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Abstract
Large spatial data are becoming more and more popular in environmental science 
and other related fields. Observations are often made over a substantial fraction of 
the surface of the Earth over a long period of time. It is necessary to model spatio-
temporal random processes on the sphere which is challenging both conceptually 
and computationally. Convolution modeling method can be utilized to generate a 
random field with valid covariance structure on spheres. A latent dynamic process is 
defined on a grid covering the globe. The data vector is first projected onto the low-
dimensional space spanned by those grids at each available time point. The resulting 
time series are fitted with seasonal ARIMA models. Forecasting is made by con-
volving the latent dynamic processes at all grid points using von Mises–Fisher ker-
nel function. The procedure is illustrated by the total ozone data collected by Total 
Ozone Mapping Spectrometer during a 12-year period of time.

Keywords Spatio-temporal data · Kernel function · Convolution · Total ozone

1 Introduction

Large-scale spatial data are becoming more and more popular recently due to the 
wide use of high-tech instruments and accumulation of observed data over time. It 
is not uncommon that the data contain a huge amount of observations, and may be 
collected within a large region on the surface of the Earth, sometimes even around 
the globe. There has been a substantial body of literature on modeling and analyz-
ing spatial data. See Cressie (1993), Gelfand et al. (2010) for references. If the size 
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of the region where the data are collected is not very large, the distance between 
any two points within the region can be accurately approximated to be Euclidean. 
Traditional spatial analysis relies on this assumption to guarantee valid covariance 
functions on ℝd , where d is in general equal to 2 for spatial processes on a two-
dimensional plane. As the size of the data collection region gets larger, the curvature 
of the Earth can not be simply ignored and the distance is no longer Euclidean.

Many valid covariance functions in ℝd are no longer valid on the unit sphere �2 , 
including Gaussian and some Matérn models (Huang et al. 2011). Gneiting showed 
that a Matérn covariance function is valid on spheres if and only if its smooth-
ness parameter is no greater than 1/2 (Gneiting 2013). Generally, valid covariance 
functions on spheres can be obtained by constraining covariance functions in ℝ3 . 
If a function C0(h) is a valid covariance function in ℝ3 , a new function defined as 
C(�) = C0(2 sin(�∕2)) is a valid covariance function on �2 . Recently, the construc-
tion of valid covariance functions on spheres directly using great circle distance 
instead of chordal distance was discussed in some literature. For example, Jeong and 
Jun discussed a way to produce Matérn-like covariance functions for smooth pro-
cesses on the surface of a sphere that are valid with great circle distance (Jeong and 
Jun 2015).

Some approaches designed specifically to model spatial random fields on spheres 
have emerged recently. Heaton et  al. (2014) considered constructing valid spatial 
processes on spheres using kernel convolutions. They used Kent distribution with 
interpretable parameters and established a link between kernels and covariance 
function using spherical harmonic decomposition. Cressie and Johannesson (2008) 
proposed a fixed rank kriging formula in which a flexible family of nonstationary 
covariance functions is defined by a group of basis functions. The number of these 
basis functions are fixed (a few hundreds) so the difficulty of inverting the covari-
ance matrix in kriging can be alleviated. Castruccio and Genton (2015) introduced a 
flexible class of models by relaxing the assumption of longitudinal stationarity in the 
context of regularly gridded climate model output for global data. Li and Zhu (2016) 
also used kernel convolution to construct valid covariance functions which may be 
nonstationary on spheres. By allowing the parameters of the kernel to be a function 
of the latitudes, they were able to generate axially symmetric spatial random pro-
cesses. Jeong et al. (2017) reviewed several approaches to building process models 
on spheres.

For spatio-temporal global data, Jun and Stein (2007) proposed to consider a sum 
of independent processes which are obtained by applying a first-order differential 
operator to a fully symmetric process on sphere and time. Rodrigues and Diggle 
(2010) proposed a parametric family of models for spatio-temporal stochastic pro-
cesses. Porcu et al. (2016) presented methods of construction of stationary covari-
ance functions using great circle distance and provided closed-form expressions for 
both spatio-temporal and multivariate cases. Castruccio and Genton (2016) pro-
posed a method of compressing the ensemble and had the computational advantage 
that they were able to fit a non-trivial model to a data set of one billion data points. 
For other recent approaches to model spatio-temporal data, we refer the readers to 
Porcu et al. (2018), White and Porcu (2018), De Iaco et al. (2019) and Heaton et al. 
(2019).
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In this paper, the general concept and formula of kernel convolution method is 
first introduced along with some generalization in analyzing spatial data. We then 
apply the idea to model a spatio-temporal total ozone data. A global forecasting is 
made followed by some comments and discussions.

