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Abstract
We present a data-adaptive multivariate histogram estimator of an unknown density 
f based on n independent samples from it. Such histograms are based on binary trees 
called regular pavings (RPs). RPs represent a computationally convenient class of 
simple functions that remain closed under addition and scalar multiplication. Unlike 
other density estimation methods, including various regularization and Bayesian 
methods based on the likelihood, the minimum distance estimate (MDE) is guar-
anteed to be within an L

1
 distance bound from f for a given n, no matter what the 

underlying f happens to be, and is thus said to have universal performance guaran-
tees (Devroye and Lugosi, Combinatorial methods in density estimation. Springer, 
New York, 2001). Using a form of tree matrix arithmetic with RPs, we obtain the 
first generic constructions of an MDE, prove that it has universal performance guar-
antees and demonstrate its performance with simulated and real-world data. Our 
main contribution is a constructive implementation of an MDE histogram that can 
handle large multivariate data bursts using a tree-based partition that is computa-
tionally conducive to subsequent statistical operations.

Keywords  Rooted planar binary tree · Yatracos class · Tree matrix arithmetic · 
Model selection · Regular paving · Density estimation

1  Introduction

Suppose our random variable X has an unknown density f on ℝd , then for all Borel 
sets A ⊆ ℝd,

�(A) ∶= Pr{X ∈ A} = ∫A

f (x)dx.
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Any density estimate fn(x) ∶= fn(x;X1,X2,… ,Xn) ∶ ℝd ×
(
ℝd

)n
→ ℝ is a map from (

ℝd
)n+1 to ℝ . The objective in density estimation is to estimate the unknown f from 

an independent and identically distributed (IID) sample X1,X2,… ,Xn drawn from f. 
Density estimation is often the first step in many learning tasks, including anomaly 
detection, classification, regression and clustering.

The quality of fn is naturally measured by how well it performs the assigned 
task of computing the probabilities of sets under the total variation criterion:

where Bd are Borel sets in ℝd . The last equality above is due to Scheffé’s identity 
and this equates the L1 distance between fn and f, in the absolute scale of [0, 1], to 
the total variation distance between them.

A non-parametric density estimator is said to have universal performance guar-
antees when the underlying f is allowed to be any density in L1 (Devroye and 
Lugosi 2001, p. 1). Histograms and kernel density estimators can approximate f 
in this universal sense in an asymptotic setting, i.e., as the number of data points 
n approaches infinity (the so-called asymptotic consistency of the estimator fn ). 
But for a fixed n, however large but finite, classical studies of the rate of con-
vergence of fn to f require additional assumptions on the smoothness class (to 
solve this so-called smoothing problem), such as f ∈ L2 ≠ L1 or f ∈ Ck , the set 
of k times differentiable functions, as opposed to letting f simply belong to the set 
where densities exist, i.e., f ∈ L1 , and thereby violate the universality property.

Universal performance guarantee is provided by the minimum distance esti-
mate (MDE) due to Devroye and Lugosi (2001, 2004). Their fundamentally com-
binatorial approach combined ideas from Yatracos (1985, 1988) on minimum 
distance methods and from Vapnik and Chervonenkis (1971) on uniform conver-
gence of empirical probability measures over classes of sets. See Devroye and 
Lugosi (2001) for a self-contained introduction to combinatorial methods in den-
sity estimation. Unlike the likelihood based methods, MDE gives universal per-
formance guarantees, i.e., MDE does not assume that f is in L2 in order to address 
the smoothing problem for the given sample of size n, by directly minimizing the 
L1 distance over the so-called Yatracos class—a certain class of subsets of the 
support set that are induced by the partitions of each ordered pair of histograms 
in the set of histograms from which one has to choose the optimally smoothed 
histogram (Devroye and Lugosi 2001).

The Yatracos class is not trivial to represent for the purposes of concretely 
obtaining the MDE in a nonparametric multivariate setting involving large sam-
ple sizes. The particular class of MDEs studied in Devroye and Lugosi (2001, 
2004) were limited to kernel estimates and histograms under simpler partitioning 
rules. Inspired by this, here we develop an MDE over statistical regular pavings 
using tree-based partitioning strategies to produce a much more general nonpara-
metric MDE that has (1) data-adaptive partitions (2) in d dimensions with (3) 
partitioning structures imbued with arithmetic for downstream statistical opera-
tions. Briefly, our approach exploits a recursive arithmetic using nodes imbued 

TV(fn, f ) = sup
A∈Bd

||||∫A

fn − ∫A

f
||||
=

1

2 ∫ ||fn − f ||,
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with recursively computable statistics and a specialized collator structure to com-
pute the supremal deviation of the held-out empirical measure over the Yatracos 
class of the candidate densities.

Unlike other tree-based partitions, our regular paving structure restricts partition-
ing by only bisecting a box along its first widest coordinate to make the countable set 
of such trees closed under addition and scalar multiplication and thereby allowing for 
computationally efficient computer arithmetic over a dense set of simple functions. See 
Harlow et al. (2012) for statistical applications of this arithmetic, including conditional 
density regression and multivariate tail probability computations for anomaly detection. 
Although a more efficient algorithm (up to pre-processing the L1 distances for each pair 
of densities) is characterized in Mahalanabis and Stefankovic (2008), we are not aware 
of any publicly available implementations of the MDE using data-adaptive multivariate 
histograms for bursts of data common in many industrial applications today, especially 
for downstream statistical operations with the density estimate, including anomaly 
detection (with n ≊ 107 in dimensions up to 6 for instance in a non-distributed compu-
tational setting over one commodity machine).

To the best of our knowledge, the accompanying code of this paper in mrs2 Sainu-
diin et al. (2008–2019) is the only publicly available implementation of such an MDE 
estimator. Our main contribution in this work is a rigorous implementation of the mini-
mum distance estimate proposed by Devroye and Lugosi (2001) for the nonparametric 
multivariate setting that can handle large bursts of data. The estimator has been success-
fully used in industry-scale problems where one needs to construct a multivariate density 
estimate in a “batch” setting and use this estimate for producing anomaly scores.

In the next two sections, we give the definitions, algorithms, theorems and proofs 
needed for our minimum distance estimator. Three core algorithms are given in the 
Appendix for completeness. We finally conclude after evaluating the performance of 
the estimator on simulated and real-world datasets.

