, . . . .

The values of the log-likelihood function (−log L), the K–S (Kolmogrov–Smirnov)
statistic, AIC (Akaike Information Criterion), CAIC (Akaike Information Criterion
with correction), BIC (Bayesian Information Criterion), and HQIC (Hannon–Quinn
Information Criterion) are calculated for the six distributions to verify which distribu-
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Table 3 Descriptive statistics for the data set

Samples(n) Mean SD Min. Max. Skewness Kurtosis

116 42.13 32.99 1.0 168 1.24 1.29

Fig. 3 The TTT plots of the data set

tion fits better to the data. The better distribution corresponds to smaller −log L , K
−S, AIC, CAIC, BIC, HQIC, and greater p value.

Here, AIC = −2 log L + 2k, CAIC = −2 log L +
(

2kn
n−k−1

)
, BIC = −2 log L +

k log n, and HQIC = −2 log L + 2k log(log(n)), where L is the likelihood function
evaluated at the maximum-likelihood estimates, k is the number of parameters, and n
is the sample size. We used the AdequacyModel package in R programming to obtain
the MLE estimates and goodness-of-fit tests of the given data set.

The data set corresponds to daily ozone concentrations that were collected in New
York during May–September, 1973 and were taken from Ferreira et al. (2012). This
set of daily ozone-level measurements (in ppb = ppm × 1000) are as follows:
7 115 79 31 9 8 45 61 23 28 19 23 35 59 21 23 32 48 22 44 28 4 7 65 24 13 18 11 27
44 21 73 12 1 10 110 23 28 36 30 85 89 20 80 41 6 97 122 32 135 34 21 82 73 16 14
23 52 168 24 18 39 20 45 13 14 71 108 9 18 11 29 16 21 46 16 37 63 44 13 12 59 84
7 20 64 118 36 37 50 76 23 13 39 85 14 49 9 96 30 32 16 78 14 64 78 91 18 40 35 47
20 77 66 97 11.

The descriptive statistics of the data set are presented in Table 3. To identify the
shape of the hrf of the data set, we consider the Total Time on Test (TTT) plot and it is
shown in Fig. 3. From the TTT plot, we can see that the hrf is an increasing function,
and therefore, the DCWG distribution is appropriate for this data set.
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Table 4 The parameter estimates of data set

Model ML estimates −log L

DCWG p̂ = 0.4480, ρ̂ = 0.9736, α̂ = 1.0488 547.008

DWG p̂ = 0.3140, ρ̂ = 0.9679, α̂ = 0.9368 564.514

EDW ρ̂ = 0.8688, α̂ = 0.6621, β̂ = 1.7672 558.830

DMW ρ̂ = 0.9772, α̂ = 0.9113, ĉ = 1.0042 549.488

DW ρ̂ = 0.9660, α̂ = 0.9280 555.843

G ρ̂ = 0.9768 551.292

Table 5 The goodness-of-fit statistics for data set

Model AIC CAIC BIC HQIC K-S p value

DCWG 1097.629 1097.843 1105.890 1100.982 0.0833 0.3971

DWG 1135.029 1135.243 1143.289 1138.382 0.2721 6.95 × 10−8

EDW 1123.660 1123.874 1131.921 1127.013 0.2174 3.46 × 10−5

DMW 1104.977 1105.191 1113.237 1108.330 0.1210 0.0669

DW 1115.686 1115.792 1121.193 1117.921 0.1789 0.0012

G 1104.584 1104.620 1107.338 1105.702 0.1326 0.0338

The parameter estimates and goodness-of-fit statistics for the data set are presented
in Tables 4 and 5 .

The −logL value shown in Table 4 is minimum for DCWG distribution. From
Table 5, the values of AIC, CAIC, BIC, HQIC, and K–S are minimum, and p value
is maximum for DCWG distribution. This shows that the DCWG distribution is a
better model for this data set. Figure 4 shows the fitted pdf and cdf with the empirical
distribution of the given data set.

8 Conclusion

In this paper, we introduced a new generalized family of distributions generated from
randommaxima,which containsmany distributions ofwhich complementaryWeibull-
geometric distribution is a special case. Then, we proposed a new three-parameter
discrete complementary Weibull-geometric (DCWG) distribution. This distribution is
a generalization of discrete Weibull and geometric distributions. We studied the main
mathematical and statistical properties including the quantile function and probability
generating function of the DCWG distribution. The model parameters were estimated
using maximum-likelihood estimation method and a simulation study is presented to
illustrate the performance of the method. The existence and uniqueness of the MLE
estimates were investigated. The DCWG distribution was applied to a practical data
set to show its flexibility for data modeling.
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Fig. 4 Fitted pdf and cdf plots for the data set
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Appendix

Theorem 1 From Eq. (32), let f1(p; ρ, α, y) = ∂ ln(L)
∂ p , where ρ and α are the true

values of the parameters. Then, there exists a unique solution for f1(p; ρ, α, y) = 0,
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for p̂ ∈ (0,∞) when

n∑

i=1

(1 − ρ yα
i )2

(p + (1 − p)ρ yα
i )

+
n∑

i=1

(1 − ρ(yi+1)α )2

(p + (1 − p)ρ(yi+1)α )
<

n

p2
.

