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Abstract
This paper provides an overview of empirical likelihood methods for analysis of sur-
vey data when the finite population parameters are defined through a set of census 
estimating equations. The general inferential framework involving both the super-
population and the finite population parameters is described, and inferential proce-
dures for point estimation, hypothesis testing, variable selection, and Bayesian anal-
ysis, along with the main computational procedures, are discussed.

Keywords Bayesian inference · Complex survey data · Estimating functions · Finite 
population parameters · Hypothesis testing · Regression analysis · Superpopulation 
models · Variable selection

1  Estimating equations and empirical likelihood

Maximum-likelihood and least-squares estimation methods are two fundamental pil-
lars of the modern statistical sciences. Suppose that (y1,… , yn) is an independent and 
identically distributed (iid) sample from a random variable Y with an assumed para-
metric distribution f (y;�) . Under certain regularity conditions, the maximum-likeli-
hood estimator �̂� of � , which maximizes the likelihood function L(�) =

∏n

i=1
f (yi;�) , 

is the solution to the score equations:
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When the response variable yi is related to a vector of covariates �i and the main 
objective is to explore relations between y and � , a semiparametric regression model 
can be specified through the first two conditional moments E�(yi ∣ �i) = �(�i;�) 
and V�(yi ∣ �i) = vi�

2 , where �(�i;�) is the mean function, which can be linear or 
nonlinear in the vector of parameters � , and vi are known constants which might 
depend on the given �i . The notations E�(⋅) and V�(⋅) refer to expectation and vari-
ance under the assumed semiparametric model, � . The weighted least-squares 
estimator �̂� of � , which minimizes the weighted sum of squares of residuals 
Q(�) =

∑n

i=1
{yi − �(�i;�)}

2∕vi , is the solution to the normal equations:

where �(�i;�) = ��(�i;�)∕�� . For linear regression models where �(�i;�) = ��
i
� , 

we have �(�i;�) = �i . For generalized linear models with �i = �(�i;�) = �(��
i
�) and 

vi = v(�i) , where �(⋅) is a link function and v(⋅) is a variance function, the solution 
to (2) is called the quasi-maximum-likelihood estimator of � (McCullagh and Nelder 
1983).

The score Eq. (1) and the normal equations (2) can be unified through a common 
form:

where the estimating functions �(y, �;�) are unbiased, i.e., E�{�(y, �;�0)} = � under 
the assumed model, � , where �0 denotes the true value of � . The factor 1/n in (3) is 
redundant, but is included, so that the asymptotic order of �n(�0) will be Op(n

−1∕2) . 
Godambe (1960) was the first to study the optimality properties of the score func-
tions given in (1). Some early results on theoretical and applied aspects of estimat-
ing functions were collected in the book edited by Godambe (1991).

The general theory of estimating equations has much broader scope than the 
maximum-likelihood and the least-squares methods. Let �(y, �;�) be a vector 
of r × 1 estimating functions; let � be a k × 1 vector of unknown parameters; let 
�(�) = E�{�(y, �;�)} under the assumed model, � . The true value �0 for the vec-
tor parameter satisfies �(�0) = � . The over-identified scenarios with r > k are 
often of interest and will be discussed in detail in the paper. For just-identified 
cases where r = k , the so-called m-estimator �̂� of �0 based on the random sample 
{(yi, �i), i = 1,… , n} is the solution to �n(�) = � as specified by the estimating equa-
tions (3). Theoretical properties of the m-estimators with independent samples can 
be found in Newey and McFadden (1994), van der Vaart (2000), and Tsiatis (2006). 
Under-identified scenarios with r < k are not of interest for this paper.

Empirical likelihood is one of the major statistical advances of the past 30 years. 
It was first proposed by Owen (1988) for iid samples. While the development of 

(1)
�

��
log L(�) =

n∑

i=1

�

��
log f (yi;�) = �.

(2)
�

��
Q(�) = −2

n∑

i=1

�(�i;�)v
−1
i
{yi − �(�i;�)} = �,

(3)�n(�) =
1

n

n∑

i=1

�(yi, �i;�) = �,
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empirical likelihood has been the collective effort of many contributors, as evi-
denced in the book by Owen (2001), there were two major milestones that estab-
lished the approach as a general inference tool. The first major milestone was the 
result proved by Owen (1988), analogous to Wilks’ theorem for parametric models, 
showing that the nonparametric empirical likelihood ratio statistic has a �2 limit-
ing distribution. Let � = (p1,… , pn) be the discrete probability measure over the 
iid sample (y1,… , yn) from a random variable Y with mean �0 = E�(Y) . The dis-
tribution of Y based on the sample data is represented by Fn(t) =

∑n

i=1
piI(yi ≤ t) , 

t ∈ (−∞,∞) , which is the empirical likelihood estimator of F(t) = P(Y ≤ t) . The 
maximum value of the empirical likelihood function L(�) =

∏n

i=1
pi under the nor-

malization constraint:

is achieved at p̂i = n−1 , i = 1,… , n . The maximum empirical likelihood estimator 
of F(t) reduces to Fn(t) = n−1

∑n

i=1
I(yi ≤ t) , the customary empirical distribution of 

Y. Let p̂(𝜇) be the maximizer of L(�) under the normalization constraint (4) and the 
constraint induced by the parameter of interest:

for a given � . Owen (1988) showed that, under mild moment conditions on Y, the 
empirical likelihood ratio statistic r(𝜇) = −2{log L(�̂(𝜇)) − logL(�̂)} converges in 
distribution to a �2 random variable with one degree of freedom when � = �0.