2 � Regular pavings and histograms

Let x ∶= [x, x] be a compact real interval with lower bound x and upper bound 
x , where x ≤ x . Let the space of such intervals be 𝕀ℝ . The width of an interval x is 
wid (x) ∶= x − x . The midpoint is mid (x) ∶=

(
x + x

)
∕2 . A box of dimension d with 

coordinates in � ∶= {1, 2,… , d} is an interval vector with � as the first coordinate of 
maximum width:

The set of all such boxes is 𝕀ℝd , i.e., the set of all interval real vectors in dimension 
d. A bisection or split of x perpendicularly at the mid-point along this first widest 
coordinate � gives the left and right child boxes of x:

x ∶= [x
1
, x1] ×⋯ × [x

d
, xd] =∶ ⊗

j∈𝛥
[x

j
, xj], 𝜄 ∶= min

(
argmax

i

(wid (xi))

)
.

x
�
∶= [x

1
, x1] ×⋯ × [x

�
, mid (x�)) × [x

�+1
, x�+1] ×⋯ × [x

d
, xd],

x
�
∶= [x

1
, x1] ×⋯ × [mid (x�), x�] × [x

�+1
, x�+1] ×⋯ × [x

d
, xd].
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Such a bisection is said to be regular. Note that this bisection gives the left child box 
a half-open interval [x

�
, mid (x�)) on coordinate � so that the intersection of the left 

and right child boxes is empty. A recursive sequence of selective regular bisections 
of boxes, with possibly open boundaries, along the first widest coordinate, starting 
from the root box x� in 𝕀ℝd is known as a regular paving (Kieffer et  al. 2001) or 
n-tree (Samet 1990) of x� . A regular paving of x� can also be seen as a binary tree 
formed by recursively bisecting the box x� at the root node. Each node in the binary 
tree has either no children or two children. These trees are known as plane binary 
trees in enumerative combinatorics (Stanley 1999, Ex. 6.19(d), p. 220) and as finite, 
rooted binary trees (frb-trees) in geometric group theory (Meier 2008, Chap. 10). 
The relationship of trees, labels and partitions is illustrated in Fig. 1 via a sequence 
of bisections of a square (2-dimensional) root box by always bisecting on the first 
widest coordinate.

Let ℕ ∶= {1, 2,…} be the set of natural numbers. Let the jth interval of a box x�� 
be [x

��,j
, x��,j] , the volume of a d-dimensional box x�� be vol (x��) =

∏d

j=1
(x��,j − x

��,j
) . 

Let the set of all nodes, leaf nodes and internal nodes (or splits) of a regular paving s 
be 𝕍 (s) ∶= � ∪ {�{�,�}j ∶ j ∈ ℕ} , �(s) and �̆ (s) ∶= � (s) ⧵ �(s) , respectively. The set 
of leaf boxes of a regular paving s with root box x� is denoted by x

�(s) and it specifies a 
partition of the root box x� . Let �k be the set of all regular pavings with root box x� 
made of k splits. Note that the number of leaf nodes m = |�(s)| = k + 1 if s ∈ �k . The 
number of distinct binary trees with k splits is equal to the Catalan number Ck:

For i, j ∈ ℤ+ , where ℤ+ ∶= {0, 1, 2,…} and i ≤ j , let �i∶j ∶= ∪
j

k=i
�k be the set of 

regular pavings with k splits where k ∈ {i, i + 1,… , j} . Let the set of all regular pav-
ings be �0∶∞ ∶= limj→∞ �0∶j.

A statistical regular paving (SRP) denoted by s is an extension of the RP structure 
that is able to act as a partitioned ‘container’ and responsive summarizer for multi-
variate data. An SRP can be used to create a histogram of a data set. A recursively 

(1)Ck =
1

k + 1

(
2k

k

)
=

(2k)!

(k + 1)!(k!)
.
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Fig. 1   A sequence of selective bisections of boxes (nodes) along the first widest coordinate, starting from 
the root box (root node) in two dimensions, produces an RP
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computable statistic (Fisher 1925; Gray and Moore 2003) that an SRP node �� 
caches is #x�� , the count of the number of data points that fell into x�� . A leaf node 
�� with #x𝜌� > 0 is a non-empty leaf node. The set of non-empty leaves of an SRP s 
is �+(s) ∶= {𝜌� ∈ �(s) ∶ #x𝜌� > 0} ⊆ �(s).

Figure 2 depicts a small SRP s with root box x� ∈ 𝕀ℝ2 . The number of sample 
data points in the root box x� is 10. Figure 2a shows the tree, including the count 
associated with each node in the tree and the partition of the root box represented by 
the leaf boxes of this tree, with the sample data points superimposed on the boxes. 
Figure 2b shows how the density estimate is computed from the count and the vol-
ume of leaf boxes to obtain the density estimate fn,s as an SRP histogram.

An SRP histogram is obtained from n data points that fell into x� of SRP s as 
follows:

It is the maximum likelihood estimator over the class of simple (piecewise-constant) 
functions given the partition x

�(s) of the root box of s . We suppress subscripting the 
histogram by the SRP s for notational convenience. SRP histograms have some simi-
larities to dyadic histograms [for eg. Klemelä (2009, chap. 18), Lu et  al. (2013)]. 
Both are binary tree-based and partition so that a box may only be bisected at the 
mid-point of one of its coordinates, but the RP structure restricts partitioning further 
by only bisecting a box on its first widest coordinate in order to make �0∶∞ closed 
under addition and scalar multiplication and thereby allowing for computationally 
efficient computer arithmetic over a dense set of simple functions [see Harlow et al. 
(2012) for statistical applications of this arithmetic]. Crucially, when data bursts 

(2)fn,s(x) = fn(x) =
∑

��∈�(s)

�x��
(x)

n

(
#x��

vol (x��)

)
.

(a) (b)

Fig. 2   An SRP and its corresponding histogram



512	 Japanese Journal of Statistics and Data Science (2019) 2:507–527

1 3

have large sample sizes, this restrictive partitioning does not affect the L1 errors 
when compared to a computationally more expensive Bayes estimator (see Sect. 4).