2  Convolution method

A Gaussian process Z(s) over a spatial region D can be constructed by convolving a 
continuous white noise process X(s) (s ∈ D) using kernel smoothing as

at an arbitrary location s ∈ D (Higdon 1998). Here k(⋅) is a kernel function and X(u) 
is an infinitely dense Gaussian white noise process at u ∈ D (continuous) such that

where A is a subregion in D and �2 is the variance of the white noise process.
Since Z(s) at two different locations involve the white noise process at some com-

mon locations, it is a correlated spatial process whose covariance function is

This covariance function is non-negative definite, since

where m is any positive integer and {ai ∶ i = 1,… ,m} are any real numbers.
Convolution approach is essentially a continuous version of the moving average 

process in time series. It is powerful to generate valid covariance function in domain 
D because of the flexibility in choosing the kernel function k(⋅) . There is a one to 
one relationship between the smoothing kernel k(⋅) and the covariance function for 
isotropic process (Higdon 2002). Integrals in (1) and (3), however, pose some seri-
ous obstacles to apply the convolution procedure in practice. For computational con-
venience, some analytically tractable kernel functions are preferred, for example, 
two-dimensional Gaussian kernel k(s) = 1

2�
exp{−

1

2
sTs} even though it may not be 

the appropriate one depending on the nature of the data in hand (Stein 1999).

(1)Z(s) = ∫
D

k(s, u)X(u)du

(2)E(X(u)) = 0, and ∫
A

X(u)du ∼ N(0, �2 × Area(A)),

(3)Cov(Z(s1), Z(s2)) = ∫
D

k(s1, u)k(s2, u)du.

m
∑

i=1

m
∑

j=1

aiajCov(Z(si), Z(sj)) =

m
∑

i=1

m
∑

j=1

aiaj �
D

k(si, u)k(sj, u)du

= �
D

(

m
∑

i=1

aik(si, u)

)2

du ≥ 0,
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In many cases, convolution-based models are implemented using discretized 
versions, because the integral has to be evaluated numerically and is computation-
ally intensive. A white noise processes X (also called latent processes) located at 
a set of discrete locations {ui ∶ i = 1, 2,… ,m} are first defined. They are essen-
tially a collection of m independent random variables with mean zero and vari-
ance �2 . These means and variances may be homogeneous or vary with locations. 
The spatial process is generated by convolving these m white noise processes 
{X(u1),X(u2),… ,X(um)} through

which serves as an approximation to (1). Discretization may result in edge effects 
such that the evaluation of the field close to the boundary of D may be unstable due 
to the fact the number of latent processes close to the boundary is lower than the 
central region (Ripley 2005).

The flexibility of the kernel convolution approach comes from the fact that one 
only needs to model the smoothing kernel k(⋅) rather than the covariance function 
which has to be positive definite. Barry and Ver Hoef (1996) proposed a nonpara-
metric specification of the variogram by taking the kernels to be piecewise constant 
functions. Similar ideas were also explored in other literature, for example, Kern 
(2000).

Kernel convolution models can be generalized in several different ways to accom-
modate various spatial structures in the data. Firstly, instead of being homogene-
ous across all locations in the study region D , the kernel function k(s, u) in (1) can 
depend on some parameter set � such that k(s, u) = k(s, u;�) , where � varies spatially 
depending on the location s at which the kernel function is evaluated. The resulting 
spatial process is nonstationary whose dependence structure can vary with location 
(Higdon 1998; Higdon et al. 1999). In Li and Zhu (2016), a global data set is con-
sidered, where the parameters of the kernel function is taken to be a function of the 
latitude to create an axially symmetric spatial process on spheres.

Secondly, modeling based on the discretized representation (4) is a dimension 
reduction procedure. Instead of working directly on the n-dimensional data vector 
� = {Z(s1),… , Z(sn)} , where the number of observations n may be huge, a sparse 
support set for the latent processes � = {X(u1),… ,X(um)} is used which makes 
the computation easier to deal with. This projection of the n-dimensional vector � 
onto a lower-dimension space � can be modeled by a linear regression model with 
mixed-effects

and the computational burden can be greatly alleviated if m ≪ n . Here �n is an 
n-dimensional vector of 1s, � is an n × m matrix with (i, j)th entry k(si, uj) , and � is 
an n-dimensional independent random vector � ∼ N(�, �2

�
�n).