The second major milestone is the paper by Qin and Lawless (1994) on com-
bining empirical likelihood with general estimating equation theory for parameters 
defined through unbiased estimating functions. Suppose that the k × 1 vector param-
eters � satisfy E�{�(y, �;�)} = � when � = �0 . The empirical likelihood function for 
� is computed as L(�̂(𝜃)) , where �̂(𝜃) = (p̂1(𝜃),… , p̂n(𝜃)) maximizes L(�) subject to 
the normalization constraint (4) and the parameter constraint given by:

for the given � . The maximum empirical likelihood estimator �̂� of � is obtained as 
the maximum point of L(�̂(𝜃)) . There are several impactful consequences from com-
bining estimating equations with empirical likelihood. First, it provides a general 
approach for dealing with different inferential problems through estimating func-
tions. Second, the r × 1 estimating functions �(y, �;�) can be over-identified (i.e., 
r > k ), which becomes convenient for incorporating auxiliary information and 
known moment conditions through additional estimating equations. Third, it allows 
inferences on key parameters of interest while treating others as nuisance param-
eters. And finally, it opens the door for exploring other advanced inferential proce-
dures such as variable selection and Bayesian analysis through empirical likelihood.

(4)
n∑

i=1

pi = 1 (pi ≥ 0)

(5)
n∑

i=1

piyi = �

(6)
n∑

i=1

pi �(yi, �i;�) = �
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Historically, the same concept of empirical likelihood was first discussed in survey 
sampling under the name “scale-load approach” by Hartley and Rao (1968, (1969). 
They focused on point estimation and showed that a constrained maximization problem 
with the known population mean of the auxiliary variable used in a calibration equa-
tion leads to the maximum scale-load estimator which is asymptotically equivalent to 
the regression estimator. This result was later “re-discovered” by Chen and Qin (1993) 
using the empirical likelihood formulation of Owen (1988).

2  Design‑based inference with survey data

A survey population consists of a finite number N of units. Values of the variables of 
interest are attached to units and it is assumed that the values are fixed for each unit 
and can be measured without error. Let � be the set of n units in the survey sample 
selected by a probability sampling method. Let {(yi, �i), i ∈ �} be the survey dataset. 
We assume that the first-order and the second-order inclusion probabilities �i and �ij 
are available, and the survey design leads to a fixed sample size n. Let di = 1∕�i be the 
basic survey design weights, i ∈ �.

Traditional design-based estimation with survey data focuses on descriptive finite 
population parameters such as the population mean �y = N−1

∑N

i=1
yi , the finite pop-

ulation distribution function F
N
(t) = N−1

∑N

i=1
I(yi ≤ t) where I(⋅) is the indicator 

function, and the 100� th finite population quantile t� = F−1
N
(�) = inf{t ∣ F

N
(t) ≥ �} 

with � ∈ (0, 1) . The finite population and the finite population parameters are 
viewed as fixed, and randomization is induced by the probability sampling design 
for selecting the survey sample. The survey weighted estimator of �y is given by 
�̂�y =

∑
i∈� diyi∕

∑
i∈� di , and the estimator of F

N
(t) for a given t has the same form of 

�̂�y but with yi replaced by I(yi ≤ t).
Most descriptive finite population parameters can be defined through a (single) cen-

sus estimating equation in the general form of:

The factor N−1 used in (7) as well as (8) below is for the convenience of asymp-
totic development and is not required for computations. The finite population mean 
�
N
= �y corresponds to �(yi, �i;�) = yi − � . The 100� th finite population quan-

tile �
N
= t� is defined through �(yi, �i;�) = I(yi ≤ �) − � . For the population quan-

tiles, the estimating function is not continuous in � and the equation �
N
(�) = 0 

may not hold exactly for any � . An alternative solution can be defined through 
�
N
= inf{� ∣ �

N
(�) ≥ 0} , which satisfies �

N
(�

N
) = O(N−1) . This modification to (7) 

does not change the asymptotic results on �
N
 . The design-based estimator �̂� of �

N
 can 

be obtained as the solution to the survey weighted estimating equation:

(7)�
N
(�) =

1

N

N∑

i=1

�(yi, �i;�) = � .

(8)�n(�) =
1

N

∑

i∈�

di�(yi, �i;�) = � .
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Design-based estimation of finite population parameters can be carried out under the 
unified framework of estimating equations as specified by (7) and (8).