A statistically equivalent block (SEB) partition of a sample space is some parti-
tioning scheme that results in equal numbers of data points in each element (block) 
of the partition (Tukey 1947). The output of ���������(s, #,m) of Algorithm  1 is 
[s(0), s(1),… , s(T)] , a sequence of SRP states visited by a sample path of the Markov 
chain {S(t)}t∈ℤ+

 on �0∶m−1 , such that, �▽(s(T)) = � , or #(��) ≤ # ∀�� ∈ �▽(s(T)) , 
or |�(s(T))| = m and T is a corresponding random stopping time. As the initial state 
S(t = 0) is the root s ∈ �0 , the Markov chain {S(t)}t∈ℤ+

 on �0∶m−1 satisfies S(t) ∈ �t for 
each t ∈ ℤ+ , i.e., the state at time t has t + 1 leaves or t splits. The operation may only 
be considered to be successful if |�(s)| ≤ m and #x�� ≤ # ∀�� ∈ �▽(s) . Therefore, the 
sequence of SRP histogram states visited by ��������� that successfully terminates 
at stopping time T will have the terminal histogram with at most # many of the n data 
points in each of its leaf nodes and with at most m many leaf nodes.

Intuitively, ���������(s, #,m) prioritizes the splitting of leaf nodes with the larg-
est numbers of data points associated with them. As we will see in Theorem 1, the 
L1 consistency of ��������� requires that m must grow sublinearly (i.e., m∕n → 0 as 
n → ∞ ) while the volume of leaf boxes shrink such that a combinatorial complexity 
measure of the partitions in the support of the ��������� grows sub-exponentially. 
Figure 3 shows two different SRP histograms constructed using two different values of 
# for the same dataset of n = 105 points simulated under the standard bivariate Gauss-
ian density. A small # produces a histogram that is under-smoothed with unnecessary 
spikes (Fig. 3 left), while the other histogram with a larger # is over-smoothed (Fig. 3 
right). We will obtain the minimum distance estimate from the SRP histograms visited 
by the ��������� in Theorem 3.
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3 � Minimum distance estimation using statistical regular pavings

We show that the SRP density estimate from the ���������-based partitioning 
scheme is asymptotically L1-consistent as n → ∞ provided that # , the maximum sam-
ple size in any leaf box in the partition, and m , the maximum number of leaf boxes in 
the partition grow with the sample size n at appropriate rates. This is done by proving 
the three conditions in Theorem 1 of Lugosi and Nobel (1996). We will need to show 
that as the number of sample points increases linearly, the following conditions are met:

1.	 the number of leaf boxes grows sub-linearly;
2.	 the partition grows sub-exponentially in terms of a combinatorial complexity 

measure;
3.	 and the volume of the leaf boxes in the partition is shrinking.

Let {Sn(i)}İi=0 on �0∶∞ be the Markov chain of algorithm ��������� . The Markov 
chain terminates at some state ṡ with partition �(ṡ) . Associated with the Markov chain 
is a fixed collection of partitions:

and the size of the largest partition �(ṡ) in Ln is given by

such that Ln ⊆ {�(s) ∶ s ∈ �0∶m−1}.
Given n fixed points {x1,… , xn} ∈

(
ℝd

)n . Let �
(
Ln, {x1,… , xn}

)
 be the num-

ber of distinct partitions of the finite set {x1,… , xn} that are induced by partitions 
�(ṡ) ∈ Ln:

For any fixed set of n points, the growth function of Ln is then

Ln ∶=
{
�(ṡ) ∶ ṡ ∈ �0∶∞, Pr{S(İ) = ṡ} > 0

}
,

m(Ln) ∶= sup
�(ṡ)∈Ln

|�(ṡ)| ≤ m,

𝛱(Ln, {x1,… , xn}) ∶=
|||{{x𝜌v ∩ {x1,… , xn} ∶ x𝜌v ∈ �(ṡ)} ∶ �(ṡ) ∈ Ln}

|||.

Fig. 3   Two histogram density estimates for the standard bivariate Gaussian density. The left figure shows 
a histogram with 1485 leaf nodes where # = 50 and the histogram on the right has # = 1500 resulting in 
104 leaf nodes
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Let A ⊆ ℝd . Then, the diameter of A is the maximum Euclidean distance between 
any two points of A, i.e., diam(A) ∶= supx,y∈A

�∑d

i=1
(xi − yi)

2 . Thus, for a box 

x = [x
1
, x1] ×⋯ × [x

d
, xd] , diam(x) =

�∑d

i=1
(xi − x

i
)2.

Theorem  1  (L1-Consistency) Let X1,X2,… be independent and identical random 
vectors in ℝd  whose common distribution � has a non-atomic density f, i.e., 𝜇 ≪ 𝜆.  
Let {Sn(i)}İi=0 on �0∶∞ be the Markov chain formed using ��������� (Algorithm 1) 
with terminal state ṡ and histogram estimate fn,ṡ over the collection of partitions Ln. 
As n → ∞, if # → ∞, #∕n → 0, m ≥ n∕#, and m∕n → 0, then the density estimate fn,ṡ 
is asymptotically consistent in L1, i.e.,

Proof  We will assume that # → ∞ , #∕n → 0 , m ≥ n∕# , and m∕n → 0 , as n → ∞ , 
and show that the three conditions:

are satisfied. Then, by Theorem 1 of Lugosi and Nobel (1996) our density estimate 
fn,ṡ is asymptotically consistent in L1.

Condition (a) is satisfied by the assumption that m∕n → 0 since m(Ln) ≤ m.
The largest number of distinct partitions of any n point subset of ℝd that are 

induced by the partitions in Ln is upper bounded by the size of the collection of par-
titions Ln ⊆ �0∶m−1 , i.e.,

where k is the number of splits.
The growth function is thus bounded by the total number of partitions with 0 to 

m − 1 splits, i.e., the (m − 1) th partial sum of the Catalan numbers. The partial sum 
can be asymptotically equivalent to (Mattarei 2010):

Taking logs and dividing by n on both sides of the above two equations, and using 
the assumption that m∕n → 0 as n → ∞ , we can see that condition (b) is satisfied

�∗(Ln, {x1,… , xn}) = max
{x1,…,xn}∈(ℝd)

n
�(Ln, {x1,… , xn}).

∫ |f (x) − fn,ṡ(x)|dx → 0 with probability 1.