Thirdly, kernel convolution formulas can also be generalized to model spatio-tem-
poral random processes evolving in the domain of D × T  , where T  is the time span 
of the process. Higdon (1998) used a three-dimensional kernel (two dimensions in 

(4)Z(s) =

m
∑

i=1

k(s, ui)X(ui),

(5)� = ��n +�� + �,
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space and one dimension in time) to convolve a three-dimensional white noise pro-
cess in the study of temperatures in the North Atlantic Ocean. However, time series 
data in environmental science and climatology almost always show dynamic fea-
tures including seasonality and directional space-time dependence. Thus, it is easier 
to spatially convolve a dynamic random process evolving with time (Calder et  al. 
2002). In this framework, the spatio-temporal random process Z(s, t) is modeled as a 
moving average of discrete uncorrelated dynamic latent processes located on a grid,

where kernel k is purely spatial and X(u,  t) is a time series at a specified location 
u. Sansó et al. (2008) considered convolving independent processes with a discrete 
kernel that is represented by a lower triangular matrix. Spatio-temporal dependence 
can be introduced by either convolving spatial processes with isotropic correlations 
using a temporal kernel, or convolving AR(p) processes using a spatial kernel. For 
nonstationary spatial process, the kernel function can be specified to be dependent 
on the location instead of being homogeneous.

3  Data analysis

Total Ozone Mapping Spectrometer (TOMS) is a satellite instrument which was 
flown on NASA-satellites for measuring ozone values on a global scale. Nimbus-7 
and Meteor-3 satellites carried several TOMS instruments and provided global 
measurements of total column ozone on a daily basis from the period of November 
1978 to December 1994. TOMS Level 2 data give spatial and temporal irregular 
measurements following the satellite scanning tracks (Jun and Stein 2008). Since the 
instrument relies on backscattered light, there are a lot of missing observations in 
Level 2 data. A post-processed Level 3 data are obtained by averaging Level 2 data 
pixel by pixel and are on a spatially regular lattice. The number of missing values 
are thus greatly reduced. The data can be found from NASA ozone and air quality 
site (NASA Goddard Ozone & Air Quality).

In this paper, we use the total ozone data collected by Nimbus-7 satellites from 
January 1, 1981 to May 6, 1993. The time span is about 4500 days. On each day, 
the measurements are on a regular grid in terms of latitudes and longitudes. Lati-
tudes are from −89.5◦ (south) to 89.5◦ (north) with spacing 1◦ . Longitudes are from 
−179.375◦ (west) to 179.375◦ (east) with spacing 1.25◦ . There are 180 latitudes and 
288 longitudes, and observations are available at each lattice point. Therefore, there 
are 51,840 collected measurements each day. Total ozone values are often reported 
in Dobson units denoted as “DU”. Typical values vary between 200 and 600 DU 
over the globe.

We first notice that, even though Level 3 data are processed from Level 2 data, 
missing values are still present, especially at high latitudes. The daily propor-
tion of missing values is less than 10% for most of the days. Missing values are 
first imputed by an ad hoc procedure. For each location with missing value, we 

(6)Z(s, t) =

m
∑

i=1

k(s − ui)X(ui, t),
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use inverse distance interpolation to impute using its 10 nearest neighbors with 
available measurement. We have tried other imputation methods but there is little 
effect on the results.

We use the TOMS data on the first day of each month from January 1981 to 
December 1992. There are in total 144 time points, each with 51,840 observed 
values on a regular latitude–longitude grid on the surface of the Earth. Figures 1 
and 2 display the heat maps of the observed ozone data on March 1st (early 
spring) and September 1st (early fall) of 1981. In Fig.  1, the maximum values 
at high latitudes in the Northern Hemisphere can be as high as 550 DU, which 
is more than twice the values in regions close to the equator. Figure 2 shows that 
in early fall, total ozone is low in the Northern Hemisphere, while a pronounced 
maximum in the Southern Hemisphere is observed. In the tropics, the total ozone 
changes through the progression of the seasons are much weaker than in the polar 
regions due to the fact that seasonal changes in both sunlight and ozone transport 
are smaller in the tropics than those in the polar regions (Hegglin et al. 2014). 

This pattern of seasonality is more apparent if we look at the time series at 
fixed locations. In Fig. 3, three sequences of observations made at three locations 

Fig. 1  Heat map of the observed total ozone data on March 01 (early spring), 1981

Fig. 2  Heat map of the observed total ozone data on September 01 (early fall), 1981
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in the Northern Hemisphere are plotted. These locations share the same longitude 
but different latitudes. The seasonal pattern is obvious from the plot. The peaks 
occur around March and valleys are often associated with September or October. 
The magnitude of the oscillation increases with latitudes. For low latitude ( 0.5◦ 
N), the oscillation is between 230 and 300 DU. Total ozone shows a maximum 
at high latitudes during spring as a result of increased transport of ozone from 
its source region in the tropics toward the polar regions during late fall and win-
ter. This ozone transport is much weaker during the summer and early fall peri-
ods and is weaker overall in the Southern Hemisphere (Hegglin et al. 2014). This 
comparison becomes obvious in Fig.  4 which shows three sequences at mirror 
sites of those in Fig. 3 in the Southern Hemisphere. 