Large-scale complex survey data are often used for inferences on model param-
eters. This is the so-called analytic use of survey data. The survey variables (y, �) 
are assumed to follow a model, called the superpopulation model, denoted as � . 
The model parameters � may be defined through a set of unbiased estimating func-
tions, i.e., �(�) = E�{�(y, �;�)} = � . When a conditional model of y given � is used, 
the model parameters can be specified through E�{�(y, �;�) ∣ �} = � . One of the 
statistical questions is how to make inferences on the model parameters � using a 
probability survey sample � selected from a particular finite population. Godambe 
and Thompson (1986, 2009) proposed to focus on finite population parameters �

N
 

defined through census estimating equations using design-based methods. If the 
superpopulation model holds for the survey population and the population size N 
is large, inferences on �

N
 are essentially the same as for the model parameters � . If 

the finite population does not follow the model � , the finite population parameters �
N
 

are well defined and may still be of interest for the survey population. Design-based 
inferences remain valid for the latter cases. We consider two practically important 
scenarios of the analytic use of survey data.

Linear regression analysis. Suppose that the study variable y and a set of covari-
ates � are measured for all units in the survey sample, � . For notational simplicity 
without loss of generality, we assume that the vector � contains 1 as its first compo-
nent. The linear regression model is assumed to hold for the finite population, i.e., 
yi = ��

i
� + �i , i = 1,… ,N , where the �i ’s are iid with E�(�i) = 0 and V�(�i) = �2 . The 

� and �2 are the superpopulation parameters. The estimating functions for � under 
the least-squares estimation framework are given by �(y, �;�) = �(y − ���) . The 
finite population regression coefficients �

N
 are the solution to 

∑N

i=1
�i(yi − ��

i
�) = � , 

which leads to the closed form expression �
N
=
�∑N

i=1
�i�

�
i

�−1 ∑N

i=1
�iyi . This 

is the least square estimator of the model parameters � if we treat the finite pop-
ulation as an iid sample of size N from the linear regression model. The survey 
weighted estimator 𝛽  is the solution to 

∑
i∈� di�i(yi − ��

i
�) = � , and is given by 

𝛽 =
�∑

i∈� di�i�
�
i

�−1 ∑
i∈� di�iyi.

The linear regression model � may not hold for the finite population from which 
the survey sample is selected. This can happen, for instance, if crucial covariates are 
not measured by the survey sample or if the model contains certain high order or 
interaction terms. However, the finite population regression coefficients �

N
 are still 

meaningful parameters for the survey population and the design-based estimator 𝛽  
remains consistent for �

N
.

Logistic regression analysis. Suppose that the study variable y is binary 
and pi = P(yi = 1 ∣ �i) depends on �i through the logit link function, i.e., 
pi = p(��

i
�) = 1 −

{
1 + exp(��

i
�)
}−1 . The estimating functions for the model 

parameters � under the quasi-maximum likelihood framework of (2) with 
vi = pi(1 − pi) are given by �(y, �;�) = �{y − p(���)} . The finite population regres-
sion coefficients �

N
 under the assumed logistic regression model are the solution 

to 
∑N

i=1
�i{yi − p(��

i
�)} = � , which does not have a closed form expression. The 

design-based estimator 𝛽  of �
N
 is the solution to 

∑
i∈� di�i{yi − p(��

i
�)} = � . Finding 

the solution requires an iterative computational procedure.
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When the estimating functions �(y, �;�) are differentiable in � and the estimating 
equation system is just-identified (i.e., r = k ), the design-based estimator �̂� obtained 
by solving (8) is design-consistent for �

N
 with the design-based variance–covariance 

matrix given by the sandwich form (Binder 1983):

where

and Vp(⋅) denotes variance under the probability sampling design. The design-based 
variance estimator is computed as:

where

and vp
{
�n

(
�̂�
)}

 is the design-based estimator of the variance-covariance matrix for 
the Horvitz–Thompson estimator �n

(
�
)
 evaluated at 𝜃 = �̂�.

3  General inferential procedures

In this section, we discuss two empirical likelihood-based inferential problems for 
parameters �

N
 defined through the census estimating equations (7). We consider the 

general setting where r ≥ k and the estimating functions �(y, �;�) can be smooth or 
non-differentiable. The asymptotic framework assumes that there is a sequence of 
finite populations and a sequence of probability survey samples, indexed by � . Both 
the population size N� and the sample size n� go to infinity as � → ∞ . All limiting 
processes are understood as � → ∞ ; see Fuller (2009) for further details. The index 
� will be dropped for notational simplicity and the limiting processes are denoted 
exchangeably as N → ∞ or n → ∞.