(a) n−1m(Ln) → 0,

(b) n−1 log𝛱∗
n
(Ln) → 0, and

(c) 𝜇(x ∶ diam(x(x)) > 𝛾) → 0 with probability 1 for every 𝛾 > 0,

�∗
n
(Ln) ≤ |Ln| ≤

m−1∑

k=0

Ck,

m−1�

k=0

Ck ∼
4m�

3(m − 1)
√
�(m − 1)

� as m → ∞.
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We now prove the final condition. Fix 𝛾 , 𝜉 > 0 . There exists a box x̌ = [−M,M]d for 
a large enough M, such that 𝜇(x̌c) < 𝜉 , where x̌c ∶= ℝd ⧵ [−M,M]d . Consequently

Using 2di hypercubes of equal volume (2M)d∕2di, i =
�
log2

�
2M

√
d∕�

��
 with side 

length 2M∕2i and diameter 
√

d
(

2M

2i

)2

 , we can have at most m𝛾 < 2di boxes in x̌ that 
have diameter greater than � . By choosing i large enough, we can upper bound m� by 
(2M

√
d∕�)d , a quantity that is independent of n, such that

The first term in the parenthesis converges to zero since #∕n → 0 by assumption. For 
𝜖 > 0 and n > 4d , the second term goes to zero by applying the Vapnik–Chervonen-
kis (VC) theorem to boxes in 𝕀ℝd with VC dimension 2d and shatter coefficient 
S(𝕀ℝd, n) ≤ (en∕2d)2d (Devroye et al. 1996, Thms. 12.5, 13.3 and p. 220), i.e.,

For any 𝜖 > 0 and finite d, the right-hand side of the above inequality can be made 
arbitrarily small for n large enough. This convergence in probability is equivalent to 
the following almost sure convergence by the bounded difference inequality:

Thus, for any 𝛾 , 𝜉 > 0,

log�∗
n
(Ln)∕n ≤ log(�Ln�)∕n →

1

n

�
m log 4 −

3

2
log(m − 1) − log 3

√
�

�
→ 0.

𝜇({x ∶ diam(x(x)) > 𝛾}) ≤ 𝜉 + 𝜇({x ∶ diam(x(x)) > 𝛾} ∩ x̌).

𝜇(x ∶ diam(x(x)) > 𝛾) ≤𝜉 + 𝜇({x ∶ diam(x(x)) > 𝛾} ∩ x̌)

≤𝜉 + m𝛾

(
max
x∈𝕃(ṡ)

𝜇(x)

)

≤𝜉 + m𝛾

(
max
x∈𝕃(ṡ)

𝜇n(x) + max
x∈𝕃(ṡ)

||𝜇(x) − 𝜇n(x)
||
)
,

where, 𝜇n(x) ∶=
#(x)

n

≤𝜉 + m𝛾

(
#

n
+ sup

x∈𝕀ℝd

|𝜇(x) − 𝜇n(x)|
)
.

Pr

{
sup
x∈𝕀ℝd

||𝜇n(x) − 𝜇(x)|| > 𝜖

}
≤ 8 ⋅ (en∕2d)2d ⋅ e−n𝜖

2∕32.

lim
n→∞

sup
x∈𝕀ℝd

||�n(x) − �(x)|| = 0 w.p. 1.
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Therefore, condition (c) is satisfied and this completes the proof. 	�  ◻

Let � index a set of finitely many density estimates: {fn,� ∶ � ∈ �} , such that 
∫ fn,� = 1 for each � ∈ � . We can index the SRP trees by {s� ∶ � ∈ �} , where � is 
the sequence of leaf node depths that uniquely identifies the SRP tree, and denote 
the density estimate corresponding to s� by fn,s� or simply by fn,� . Now, consider the 
asymptotically consistent path taken by the Markov chain of ��������� . For a fixed 
sample size n, let {s� ∶ � ∈ �} be an ordered subset of states visited by the Markov 
chain, with s𝜃 ≺ s𝜗 if s� is a refinement of s� , i.e., if s� is visited before s� . The goal is 
to select the optimal estimate from |�| many candidates.

When our candidate set of densities are additive like the histograms, we can use 
the hold-out method proposed by Devroye and Lugosi (2001, Sec. 10.1) for mini-
mum distance estimation as follows. Let 0 < 𝜑 < 1∕2 . Given n data points, use 
n − �n points as the training set and the remaining �n points as the validation set 
(by �n we mean ⌊�n⌋ ). Denote the set of training data by T ∶= {x1,… , xn−�n} and 
the set of validation data by V ∶= {xn−�n+1,… , xn} = {y1,… , y�n} . For an ordered 
pair (�, �) ∈ �2 , with � ≠ � , the set

is known as a Scheffé set. The Yatracos class (Yatracos 1985) is the collection of all 
such Scheffé sets over �:

Let ��n be the empirical measure of the validation set V . Then, the minimum dis-
tance estimate or MDE fn−�n,�∗ is the density estimate fn−�n,� constructed from the 
training set T  with the smallest index �∗ that minimizes:

Thus, the MDE fn−�n,�∗ minimizes the supremal absolute deviation from the held-
out empirical measure ��n over the Yatracos class A�.

The SRP is adapted for MDE to mutably cache the counts for training and vali-
dation data separately and the n − �n training data points in T  and the �n valida-
tion data points in V are accessible from any leaf node �v of the SRP via point-
ers to xi ∈ T  and yi ∈ V , respectively. The training data drive the Markov chain 
���������(s, #,m) to produce a sequence of SRP states: s�1 , s�2 ,… that are further 
selected to build the candidate set of adaptive histogram density estimates given by 
{fn−�n,�i ∶ �i ∈ �} . For each �i ∈ � , the validation data are allowed to flow through 
s�i and drop into the leaf boxes of s�i . A graphical representation of an SRP with 
training counter #x�v and validation counter #̌x𝜌v is shown in Fig. 4. Computing the 
MDE objective ��i

 in (3) requires the histogram estimate fn−�n(�v) = #x�v∕n�(x�v) 
and the empirical measure of the validation data 𝜇𝜑n(x𝜌v) = #̌x𝜌v∕𝜑n at any node �v . 
These can be readily obtained from #x�v and #̌x𝜌v.

lim
n→∞

𝜇({x ∶ diam(x(x)) > 𝛾}) ≤ 𝜉 w.p. 1.