To model this spatio-temporal data set containing almost 7.5 million 
( 51,840 × 144) observations, a latent dynamic random process is defined at 685 
distinct locations scattered around the globe. Thirty seven latitudes are selected 
between two poles with spacing 5◦ ( {90◦ S, 85◦ S, ..., 85◦ N, 90◦ N } ). At each 
latitude, equally-spaced locations are chosen in a way such that the longitudinal 
spacing is roughly homogeneous across latitudes. Figure 5 shows the distribution 
of the locations for the latent process. At each location {ui ∶ i = 1, 2,… , 685} , 
there is a dynamic random process X(ui, t) whose evolution is governed by some 
underlying temporal models. Processes at different locations are assumed to be 
uncorrelated.

At each time point ti (i = 1, 2,… , 144) , we first project the observed data vector 
of length 51,840 onto a subspace of dimension 685 spanned by the latent processes. 
This idea of dimension reduction is also used in the fixed random kriging (Cressie 
and Johannesson 2008) which is more computationally attractive. This project can 
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Fig. 3  Three sequences of observations made at three different locations which have the same longi-
tude ( 79.375◦ W) but different latitudes in the Northern Hemisphere. The magnitude of the oscillation 
increases with latitude. Peaks and valleys occur around March and September, respectively
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be done by fitting a multiple linear regression model in which the latent processes 
are essentially basis functions. That is,

where �(ti) is the data vector at time ti ; �0(ti) is the overall trend function at ti which 
is assumed to be homogeneous around the globe; �(ti) is the vector of independent 
random errors; � is a matrix of dimension 51,840 × 685 with (j, k)th entry being 

(7)�(ti) = �0(ti) +��(ti) + �(ti),
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Fig. 5  685 Locations for the latent process are labeled by × . They are distributed around the globe with 
latitudinal spacing of 5◦
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some kernel function k(sj, uk) . A natural choice of the kernel density function on a 
three-dimensional sphere is the von Mises–Fisher distribution

where concentration parameter � ≥ 0 and mean direction � is a vector on the unit 
sphere. k(x;�, �) has a mode in the direction of � and monotonically decreases as x 
moves further away from � . The greater the value of � , the higher the concentration 
of the distribution around the � . The distribution is unimodal for 𝜅 > 0 , and is uni-
form on the sphere for � = 0.

It is to be expected that a climatic phenomena on the global scale can rarely be 
entirely stationary and homogeneous due to the dissimilar conditions resulted from 
the Earth’s rotation. Measurements on total column ozone are no exception. It is 
found that they can be modeled as axially symmetric, where the first two moments 
are invariant to rotations about the Earth’s axis and the covariance function only 
depends on the longitude difference (Jones 1962). Similar to the estimation pro-
cedure in Li and Zhu (2016), we fit the empirical variogram using observations at 
each latitude L to get the estimated range rL . Here we use the exponential variogram 
function �(h) = �2

L
[1 − exp(−h∕rL)] but other parametric forms can also be adopted. 

After getting the estimated range for all available latitudes, we apply a locally 
weighted polynomial regression to obtain a smooth curve for any latitude. The con-
centration parameter � in (8) is chosen to match the estimated range at each latitude.

Model (7) can be fitted with least squares at each time point ti . As a result of that, 
686 vectors of time series, corresponding to one trend �0(t) and 685 uncorrelated 
dynamic random processes Xj(t) (j = 1, 2,… , 685) are obtained. Figure  6 shows 

(8)k(x;�, �) =
�

2�(e� − e−�)
e��⋅x,
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Fig. 6  Time series plot of the fitted processes from model (7). The top left panel is the trend sequence, 
while the other three are latent processes at different locations. A seasonal pattern with seasonality of 12 
is obvious in all these plots
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four of these time series. The seasonality structure is apparent in all of them. The 
sign and magnitude of latent processes Xj(t) can be rather different depending on the 
location uj.