3.1  Empirical likelihood‑based inferences with survey data

Standard empirical likelihood methods for independent sample data with param-
eters defined through estimating equations consist of three main components: (i) 
the empirical likelihood function L(�) =

∏n

i=1
pi ; (ii) the normalization constraint 

(4); and (iii) the parameter constraints (6). When the methods are applied directly 
to survey data, the resulting estimator �̂� is not design-consistent unless the sample 
is selected by simple random sampling. There are two possible modifications to 
make the methods applicable to survey data analysis. One is to modify the empirical 

(9)Vp

(
�̂�
)
= {�

N
(𝜃

N
)}−1Vp

{
�n

(
𝜃
N

)}
{��

N
(𝜃

N
)}−1 ,

(10)�
N
(�) =

�

��
�

N
(�) =

1

N

N∑

i=1

�

��
�(yi, �i;�) ,

vp
(
�̂�
)
= {�n(�̂�)}

−1vp
{
�n

(
�̂�
)}

{��
n
(�̂�)}−1 ,

(11)�n(�) =
�

��
�n(�) =

1

N

∑

i∈�

di

{
�

��
�(yi, �i;�)

}
,
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likelihood function L(�) to take into account the survey design features, and the 
other is to use a survey weighted version for the parameter constraints.

Pseudo empirical likelihood methods. Chen and Sitter (1999) proposed to replace 
the empirical log-likelihood function �(�) =

∑n

i=1
log(pi) by the pseudo empiri-

cal log-likelihood function �
PEL
(�) =

∑
i∈� di log(pi) while keeping the normaliza-

tion constraint (4) and the parameter constraints (6) unchanged. The method leads 
to design-consistent point estimators. Pseudo empirical likelihood ratio confidence 
intervals were discussed by Wu and Rao (2006) for a scalar parameter. Generaliza-
tions to vector parameters defined through estimating equations were given in Zhao 
and Wu (2019).

Sample empirical likelihood methods. The sample empirical likelihood was first 
briefly mentioned by Chen and Kim (2014) as an alternative approach to the popula-
tion empirical likelihood methods discussed in their paper. The methods were for-
mally studied by Zhao et al. (2019) and Zhao and Wu (2019). The sample empirical 
likelihood uses the same form L(�) as for iid data and the standard normalization 
constraint (4), but replaces the parameter constraints (6) by a survey weighted ver-
sion. These methods also lead to design-consistent point estimators.

Our discussions for the rest of the paper are formulated under the sample empiri-
cal likelihood. The empirical likelihood methods discussed by Berger and De La 
Riva Torres (2016) and Oguz-Alper and Berger (2016) are also closely related to the 
sample empirical likelihood methods.

3.2  Point estimation

We first consider point estimation for finite population parameters �
N
 defined through 

the census estimating equations (7). The sample empirical log-likelihood function 
is given by �

SEL
(�) =

∑
i∈� log(pi) . The sample empirical likelihood function of � is 

defined as:

where �̂(𝜃) = (p̂1(𝜃),… , p̂n(𝜃)) maximizes �
SEL
(�) =

∑
i∈� log(pi) subject to the nor-

malization constraint 
∑

i∈� pi = 1 and the survey weighted parameter constraints:

for the given � . The maximum sample empirical likelihood estimator �̂� of �
N
 is the 

maximum point of �
SEL
(�) , i.e., �̂� = argmax𝜃∈Θ �

SEL
(𝜃) , where Θ is the parameter 

space.
The design-based validity of the maximum sample empirical likelihood estimator 

�̂� can be informally justified by two special cases. When the estimating equations 
system (7) is just-identified (i.e., r = k ), the global maximum of �

SEL
(�) is achieved 

at p̂i = n−1 for all i ∈ � , and the maximum sample empirical likelihood estimator �̂� 
is the solution to the survey weighted estimating equations (8), which is design-con-
sistent under suitable regularity conditions. A practically important over-identified 

(12)�
SEL
(𝜃) = �

SEL
{�̂(𝜃)} =

∑

i∈�

log{p̂i(𝜃)} ,

(13)
∑

i∈�

pi{di�(yi, �i;�)} = �
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estimating equation system is the use of known auxiliary population information 
for survey data analysis. Let �(y, �, �;�) = (��

1
(y, �;�), ��

2
(�))� , where �1(y, �;�) are 

the k × 1 estimating functions for defining the k × 1 parameters �
N
 , and �2(�) are 

(r − k) × 1 estimating functions which do not involve the parameters � and satisfy the 
moment condition N−1

∑N

i=1
�2(�i) = � . For instance, we may have �2(�i) = �i − �� 

where the finite population means �� for the � variables are known and can be used 
in benchmark constraints. The parameter constraints under the current setting are 
given by:

which is an over-identified system. It can be shown that the maximum sample 
empirical likelihood estimator �̂� solves the first part of the just-identified equations 
system:

where �̂ = (p̂1,… , p̂n) is the maximizer of �
SEL
(�) under the normalization constraint 

(4) and the benchmark constraints (second part of the equations system):

The combined components p̂idi can be viewed as the calibration weights, and the 
solution �̂� to the estimating equations (14) is design-consistent for �

N
 defined through 

N−1
∑N

i=1
�1(yi, �i;�) = �.