A𝜃,𝜗 ∶= A
(
fn−𝜑n,𝜃 , fn−𝜑n,𝜗

)
∶=

{
x ∶ fn−𝜑n,𝜃(x) > fn−𝜑n,𝜗(x)

}
,

A𝛩 =
{{

x ∶ fn−𝜑n,𝜃(x) > fn−𝜑n,𝜗(x)
}
∶ (𝜃, 𝜗) ∈ 𝛩2, 𝜃 ≠ 𝜗

}
.

(3)�� = sup
A∈A�

||||∫A

fn−�n,�(A) − ��n(A)
||||
.
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Our approach to obtaining the MDE fn−�n,�∗ with optimal SRP s�∗ exploits the 
partition refinement order in {s� ∶ � ∈ �} , a subset of states along the path taken by 
the ��������� . Using nodes imbued with recursively computable statistics for both 
training and validation data, and a specialized collation according to SRPCollate 
(Algorithm  3) over SRPs, we compute the objective �� in (3) using GetDelta 
(Algorithm 2) via a dynamically grown Yatracos Matrix with pointers to all Scheffé 
sets constituting the Yatracos class according to GetYatracos (Algorithm 4). We 
briefly outline the core ideas in these three algorithms next [see Appendix for their 
pseudocode and mrs2 Sainudiin et al. (2008–2019) for details].

In the MDE procedure, pairwise comparisons of the heights of the candidate den-
sity estimates fn−�n,� and fn−�n,� are needed to get the Scheffé sets that make up 
the Yatracos class. An efficient way to approach this is to collate the SRPs corre-
sponding to the density estimates onto a collator regular paving (CRP) where the 
space of CRP trees is also �0∶∞ . Consider now two SRPs s� and s� for which the 
corresponding histogram estimates fn,� and fn,� are computed. Both SRPs s� and s� 
have the same root box x� . By collating the two SRPs, we get a CRP c with the same 
root box and the tree obtained from a union of s� and s� . Unlike the union opera-
tion over RPs (Harlow et al. 2012, Algorithm 1), each node �v of the SRP collator c 
stores fn,� and fn,� as a vector f n,c(�v) ∶= (fn,�(�v), fn,�(�v)) . The empirical measure 
of the validation data ��n(x�v) will also be stored at each node �v and can be easily 
accessed via pointers. Figure 5 shows how CRP c can collate two SRPs s� and s� 
using SRPCollate.

We now use Theorem 10.1 of Devroye and Lugosi (2001, p. 99) and Theorem 6.6 
of Devroye and Lugosi (2001, p. 54) to obtain the L1-error bound of the minimum 
distance estimate fn−�n,�∗ , with �∗ ∈ � and |𝛩| < ∞.

Theorem  2  If ∫ fn−�n,� = 1 for all � ∈ �, then for the minimum distance estimate 
fn−�n,�∗ obtained by minimizing �� in (3),we have

where

(4)� |||fn−�n,�∗ − f
||| ≤ 3min

�∈� � |||fn−�n,� − f
||| + 4�,

(5)� = max
A∈A�

||||∫A

f − ��n(A)
||||
.

Fig. 4   An SRP s with training 
(∙) and validation data (⋄) and 
their respective sample counts 
(#x𝜌v, #̌x𝜌v) that are updated 
recursively as data fall through 
the nodes of s 
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Theorem 2 can be proved directly by a conditional application of Theorem 6.3 
of Devroye and Lugosi (2001, p. 54) and is nothing but the finite � version of their 
Theorem 10.1 (Devroye and Lugosi 2001, p. 99) without the additional 3 / n term 
due to |𝛩| < ∞.

When f is unknown and 2n > |A𝛩| , � may be approximated using the cardinality 
bound (Devroye et al. 1996, Theorem 13.6, p. 219) for the shatter coefficient of A� . 
Given {x1,… , xn} the nth shatter coefficient of A� is defined as

Since A� is finite, containing at most quadratically many Scheffé sets A�,� with dis-
tinct ordered pairs (�, �) ∈ �2 given by the non-diagonal elements of the Yatracos 
matrix returned by GetYatracos , by Theorem 13.6 of Devroye et al. (1996, p. 
219) its nth shatter coefficient is bounded as follows:

Finally, given that adaptive multivariate histograms based on statistical regular pav-
ings in �0∶∞ form a class of regular additive density estimates, we can slightly mod-
ify Theorem 10.3 of Devroye and Lugosi (2001, p. 103) for the case with finite � to 
get the following error bound that further accounts for splitting the data.

S
(
A�, n

)
= max

x1,…,xn∈ℝ
d

|||
{
{x1,… , xn} ∩ A ∶ A ∈ A�

}|||.

(6)S
(
A�, n

) ≤ |A�| ≤ (|�| + 1)2 − (|�| + 1) = |�|(|�| + 1).

fn,sθ (ρLR)

µϕn(ρLR)

fn,sθ (ρLL)

µϕn(ρLL)

fn,sθ (ρR)

µϕn(ρR)

fn,sθ (ρLR)
)

µϕn(ρLR)

fn,sθ (ρLL)
)

µϕn(ρLL)

fn,sθ (ρR)
)

µϕn(ρR)

fn,sϑ (ρRR)

µϕn(ρRR)

fn,sϑ (ρRL)

µϕn(ρRL)
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�

fn,sθ (ρLR)
)

µϕn(ρLR)

fn,sθ (ρLL)
)

µϕn(ρLL)

fn,sθ (ρR)
)

µϕn(ρR)
=

(
fn,sθ (ρLR)
fn,sϑ (ρL)

)

µϕn(ρLR)

(
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(
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Fig. 5   Collating two SRPs s� and s� with the same root box x�
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Theorem  3  Let 0 < 𝜑 < 1∕2 and n < ∞. Let the finite set � determine a class 
of adaptive multivariate histograms based on statistical regular pavings with 
∫ fn−�n,� = 1 for all � ∈ �. Let fn,�∗ be the minimum distance estimate. Then for all 
n, �n, � and f ∈ L1 ∶

Proof  By Theorem 2,

Taking expectations on both sides and using Theorem 10.2 in Devroye and Lugosi 
(2001, p. 99)

Finally, by Theorem 3.1 in Devroye and Lugosi (2001, p. 18) and (6),

	�  ◻

4 � Performance evaluation

4.1 � Practical minimum distance estimation

To effectively use the error bound, we need to ensure that |�| is not too large and the 
densities in � are close to the true density f. Next, we highlight the effectiveness and 
limitations of our MDE.