A time series process with seasonality is applied to model each temporal ran-
dom process. Specifically, a seasonal ARIMA (autoregressive integrated moving 
average) model ARIMA(p, d, q) × (P,D,Q) with seasonality of 12 is fitted (Shum-
way and Stoffer 2017). The auto.arima function in forecast package in R 
is able to search for the best ARIMA model according to either AIC, AICc, or BIC 
value (Hyndman and Khandakar 2008). For example, the trend �0(t) is fitted with an 
ARIMA(1, 0, 1) × (1, 1, 1) with a slight negative drift. The forecast value at a future 
time point t0 along with the prediction uncertainty can be obtained which is shown 
for the same four time series in Fig.  7. Since latent processes are assumed to be 
uncorrelated, we do allow them to follow different ARIMA models without any con-
straint. Different random processes can evolve differently over time. Alternatively, 
some patterns could be implemented, for example, latent processes at the same lati-
tude might follow the same ARIMA model.

The predicted value of ozone measurement at an arbitrary location s0 on the Earth 
at a future time t0 is given by a kernel convolution of the dynamic latent processes at 
t0 , that is,

Figures 8, 9 and 10 show the heat maps of forecasting future total ozone at three 
different time points. Figure  8 is for January 1993 which is 1 time lag into the 
future. Figure 9 is for March 1993 when total ozone is at its peak for the North-
ern Hemisphere. Figure 10 is for September 1993 when total ozone in the Southern 

(9)Z(s0, t0) = �0(t0) +

m
∑

j=1

k(s0, uj)X(uj, t0).
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Fig. 7  Forecast of the trend function and latent temporal processes at three locations. The blue line is the 
forecasting line. Uncertainty is shown as the gray band, where light gray is 95% confidence interval and 
dark gray is 80% confidence interval
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Hemisphere is high. It is clear that the general seasonal distribution (variations with 
season) and global distribution (variations with location) of total ozone can be cap-
tured. The heat map of the prediction variance:

Var[Z(s0, t0)] = Var[�0(t0)] +

m
∑

j=1

k2(s0;uj)Var[X(uj, t0)]

Table 1  Comparison of the 
prediction performance for 
four different numbers of basis 
functions

January 1993 March 1993

m RMSPE Corr RMSPE Corr

685 27.24 0.703 30.50 0.816
313 28.65 0.698 31.32 0.810
181 30.45 0.684 35.80 0.795
85 35.52 0.666 39.32 0.758

Fig. 8  Forecast heat map of total ozone for January 1993

Fig. 9  Forecast heat map of total ozone for March 1993
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for January 1993 is shown in Fig. 11. The prediction variance is higher at high lati-
tudes due to the fact that ozone measurements are more variable at high latitudes 
than the regions closer to the equator.

To assess the effects of the number of the basis functions on the prediction per-
formance, we carry out a sensitivity analysis, where we vary m, the number of Xi . 
The performance is evaluated using root mean squared prediction error (RMSPE) 
which is calculated using 

�

1

n

∑n

i=1
(ẑi − zi)

2 , and the correlation between the pre-
dicted and observed values. The results are shown in Table 1. As expected, the pre-
diction performance improves when m becomes larger. In practice, however, m is 
usually limited to be in the hundreds due to the computataional complexity (Cressie 
and Johannesson 2008).

4  Summary and conclusions

In this paper, we introduce a simple method of modeling spatio-temporal data which 
are observed around the globe. The original data is first projected onto a lower 
dimensional space spanned by a set of latent dynamic processes. These processes are 

Fig. 10  Forecast heat map of total ozone for September 1993

Fig. 11  Heat map of prediction variance for January 1993
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assumed to evolve independently over time. The forecast time series are then con-
volved with kernel function to get a complete prediction on the globe. In doing this, 
temporal evolution and spatial evolution are considered separately. Therefore, this 
method essentially corresponds to a separable spatio-temporal model. The advan-
tage of the current procedure is that both temporal and spatial covariance structure 
can be modeled in a very flexible way. Each latent process is allowed to follow its 
own ARIMA model independent of others. There is also the freedom to select the 
appropriate spatial kernel function when convolving the latent processes. The cur-
rent method also has lower computational burden by dimension reduction.

Possible generalization to the current method includes the usage of multi-reso-
lution spatial kernel functions. Fixed rank kriging (Cressie and Johannesson 2008) 
uses three different sets of basis functions with different scales of variations to cap-
ture the spatial structures at various resolutions. Also, the assumption of independ-
ent evolution of latent dynamic processes may be improved by taking the spatial 
information into consideration. The variations in total ozone are caused by large-
scale movements of stratospheric air and the chemical production and destruction of 
ozone (Hegglin et al. 2014). Two latent processes defined at locations close in space 
are likely to be influenced by comparable environmental factors and thus should fol-
low similar temporal models.
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