An over-identified estimating equation system does not always have a partition 
(�1, �2) with the calibration equations described above. For instance, if the parameter 
� is the mean of a Poisson random variable y, then the single � satisfies two moment 
conditions: E�(y − �) = 0 and E�{(y − �)2 − �} = 0 . In another example, if � is the 
mean of the variable y with a known variance �2

0
 , then the parameter � also satisfies 

two moment conditions: E�(y − �) = 0 and E�{(y − �)2 − �2
0
} = 0 . General estima-

tion results which cover over-identified estimating equations system are both theo-
retically and practically important.

Under suitable regularity conditions on the estimating functions �(y, �;�) , the 
probability sampling design, and the finite population as described in Zhao et  al. 
(2019), the maximum sample empirical likelihood estimator �̂� is design-consistent 
with design-based variance–covariance matrix given by:

where � = �
N
(�

N
) and �

N
(�) is defined in (10), � = nN−2

∑N

i=1
di�i�

�
i
 with 

�i = �(yi, �i;�N
) , and � = Vp

{
�n

(
�
N

)}
 as previously appeared in (9). It should be 

noted that � is r × k , � is r × r , and � is r × r , resulting in a k × k matrix for �.
If the estimating equation system is just-identified (i.e., r = k ), the vari-

ance–covariance matrix given in (15) reduces to � = �−1�(��)−1 , which is the same 

∑

i∈�

pi{di�(yi, �i, �i;�)} = � ,

(14)
∑

i∈�

p̂i{di�1(yi, �i;𝜃)} = � ,

∑

i∈�

pi{di�2(�i)} = � .

(15)� =
(
���−1�

)−1
���−1��−1�

(
���−1�

)−1
,



573

1 3

Japanese Journal of Statistics and Data Science (2020) 3:565–581 

as Vp(�̂�) given in (9). In general, variance estimation requires plug-in estimators for 
the three components � , � and � , which are, respectively, given by �̂ = �n(�̂�) as 
defined in (11), �̂ = nN−2

∑
i∈� d

2
i
�̂i�̂

�
i
 with �̂i = �(yi, �i;�̂�) , and �̂ = vp

{
�n

(
�̂�
)}

 . 
The definitions of � and �̂ through (10) and (11) cannot be used when the estimat-
ing functions �i = �(yi, �i;�) are non-differentiable in � . The asymptotic result under 
those cases involves �(�) = ��(�)∕�� , where �(�) = lim

N→∞ �
N
(�) . Zhao and Wu 

(2019) contains details on how to estimate � for non-smooth estimating functions 
and additional discussions on estimating the design-based variance–covariance 
matrix � under commonly used survey designs.

3.3  Hypothesis tests

Hypothesis tests are a common inferential problem for building statistical models or 
answering specific scientific questions. With complex survey data, the problems can 
be formulated for finite population parameters defined through census estimating 
equations under the design-based framework. When the assumed superpopulation 
model holds for the survey population, the inferential results can be extended to the 
superpopulation model parameters as discussed in Sect. 2.

The general results on sample empirical likelihood ratio tests and the required 
regularity conditions are discussed in Zhao et al. (2019) and Zhao and Wu (2019). 
The sample empirical likelihood ratio statistic for testing H0 ∶ �

N
= �

N0
 versus 

H1 ∶ �
N
≠ �

N0
 for a pre-specified �

N0
 is computed as:

where �
SEL
(�) is defined in (12) and �̂� is the maximum sample empirical likelihood 

estimator of �
N
 . It can be shown that:

where � ∼ �(�, �r) , the standard multivariate normal distribution, and:

The sampling distribution of r
SEL
(�

N0
) is asymptotically equivalent to the distribution 

of a quadratic form, which can be re-expressed as:

where �j , j = 1,… , k are the non-zero eigenvalues of � , and �2
j
 , j = 1,… , k are 

independent �2 random variables with one degree of freedom. For just-identified 
cases with r = k , the matrix � reduces to � = n�1∕2�−1�1∕2 . It can further be 
shown that, under single-stage PPS sampling with a negligible sampling fraction, we 
have � = n−1� + o(n−1) , and consequently, the sample empirical likelihood ratio 

r
SEL
(𝜃

N0
) = −2

{
�

SEL
(𝜃

N0
) − �

SEL
(�̂�)

}
,

r
SEL
(�

N0
) = ���� + op(1) ,

� = n�1∕2�−1�
(
���−1�

)−1
���−1�1∕2 .