Proof We have

f1(p; ρ, α, y) = n

p
−

n∑

i=1

1 − ρ yα
i

p + (1 − p)ρ yα
i

−
n∑

i=1

1 − ρ(yi+1)α

p + (1 − p)ρ(yi+1)α
. (36)

The limiting values of f1(p; ρ, α, y) as p → 0 and p → ∞ are obtained as follows:

lim
p→0

f1(p; ρ, α, y) = ∞ + 2n −
[ n∑

i=1

1

ρ yα
i

+
n∑

i=1

1

ρ(yi+1)α

]
= ∞, (37)

and

lim
p→∞ f1(p; ρ, α, y) = 0, (38)

since lim p→∞
∑n

i=1
1−ρ

yαi

p+(1−p)ρ yαi
= 0 and lim p→∞

∑n
i=1

1−ρ(yi+1)α

p+(1−p)ρ(yi+1)α = 0.

Thus, there exist at least one root, say p̂ ∈ (0,∞), such that f1(p; ρ, α, y) = 0.
Now, to show the uniqueness, we have to show that ∂ f1(p;ρ,α,y)

∂ p < 0, that is

− n

p2
+

n∑

i=1

(1 − ρ yα
i )2

(p + (1 − p)ρ yα
i )

+
n∑

i=1

(1 − ρ(yi+1)α )2

(p + (1 − p)ρ(yi+1)α )
< 0, (39)

and this is possible when

n∑

i=1

(1 − ρ yα
i )2

(p + (1 − p)ρ yα
i )

+
n∑

i=1

(1 − ρ(yi+1)α )2

(p + (1 − p)ρ(yi+1)α )
<

n

p2
. (40)

This completes the proof. ��

Theorem 2 From Eq. (33), let f2(ρ; p, α, y) = ∂ ln(L)
∂ρ

, where p and α are the true
values of the parameters. Then, there exist a unique solution for f2(ρ; p, α, y) = 0,
for ρ̂ ∈ (0, 1).
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Proof We have

f2(ρ; p, α, y) =
n∑

i=1

yα
i ρ yα

i −1 − (yi + 1)αρ(yi+1)α−1

ρ yα
i − ρ(yi+1)α

− (1 − p)
n∑

i=1

yα
i ρ yα

i −1

p + (1 − p)ρ yα
i

−(1 − p)
n∑

i=1

(yi + 1)αρ(yi+1)α−1

p + (1 − p)ρ(yi+1)α
. (41)

Now, we can see that

lim
ρ→0

f2(ρ; p, α, y) = ∞, (42)

because

lim
ρ→0+

n∑

i=1

yα
i ρ yα

i −1 − (yi + 1)αρ(yi+1)α−1

ρ yα
i − ρ(yi+1)α

= ∞, lim
ρ→0

n∑

i=1

yα
i ρ yα

i −1

p + (1 − p)ρ yα
i

= 0

and

lim
ρ→0

n∑

i=1

(yi + 1)αρ(yi+1)α−1

p + (1 − p)ρ(yi+1)α
= 0.

Also

lim
ρ→1

f2(ρ; p, α, y) = −∞ − (1 − p)

[ n∑

i=1

yα
i +

n∑

i=1

(yi + 1)α
]

= −∞. (43)

Hence, there exist a root for ρ ∈ (0, 1).
The first derivative of f2(ρ; p, α, y) is given by

∂ f2(ρ; p, α, y)

∂ρ
=

n∑

i=1

[
yα
i ρ yα

i (yα
i − 1) − (yi + 1)αρ(yi+1)α [(yi + 1)α − 1]

ρ yα
i − ρ(yi + 1)α

−[yα
i ρ yα

i −1 − (yi + 1)αρ(yi+1)α−1]2
[ρ yα

i − ρ(yi + 1)α]2
]

−(1 − p)
n∑

i=1

[
yα
i ρ yα

i −1(yα
i − 1)

ρ[p + (1 − p)ρ yiα] − (1 − p)y2αi ρ2(yα
i −1)

[p + (1 − p)ρ yα
i ]2

]

−(1 − p)
n∑

i=1

[
(yi + 1)αρ(yi+1)α−1[(yi + 1)α − 1]

ρ[p + (1 − p)ρ(yi+1)α ]

− (1 − p)(yi + 1)2αρ2[(yi+1)α−1]

[p + (1 − p)ρ(yi+1)α ]2
]
. (44)
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The roots are unique when

n∑

i=1

[
yα
i ρ yα

i (yα
i − 1) − (yi + 1)αρ(yi+1)α [(yi + 1)α − 1]