(7)

E

�

� ���fn−�n,�∗ − f
���

�
≤ 3min

�
E

�

� ��fn,� − f ��
��

1 +
2�

1 − �
+ 8

√
�

�

+ 8

�
log 2���(��� + 1)

�n
.

� |||fn−�n,�∗ − f
||| ≤3min

� � |||fn−�n,� − f
||| + 4�

E

{

� |||fn−�n,�∗ − f
|||

}
≤ 3min

�
E

{

� |||fn−�n,� − f
|||

}
+ 4E�

≤ 3min
�

E

{

� ||fn,� − f ||
}(

1 +
2�n

(1 − �)n
+ 8

√
�n

n

)
+ 4E�.

4E� = 4E

{
sup
A∈A�

||||�A

f − ��n(A)
||||

}
≤4 ⋅ 2 ⋅

√
log 2S(A�,�n)

�n

≤4 ⋅ 2 ⋅
√

log 2|�|(|�| + 1)

�n
.
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The size of � is kept small (typically less than 100) and independent of n by an 
adaptive search. Note that |�| is upper-bounded by m if we were to exhaustively 
consider each SRP state along the entire path of the ��������� in � , our set of 
candidate SRP partitions. Such an exhaustive approach is computationally ineffi-
cient as the Yatracos matrix that updates the Scheffé sets grows quadratically with 
|�| . We take a simple adaptive search approach by considering only k (typically 
10 ≤ k ≤ 20 ) SRP states in each iteration. In the initial iteration, we add k states to � 
by picking uniformly spaced states from a long-enough ��������� path that starts 
from the root node and ends at a state with a large number of leaves and a signifi-
cantly higher �� score than its preceding states. Then, we simply zoom-in around the 
states with the lowest �� values and add another k states along the same ��������� 
path close to such optimal states from the first iteration. We repeat this adaptive 
search process until we are unable to zoom-in further. Typically, we are able to find 
nearly optimal states within 5 or fewer iterations. By Theorem 1, we know that the 
histogram partitioning strategy of ��������� is asymptotically consistent. Thus, 
the adaptive search set � that is selected iteratively from the set of histogram states 
along the path of ��������� with optimal �� values will naturally contain densities 
that approach f as n increases. However, the rate at which the L1 distance between 
the best density in � and f approach 0 will depend on the complexity of f in terms of 
the number of leaves needed to uniformly approximate f using simple functions with 
SRP partitions, a class that is dense in C(x�,ℝ) , the algebra of real-valued continu-
ous functions over the root box x� by the Stone–Weierstrass Theorem (Harlow et al. 
2012, Theorem 4.1). This dependence on the structural complexity of f is evaluated 
next.

4.2 � Simulations

To evaluate the performance of our MDE we first choose the unstructured multi-
variate uniform density. Although the dimension d of the uniform density on 
[0, 1]d ranges in {1, 10, 100, 1000} , the true density is given by the root box, the 
first candidate density indexed by � . Based on the mean integrated absolute errors 
(MIAE) shown in Table 1 for each d and n in {102, 103, 104, 105, 106, 107} , there is 
a dimension-free performance by the MDE for such a target density that immedi-
ately belongs to the set of candidate densities indexed by � . The sample mean of the 
integrated absolute errors was taken over five replicate simulations with standard 
error less than half of the MIAE values. When the sample size is 107 and dimension 
is 1000, the data cannot be represented in a machine with 32GB of memory (as indi-
cated by the ‘–’ entry in Table 1).

We independently verified the inequalities in Eqs. 4 and 7 of Theorems 2 and 3, 
respectively, by explicitly computing the left and right hand-sides of the inequali-
ties for MDEs and checking that they are indeed satisfied for the simulated datasets 
in the previous sub-section. This verification is in examples/StatsSubPav/
MinimumDistanceEstimation/MDETest of the mrs2 module compan-
ions/mrs-1.0-YatracosThis/. These results are shown for multivariate 
uniform densities in Fig.  6. The bounds are not sharp although they do decrease 
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with the sample size. This is because they are extremely general by construction and 
based merely on the cardinality of the set of candidate densities.

To evaluate the performance of our MDE, we also chose two structured multi-
variate densities: the spherically symmetric Gaussian with a simple concentrated 
structure and the highly structured Rosenbrock density [whose expression up to nor-
malization is given in (8)] in d dimensions for various sample sizes:

The sample standard deviations about the mean integrated absolute errors or 
MIAEs for the MDE method, i.e., L1(fn,�∗ , f ) (shown in the top panel of Table 2), 
based on ten trials, are below 10−3 and 10−4 for values of n in {104, 105} and 
{106, 107} , respectively. Thus, these standard errors are not shown. However, 
the L1 distance between the MDE and the best estimate in the candidate set � , 
L1(fn,�∗ , f ) −min�∈� L1(fn,� , f ) , is shown in Table 2 for each density and sample size. 
For comparison, as shown in the bottom panel of Table 2, we used the Bayes estima-
tor from the posterior mean histograms (Sainudiin et al. 2013, see for details on this 
evaluation). Note how the L1 errors decrease with the sample size and how the errors 

(8)exp

(
−

d∑

i=2

(100(xi − x2
i−1

)2 + (1 − xi−1)
2)

)
.

Table 1   The MIAE for MDE with different sample sizes n for the 1D-, 10D-, 100D- and 1000D-Uniform 
densities

Dimension Sample size n

d 10
7

10
6

10
5 10

4
10

3
10

2

1 3.439e − 04 1.981e − 03 2.866e − 03 1.405e − 02 3.237e − 02 1.000e − 01

10 3.606e − 04 1.803e − 03 2.689e − 03 1.156e − 02 3.191e − 02 1.470ee − 01

100 3.446e − 04 1.908e − 03 2.953e − 03 1.540e − 02 2.898e − 02 1.520e − 01

1000 – 1.720e − 03 2.576e − 03 1.619e − 02 2.998e − 02 1.125e − 01
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Fig. 6   Computational verification of the inequalities of Theorems 2 and 3 for the multivariate uniform 
density in various dimensions over several sample sizes
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are comparable between the methods, albeit the MDE method is at least an order of 
magnitude faster than the posterior mean histogram that does not provide universal 
performance guarantees like most density estimators.