���� =

k∑

j=1

�j�
2
j
,
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statistic r
SEL
(�

N0
) converges in distribution to a standard �2 random variable with k 

degrees of freedom.
The sample empirical likelihood ratio statistic r

SEL
(�

N
∣ H0) for testing a gen-

eral hypothesis H0 ∶ �(�
N
) = � versus H1 ∶ �(�

N
) ≠ � , where �(�

N
) = � imposes 

k1 ( ≤ k ) linear or nonlinear constraints on the k × 1 parameters �
N
 , is computed as 

follows. Let �̂� be the (unrestricted) maximum sample empirical likelihood estima-
tor of �

N
 over the parameter space Θ ; let �̂�∗ = argmax𝜃∈Θ∗ �SEL(𝜃) be the restricted 

maximum sample empirical likelihood estimator of �
N
 under the restricted parameter 

space Θ∗ = {� ∣ � ∈ Θ and �(�) = �} . We have:

It can be shown that r
SEL
(�

N
∣ H0) = ���∗� + op(1) , where � ∼ �(�, �r) and:

where � = {��(�)∕��}|�=�N and � = ���−1� , with � , � and � defined the same 
as before. If r = k and the survey design is single-stage PPS sampling with a small 
sampling fraction, the sample empirical likelihood ratio statistic r

SEL
(�

N
∣ H0) follows 

asymptotically a standard �2 distribution with k1 degrees of freedom.
Linear hypotheses are most commonly encountered in practice, where �(�) 

= � has the form �� = � , with � being a k1 × k matrix and � being a k1 × 1 vec-
tor, both pre-specified. In this case, we have � = ��(�)∕�� = � . The hypothesis 
H0 ∶ �

N
= �

N0
 is equivalent to letting � = �k and � = �

N0
.

Implementations of the sample empirical likelihood ratio tests generally require 
the estimation of the matrix � or �∗ , which amounts to estimating � , � and � . 
The sampling distribution of the test statistic r

SEL
(�

N0
) or r

SEL
(�

N
∣ H0) can be obtained 

through a simulation-based approach to the distribution of the quadratic form �′�� 
or ���∗� , or equivalently, the linear combination of independent �2 random varia-
bles using the estimated eigenvalues of � or �∗ . Some analytic approximation meth-
ods for the distribution of a weighted sum of �2 random variables such as those 
described in Rao and Scott (1981) and Rao and Scott (1984) and Bodenham and 
Adams (2016) may also be considered.

4  Design‑based variable selection

Complex survey data often contain information on a large number of variables, 
especially for health and social science-related surveys where many factors are 
deemed potentially important for scientific investigations. For instance, surveys of 
the International Tobacco Control (ITC) Policy Evaluation Project (Thompson et al. 
2006) collect data on many variables related to demographic, psychosocial, behav-
ioral, and health aspects of the units as well as measures of knowledge and attitude 
towards smoking. Variable selection is an important problem at the initial stage of 
model building to identify relevant factors for a particular response variable such as 
addiction or quitting behaviors.

r
SEL
(𝜃

N
∣ H0) = −2

{
�

SEL
(�̂�∗) − �

SEL
(�̂�)

}
.

�∗ = n�1∕2�−1����
(
����

)−1
�����−1�1∕2 ,
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Design-based variable selection using survey data focuses on the finite population 
regression coefficients for linear regression models, logistic regression models, or 
other generalized linear models as discussed in Sect. 2. Under standard settings with 
independent sample data, the basic aim of variable selection is to identify covari-
ates in a regression model for which the coefficients are zero. The finite population 
regression coefficients �

N
 defined as the solution to the census estimating equations, 

however, are usually not exactly equal to zero even if the corresponding superpopu-
lation parameters are zero. The components are typically of the order O(N−1∕2) if the 
model parameters are zero and the model holds for the finite population. For design-
based variable selection, we need to treat population regression coefficients as prac-
tically zero if their theoretical values are of the order O(N−1∕2).

The most widely known variable selection method that is a product of an esti-
mation technique is the least absolute shrinkage and selection operator (LASSO) 
by Tibshirani (1996). Variable selection through penalized empirical likelihood 
with independent data has been studied by Tang and Leng (2010) and Leng and 
Tang (2012). The general procedures require that the un-penalized method provides 
consistent point estimators of the regression coefficients, and the penalized method 
forces estimators with small values to be zero. The sample empirical likelihood fits 
into this framework very naturally for design-based variable selection with the pop-
ulation regression coefficients defined through census estimating equations.

Let p�(⋅) be a pre-specified penalty function with regularization parameter � . Let 
�(y, �;�) be the estimating functions for defining �

N
 . The penalized sample empirical 

likelihood function (omitting the constant term −n log(n) ) is defined as:

where �j is the jth component of � and the Lagrange multiplier � is the solution to 
(17) as described in Sect. 6. The smoothly clipped absolute deviation (SCAD) pen-
alty function proposed by Fan and Li (2001) has been shown to achieve variable 
selection and unbiased parameter estimation simultaneously under standard settings. 
Zhao et  al. (2019) showed that the SCAD penalty also works well for the penal-
ized sample empirical likelihood method. The SCAD penalty function p�(t) satisfies 
p�(0) = 0 and has its first-order derivative given by:

where (b)+ = b if b ≥ 0 and (b)+ = 0 if b < 0 . The penalty function contains two 
regularization parameters: a and � . The choice a = 3.7 works well under the univer-
sal thresholding � = {2 log(k)}1∕2 when k ≤ 100 . More refined data-driven choice of 
(a, �) can be determined using criteria such as BIC or generalized cross-validation. 
See Fan and Li (2001) and Tang and Leng (2010) for further details.