ρ yα
i − ρ(yi + 1)α

−[yα
i ρ yα

i −1 − (yi + 1)αρ(yi+1)α−1]2
[ρ yα

i − ρ(yi + 1)α]2
]

< (1 − p)
n∑

i=1

[
yα
i ρ yα

i −1(yα
i − 1)

ρ[p + (1 − p)ρ yiα] − (1 − p)y2αi ρ2(yα
i −1)

[p + (1 − p)ρ yα
i ]2

]

+ (1 − p)
n∑

i=1

[
(yi + 1)αρ(yi+1)α−1[(yi + 1)α − 1]

ρ[p + (1 − p)ρ(yi+1)α ]

− (1 − p)(yi + 1)2αρ2[(yi+1)α−1]

[p + (1 − p)ρ(yi+1)α ]2
]
. (45)

This completes the proof. ��

Theorem 3 From Eq. (34), let f3(α; p, ρ, y) = ∂ ln(L)
∂α

, where p and ρ are the true
values of the parameters. Then, there exist a unique solution for f3(α; p, ρ, y) = 0,
for α̂ ∈ (0,∞).

Proof We have

f3(α; p, ρ, y) =
n∑

i=1

ln(ρ)[yα
i ρ yα

i ln(yi ) − (yi + 1)αρ(yi+1)α ln(yi + 1)]
ρ yα

i − ρ(yi+1)α

−(1 − p) ln(ρ)

n∑

i=1

yα
i ρ yα

i ln(yi )

p + (1 − p)ρ yα
i

−(1 − p) ln(ρ)

n∑

i=1

(yi + 1)αρ(yi+1)α ln(yi + 1)

p + (1 − p)ρ(yi+1)α
. (46)

Then, for yi > 0, we have

lim
α→0

f3(α; p, ρ, y) = ∞, (47)

since

lim
α→0

n∑

i=1

ln(ρ)[yα
i ρ yα

i ln(yi ) − (yi + 1)αρ(yi+1)α ln(yi + 1)]
ρ yα

i − ρ(yi+1)α
= ∞,

lim
α→0

(1 − p) ln(ρ)

n∑

i=1

yα
i ρ yα

i ln(yi )

p + (1 − p)ρ yα
i

= (1 − p) ln(ρ)

p + (1 − p)ρ

n∑

i=1

ln(yi )
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and

lim
α→0

(1 − p) ln(ρ)

n∑

i=1

(yi + 1)αρ(yi+1)α ln(yi + 1)

p + (1 − p)ρ(yi+1)α
= (1 − p) ln(ρ)

p + (1 − p)ρ

n∑

i=1

ln(yi + 1).

Also

lim
α→∞ f3(ρ; p, α, y) = 0, (48)

since

lim
α→∞

n∑

i=1

ln(ρ)[yα
i ρ yα

i ln(yi ) − (yi + 1)αρ(yi+1)α ln(yi + 1)]
ρ yα

i − ρ(yi+1)α
= 0,

lim
α→∞(1 − p) ln(ρ)

n∑

i=1

yα
i ρ yα

i ln(yi )

p + (1 − p)ρ yα
i

= 0

and

lim
α→∞(1 − p) ln(ρ)

n∑

i=1

(yi + 1)αρ(yi+1)α ln(yi + 1)

p + (1 − p)ρ(yi+1)α
= 0.

Hence, there exist a root for α ∈ (0,∞). The first derivative of f3(α; p, ρ, y) with
respect to α is given by

∂ f3(α; p, ρ, y)

∂α
= ln(ρ)D1 − (1 − p) ln(ρ)(D2 + D3), (49)

where

D1 =
n∑

i=1

[
yα
i ρ yα

i [ln(yi )]2[1 + yα
i ln(ρ)] − (yi + 1)αρ(yi+1)α [ln(yi + 1)]2[1 + (yi + 1)α ln(ρ)]

ρ yα
i −ρ(yi+1)α

−[yα
i ρ yα

i ln(yi ) − (yi + 1)αρ(yi+1)α ln(yi + 1)]2
[ρ yα

i −ρ(yi+1)α ]2
]
,

D2 =
n∑

i=1

[
yα
i ln(yi )ρ yα

i [1 + yα
i ln(yi ) ln(ρ)]

p + (1 − p)ρ yα
i

− (1 − p) ln(ρ)y2αi ρ2yα
i [ln(yi )]2

[p + (1 − p)ρ yα
i ]2

]
,

and

D3 =
n∑

i=1

[
(yi + 1)α ln(yi + 1)ρ(yi+1)α [1 + (yi + 1)α ln(yi + 1) ln(ρ)]

p + (1 − p)ρ(yi+1)α

− (1 − p) ln(ρ)(yi + 1)2αρ2(yi+1)α [ln(yi + 1)]2
[p + (1 − p)ρ(yi+1)α ]2

]
.
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The roots are unique when

D1 < (1 − p)(D2 + D3). (50)

This completes the proof. ��
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