Due to the use of space-partitioning regularly paved trees, our MDE histograms 
cannot provide small L1 errors for highly structured densities beyond 10 or so dimen-
sions on the basis of sample sizes in the order of millions. The reason is simply due 
to the large L1 distance between the best candidate density in � based on a reason-
able maximal number of splits. However, using modern dimensionality reduction 
techniques including auto-encoders we can often project high dimensional data non-
linearly to a lower dimensional space and use the MDE histograms to construct a 
density estimate and do further statistical processing as we show below.

All experiments were performed on the same physical machine that is currently 
considered to be commodity hardware (Sainudiin et al. 2013, for machine specifica-
tions and CPU times).

4.3 � Detecting bot flows using MDE tail probabilities

We apply the MDE histogram on the real-world scenario 11 of the CTU-13 data-
set of botnet traffic on a computer network (Garcia et al. 2014). The dataset cap-
tured 8164 real botnet traffic flows mixed with 99087 normal and background 
traffic flows. These flows were augmented into 80 dimensions using Word2Vec 
embeddings of the flows (datapoints) and reduced to 8 dimensions by training a 
deep auto-encoder with a bottleneck layer of eight nodes by Ramström (2019), 
who gives domain-specific details on how the raw data was augmented and fitted 
to an auto-encoder. For the purpose of our application, it suffices to note that a 
deep auto-encoder was trained on appropriately augmented normal flows in order 

Table 2   The MIAE for MDE and posterior mean estimates with different sample sizes for the 1D-, 2D-, 
and 5D-Gaussian densities, as well as the 2D- and 5D-Rosenbrock densities

n Standard Gaussian densities Rosenbrock densities

1D 2D 5D 2D 5D

Minimum distance estimate’s mean L1(fn,�∗ , f ) , L1(fn,�∗ , f ) −min�∈� L1(fn,� , f )

   102 0.4154, 0.0348 0.6018, 0.0325 1.4944, 0.1093 1.1843, 0.0208 1.6853, 0.0424

   103 0.2643, 0.0091 0.3515, 0.0144 0.8521, 0.0053 0.7533, 0.0119 1.3323, 0.0061

   104 0.0888, 0.0058 0.2038, 0.0044 0.6764, 0.0020 0.4502, 0.0050 1.0154, 0.0018

   105 0.0504, 0.0046 0.1140, 0.0014 0.4744, 0.0006 0.2476, 0.0024 0.7278, 0.0060

   106 0.0204, 0.0014 0.0656, 0.0014 0.3310, 0.0006 0.1430, 0.0006 0.4772, 0.0034

   107 0.0100, 0.0004 0.0376, 0.0002 0.2548, 0.0014 0.0828, 0.0012 0.2661, 0.0016
MCMC posterior mean estimate’s MIAE (standard error)

   104 0.0565 (0.0053) 0.1673 (0.0046) 0.6467 (0.0051) 0.3717 (0.0103) 1.0190 (0.0059)

   105 0.0274 (0.0011) 0.0932 (0.0002) 0.4655 (0.0020) 0.1982 (0.0067) 0.7250 (0.0011)

   106 0.0129 (0.0006) 0.0533 (0.0005) 0.3274 (0.0009) 0.1102 (0.0006) 0.4812 (0.0012)

   107 0.0060 (0.0001) 0.0304 (0.0002) 0.2292 (0.0034) 0.0608 (0.0049) 0.3302 (0.0004)
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to non-linearly reduce the dimensions from 80 to 8. We then used the n = 99087 
samples in 8 dimensions to obtain the MDE histogram. For each data point x from 
the normal as well as the botnet flow, we computed its multivariate tail probabil-
ity (Harlow et al. 2012, Algorithm 9). Briefly, this is given by 1 minus the sum 
of the probability mass of all leaf nodes in the MDE histogram whose density 
(“height”) is larger than that of the leaf node whose box contains x. The tail prob-
ability can be directly used as a score of how unlikely an event is under the den-
sity estimate constructed with the normal flows. We obtain these tail probabilities 
for all 107251 flows (mixed with 7.6% botnet flows) and sort them by their tail 
probabilities. Our histogram estimate was able to identify 87% and 99.1% of the 
botnet flows, i.e., 7115 and 8090 out of 8164 botnet flows were within the lowest 
7.6% and 10% of the tail probabilities, respectively. Thus, using the tail probabili-
ties of the MDE histogram estimated from the normal flows was extremely effec-
tive in identifying the botnet flows.

5 � Conclusion and future directions

Thus, using the collator regular paving (CRP), we obtain the minimum dis-
tance estimate (MDE) with universal performance guarantees. All the methods 
are implemented and available in mrs2 Sainudiin et al. (2008–2019), including 
the downstream statistical operations for anomaly detection and conditional den-
sity regression (Harlow et al. 2012). We limited our minimum distance estimate 
(MDE) to the candidate set given by the SRP histograms visited along the path of 
the Markov chain ��������� . This was done to take advantage of the structure of 
consecutive refinements of the tree partitions along a single path of ���������.

However, obtaining the MDE from an arbitrary set of SRP histograms taken 
from �0∶∞ will need more sophisticated collators. Initial experiments using the 
Scheffé tournament approach (as opposed to the MDE) to find the best estimate in 
a candidate set of arbitrary SRP histograms (not just those along a path in �0∶∞ ) 
look feasible. Such a Scheffé tournament will allow us to compare estimates from 
entirely different methodological schools (Bayesian, penalized likelihood, etc.). 
Finally, the pure tree structure allows one to possibly extend this MDE to a dis-
tributed fault-tolerant computational setting such as Zaharia et al. (2016) as the 
sample size becomes too large for the memory of a single machine.