The maximum penalized sample empirical likelihood estimator of �
N
 is given by 

�̂�
PSEL

= argmax𝜃∈Θ �
PSEL

(𝜃) . Zhao et  al. (2019) showed that the procedure possesses 
oracle properties for variable selection under the design-based framework in the sense 

�
PSEL

(�) = −
∑

i∈�

log
[
1 + ��{di�(yi, �i;�)}

]
− n

k∑

j=1

p�(|�j|),

p�
𝜏
(t) = 𝜏

{
I(t ≤ 𝜏) +

(a𝜏 − t)+

(a − 1)𝜏
I(t > 𝜏)

}
,
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that zero components of �
N
 will be correctly identified with probability approaching 1 

as n grows large. In addition, the penalized estimator for the non-zero components of �
N
 

is design-consistent.

5  Bayesian inferences

Bayesian inferences require a likelihood function for the observed sample data. With a 
chosen prior distribution, inferences on the parameters based on the posterior distribu-
tion are conditional on the given sample data. Bayesian inferences for finite population 
parameters with desirable frequentist properties under the design-based framework, 
however, are very difficult to achieve, as shown by Godambe (1966, 1968) and Ericson 
(1969).

The sample empirical likelihood provides a convenient tool for defining a profile 
likelihood function for finite population parameters through survey weighted estimat-
ing equations. With a suitably chosen prior distribution, the likelihood leads to Bayes-
ian posterior inferences which are valid under the design-based framework under cer-
tain survey designs. The approach is particularly appealing for parameters involving 
non-smooth estimating functions, since the computational procedures do not incur any 
additional difficulties. Upon omitting the constant term −n log(n) , the profile sample 
empirical log-likelihood function for � defined in (12) is given by:

where the Lagrange multiplier � = �(�) with the given � is the solution to (17). The 
maximum sample empirical likelihood estimator �̂� is the maximum point of �(�).

5.1  Bayesian inference with a fixed prior

Let �i(�) = �(yi, �i;�) ; let �(�) be a fixed prior distribution which is independent of 
the sample size n. The posterior distribution of � for the given sample � has the form 
�(� ∣ �) ∝ �(�) exp{�(�)} and is given by:

where c(�) is a normalizing constant depending on {(yi, �i, di), i ∈ �} , such that 
∫ �(� ∣ �)d� = 1.

It is shown by Zhao et al. (2020) that the posterior density function given in (16) 
with a fixed prior has the following asymptotic expansion:

where �n = n���−1� and Rn = op(1) , with � and � defined the same as before. 
The posterior distribution of � is asymptotically equivalent to a multivariate normal 

�(�) = −
∑

i∈�

log
[
1 + ��

{
di�(yi, �i;�)

}]
,

(16)�(� ∣ �) = c(�) exp

[
log

{
�(�)

}
−
∑

i∈�

log
{
1 + ��di�i(�)

}
]
,

𝜋(𝜃 ∣ �) ∝ exp
[
−
1

2

(
𝜃 − �̂�

)�
�n
(
𝜃 − �̂�

)
+ Rn

]
,
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distribution with mean �̂� and variance–covariance matrix �−1
n

 . The fixed prior distri-
bution �(�) has no impact on the posterior distribution under large samples.

The asymptotic expansion of the posterior density function shows that the pos-
terior variance of � matches the design-based variance of the posterior mean under 
single-stage PPS sampling without replacement with negligible sampling fractions. 
Consequently, Bayesian inference with any fixed prior has valid design-based fre-
quentist properties under such survey designs.

5.2  Bayesian inference with an n‑dependent prior

A fixed prior has impact on the analysis when the sample size is small or moder-
ate, but the influence diminishes under large samples. A stronger version of prior 
distributions is the so-called n-dependent prior, denoted as �n(�) , for which the vari-
ance of the prior distribution shrinks as n gets large. There are practical scenarios 
where an n-dependent prior might arise naturally. For instance, a previous survey 
or a pilot survey might be available, which is taken from the same finite population 
with a common set of variables to those of the current survey. It is possible to obtain 
a point estimate with an estimated variance from the survey for the parameters of 
interest, and using the estimates to form a prior distribution. This was used by Rao 
and Ghangurde (1972) for Bayesian optimization in sampling finite populations.

The n-dependent prior �n(�) is assumed to satisfy that (i) the function log{�n(�)} 
is twice continuously differentiable; (ii) the prior density has bounded mode 
�0 = argmax� �n(�) ; and (iii) the information matrix satisfies:

It is shown by Zhao et al. (2020) that the posterior density �(� ∣ �) given in (16) but 
with the n-dependent prior �n(�) has the following asymptotic expansion:

where �n = �0 + �−1
n

 , �n = �−1
n

(
�0�0 + �−1

n
�̂�
)
 , Rn = op(1) , and �n is defined in 

Sect. 5.1. The posterior distribution of � is asymptotically equivalent to a multivar-
iate normal distribution, of which the mean is a convex combination of the prior 
mode �0 and the maximum sample empirical likelihood estimator �̂� , and the vari-
ance is inversely related to the sum of the information matrix of the prior and the 
posterior variance under the noninformative prior.

The asymptotic expansion of the posterior density with an n-dependent prior 
shows that the impact of the prior distribution is asymptotically negligible if the 
information matrix of the prior satisfies �0 = o(n) . This leads to another crucial 
observation: the condition �0 = �

N
+ Op(n

−1∕2) on the prior distribution is neces-
sary for the validity of design-based frequentist interpretation for Bayesian infer-
ence if the variance of the prior distribution is chosen with the order O(n−1) . If 
the variance of the prior distribution goes to 0 faster than n−1 , the posterior mean 
will be dominated by the prior mean under large samples. For finite samples, the 

�0 = −

[
�2

�����
log

{
�n(�)

}]|||�=�0

= O(n).

�(� ∣ �) ∝ exp
[
−
1

2

(
� −�n

)�
�n

(
� −�n

)
+ Rn

]
,
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impact of the n-dependent prior �n(�) depends largely on the mode �0 of the dis-
tribution and, to a lesser extent, on the variance of the distribution or the informa-
tion matrix �0.

6  Computational notes

The first major computational task is to maximize �
SEL
(�) =

∑
i∈� log(pi) under the 

constraints (4) and (13) with a given � . It can be shown using the Lagrange multi-
plier method that the solution is given by:

for i ∈ � , where the Lagrange multiplier � = �(�) , which depends on � , is the solu-
tion to:

The modified Newton–Raphson procedure proposed by Chen et  al. (2002) is 
designed to solve (17) to obtain � with a given �.

The second major computational task is to find the maximum sample empiri-
cal likelihood estimator �̂� = argmax𝜃∈Θ �

SEL
(𝜃) . It can be shown that setting 

��
SEL
(�)∕�� = � leads to:

Note that �1(�, �) and � are both r × 1 , and �2(�, �) and � are both k × 1 . The estima-
tor �̂� can be obtained by treating � and � as separate parameters and solving (17) and 
(18) simultaneously.

Variable selection using penalized sample empirical likelihood requires maximi-
zation of the penalized sample empirical likelihood �

PSEL
(�) with respect to � . The 

SCAD penalty function of Fan and Li (2001) allows for a quadratic approximation 
given by:

when �j is close to �j0 , which is an important feature for easy computation. We can 
replace (18) by ��

PSEL
(�)∕�� = � using the quadratic approximation.

Bayesian inferences based on the posterior distribution �(� ∣ �) given in (16) can 
be carried out through an MCMC procedure. The full posterior distribution of �

N
 can 

be simulated using an acceptance–rejection sampling method. Details can be found 
in Zhao et al. (2020).

p̂i(𝜃) =
1

n
[
1 + 𝜆�

{
di�(yi, �i;𝜃)

}]

(17)�1(�, �) =
1

n

∑

i∈�

di�(yi, �i;�)

1 + ��
{
di�(yi, �i;�)

} = �.

(18)�2(𝜃, 𝜆) =

{
∑

i∈�

p̂i(𝜃)di
𝜕

𝜕𝜃
�(yi, �i;𝜃)

}�

𝜆 = �.

p�(|�j|) ≐ p�(|�j0|) +
1

2

{
p�
�
(|�j0|)∕|�j0|

}
(�2

j
− �2

j0
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7  Additional remarks

Empirical likelihood and estimating equations are a powerful statistical tool for data 
analysis. Their applications to survey data analysis require careful adaptations to 
take account of the survey design features under a suitable framework. Chapters 7 
and 8 of Wu and Thompson (2020) contain additional materials on regression analy-
sis, estimating equations, and empirical likelihood with complex survey data.

The pseudo empirical likelihood and the sample empirical likelihood approaches 
can be applied to survey data with a complex design involving stratification, cluster-
ing, and unequal probability selection as characterized by the first- and the second-
order inclusion probabilities. The formulation of the sample empirical likelihood 
through survey weighted estimating equations only involves the first-order inclu-
sion probabilities. This is sufficient for point estimation. Tests of statistical hypoth-
eses require variance estimation, which further requires the second-order inclusion 
probabilities unless the survey design permits variance approximations without 
such information. A reviewer raised the interesting question of two-phase sampling 
designs, where a large first phase sample with information on auxiliary variables 
is available. Applications of the empirical likelihood methods to two-phase survey 
data require a careful formulation of constraints similar to those presented in Wu 
and Luan (2003). They also require detailed derivations of the variance components 
under two-phase sampling.

Large-scale survey data are often made available to public users who explore 
different aspects of the data. Public-use survey data files are created to include the 
basic design weights or the calibration weights as a separate column in addition to 
all other variables measured by the survey. Variance estimation is typically handled 
by using additional columns of replication weights supplied by the data file produc-
ers. If such weights are available, the inferential procedures described in this paper 
can readily be applied to public-use survey data files. Zhao et  al. (2020) contains 
further details on empirical likelihood methods with public-use survey data.
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