Acknowledgements  RS and GT proved the theorems and GT implemented the three MDE algorithms 
based on codes by Jennifer Harlow and RS in mrs2. This research began from a conversation RS had 
with Luc Devroye at the World Congress in Probability and Statistics in 2008 and was partly supported 
by RS’s external consulting revenues from the New Zealand Ministry of Tourism, UC College of Engi-
neering Sabbatical Grant and Visiting Scholarship at Department of Mathematics, Cornell University, 
Ithaca NY, USA and completed through the project CORCON: Correctness by Construction, Seventh 
Framework Programme of the European Union, Marie Curie Actions-People, International Research Staff 
Exchange Scheme (IRSES) with counter-part funding from the Royal Society of New Zealand. The appli-
cation to botnet detection was partially supported by Combient Mix AB and the Department of Math-
ematics, Uppsala University.



524	 Japanese Journal of Statistics and Data Science (2019) 2:507–527

1 3

Funding  This study was funded by FP7 People: Marie-Curie Actions (project CORCON) (Grant number: 
612638).

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: MDE algorithms

http://creativecommons.org/licenses/by/4.0/


525

1 3

Japanese Journal of Statistics and Data Science (2019) 2:507–527	



526	 Japanese Journal of Statistics and Data Science (2019) 2:507–527

1 3



527

1 3

Japanese Journal of Statistics and Data Science (2019) 2:507–527	

References

Devroye, L., Györfi, L., & Lugosi, G. (1996). A probabilistic theory of pattern recognition. New York: 
Springer-Verlag.

Devroye, L., & Lugosi, G. (2001). Combinatorial methods in density estimation. New York: 
Springer-Verlag.

Devroye, L., & Lugosi, G. (2004). Bin width selection in multivariate histograms by the combinatorial 
method. TEST, 13(1), 129–145.

Fisher, R. A. (1925). Theory of statistical estimation. Mathematical Proceedings of the Cambridge Philo-
sophical Society, 22, 700–725.

Garcia, S., Grill, M., Stiborek, H., & Zunino, A. (2014). An empirical comparison of botnet detection 
methods. Computers and Security Journal, 45, 100–123.

Gray, A. G., & Moore, A. W. (2003). Nonparametric density estimation: Towards computational tracta-
bility. In SIAM international conference on data mining (pp. 203–211). San Francisco, California, 
USA: SIAM.

Harlow, J., Sainudiin, R., & Tucker, W. (2012). Mapped regular pavings. Reliable Computing, 16, 252–282.
Kieffer, M., Jaulin, L., Braems, I., & Walter, E. (2001). Guaranteed set computation with subpavings. 

In W. Kraemer & J. Gudenberg (Eds.), Scientific computing, validated numerics, interval methods, 
proceedings of SCAN 2000 (pp. 167–178). New York: Kluwer Academic Publishers.

Klemelä, J. (2009). Smoothing of multivariate data: density estimation and visualization. Chichester: 
Wiley.

Lu, L., Jiang, H., & Wong, W. H. (2013). Multivariate density estimation by bayesian sequential par-
titioning. Journal of the American Statistical Association, 108(504), 1402–1410. https​://doi.
org/10.1080/01621​459.2013.81338​9.

Lugosi, G., & Nobel, A. (1996). Consistency of data-driven histogram methods for density estimation 
and classification. The Annals of Statistics, 24(2), 687–706.

Mahalanabis, S., & Stefankovic, D. (2008). Density estimation in linear time. In R. A. Servedio & T. 
Zhang (Eds.), 21st annual conference on learning theory—COLT 2008 (pp. 503–512). Finland: 
Omnipress, Helsinki.

Mattarei, S. (2010). Asymptotics of partial sums of central binomial coefficients and Catalan numbers. 
arXiv​.0906.4290v​3

Meier, J. (2008). Groups, graphs and trees: an introduction to the geometry of infinite groups. Cam-
bridge: Cambridge University Press.

Ramström, K. (2019). Botnet detection on flow data using the reconstruction error from Autoencoders 
trained on Word2Vec network embeddings. Msc thesis, Uppsala University

Sainudiin, R., Teng, G., Harlow, J., & Lee, D. S. (2013). Posterior expectation of regularly paved random 
histograms. ACM Transactions on Modeling and Computer Simulation, 23(26), 6:1–6:20.

Sainudiin, R., York, T., Harlow, J., Teng, G., Tucker, W., & George, D. (2008–2019). MRS 2.0, a C++ 
class library for statistical set processing and computer-aided proofs in statistics. https​://githu​b.com/
lamas​tex/mrs2

Samet, H. (1990). The design and analysis of spatial data structures. Boston: Addison-Wesley Longman.
Stanley, R.P. (1999). Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 

vol  62. Cambridge University Press, Cambridge. https​://books​.googl​e.fr/books​?id=zg5wD​qT6T-
UC&hl=fr&sourc​e=gbs_book_other​_versi​ons

Tukey, J. W. (1947). Non-parametric estimation II. Statistically equivalent blocks and tolerance regions—
The continuous case. The Annals of Mathematical Statistics, 18(4), 529–539.

Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of 
events to their probabilities. Theory Probab Appl, 16, 264–280.

Yatracos, Y. G. (1985). Rates of convergence of minimum distance estimators and kolmogorov’s entropy. 
The Annals of Statistics, 13(2), 768–774.

Yatracos, Y. G. (1988). A note on l1 consistent estimation. The Canadian Journal of Statistics, 16(3), 
283–292.

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., et al. (2016). Apache spark: A uni-
fied engine for big data processing. Commun ACM, 59(11), 56–65. https​://doi.org/10.1145/29346​64.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1080/01621459.2013.813389
https://doi.org/10.1080/01621459.2013.813389
http://arxiv.org/abs/0906.4290v3
https://github.com/lamastex/mrs2
https://github.com/lamastex/mrs2
https://books.google.fr/books?id=zg5wDqT6T-UC&hl=fr&source=gbs_book_other_versions
https://books.google.fr/books?id=zg5wDqT6T-UC&hl=fr&source=gbs_book_other_versions
https://doi.org/10.1145/2934664

	Minimum distance histograms with universal performance guarantees
	Abstract
	1 Introduction
	2 Regular pavings and histograms
	3 Minimum distance estimation using statistical regular pavings
	4 Performance evaluation
	4.1 Practical minimum distance estimation
	4.2 Simulations
	4.3 Detecting bot flows using MDE tail probabilities

	5 Conclusion and future directions
	Acknowledgements 
	References




