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Abstract
Considering the sum of the independent and non-identically distributed random 
variables is a most important topic in many scientific fields. An extension of the 
exponential distribution based on mixtures of positive distributions is proposed by 
Gómez et al. (Rev Colomb Estad 37:25–34, 2014). Distribution of the sum of the 
independent and non-identically distributed random variables is obtained using 
inverse transformation of the moment generating function. A saddlepoint approxi-
mation is used to approximate the derived distribution. Simulations are used to 
investigate the accuracy of the saddlepoint approximation. Parameters are estimated 
by the maximum likelihood method. The method is illustrated by the analysis of real 
data.

Keywords  Extended exponential distribution · Independent and non-identically 
distributed random variables · Saddlepoint approximation

1  Introduction

Determination of the distribution of the sum of independent random variables is one 
of the most important topics for real data analysis. For example, distribution of the 
sum of independent and non-identically distributed (i.n.i.d.) uniform random vari-
ables is well known. The first result was obtained by Olds (1952) with induction. In 
addition, Bradley and Gupta (2002) derived the explicit formulae for the distribution 
by inverting its characteristic function. As a different approach, Sadooghi-Alvandi 
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et  al. (2009) gave the closed form of the distribution using the Laplace trans-
form. For the sum of the exponential random variables, Khuong and Kong (2006) 
obtained the density function with distinct or equal parameters using the character-
istic function. The most general case for non-identically exponential random vari-
ables is discussed in Amari and Misra (1997). Furthermore, distribution of the sum 
of the i.n.i.d. gamma random variables is obtained by Mathai (1982). Additionally, 
Moschopoulos (1985) gave the distribution of the sum of the i.n.i.d. gamma ran-
dom variables, which is expressed as a single gamma series whose coefficients are 
computed by simple recursive relations. Alouini et  al. (2001) considered applying 
Moschopoulos’s approach for distribution of the sum of the correlated gamma ran-
dom variables.

Many researchers discussed the extension of exponential distribution. For exam-
ple, Gupta and Kundu (2001) introduced an extended exponential distribution such 
as

for 𝛼 > 0, 𝜆 > 0 . In addition, Nadarajah and Haghighi (2011) introduced another 
extension of the exponential distribution. Its density function is given by

where 𝛼 > 0 and 𝜆 > 0 . Recently, Lemonte et  al. (2016) proposed a three-param-
eter extension of exponential distribution. More recently, Almarashi et  al. (2019) 
extended the exponential distribution using the type I half-logistic family of 
distributions.

An extension of the exponential distribution based on mixtures of positive dis-
tributions is introduced by Gómez et al. (2014). A random variable X is distributed 
according to the extended exponential distribution with parameters � and � if the 
probability density function and cumulative distribution function are given by

respectively, where x > 0 , 𝛼 > 0 , and � ≥ 0 . Then, the moment generating function 
is given by

Gómez et al. (2014) showed that the extended exponential distribution is more use-
ful in fitting real data than are other extensions of the exponential distribution for the 
life of the fatigue fracture of Kevlar 49/epoxy.

In Sect. 2, we derive the distribution of the sum of n i.n.i.d. extended exponential 
random variables using a simple gamma series and recurrence relation in a simi-
lar way as in Moschopoulos (1985). However, it is difficult to calculate the exact 

fGK(x;𝛼, 𝜆) = 𝛼𝜆(1 − e−𝜆x)𝛼−1e−𝜆x, x > 0,

fNH(x;𝛼, 𝜆) = 𝛼𝜆(1 + 𝜆x)𝛼−1 exp{1 − (1 + 𝜆x)𝛼}, x > 0,

fX(x;�, �) =
�2(1 + �x)e−�x

� + �
,

FX(x;�, �) =
� + � − (� + � + ��x)e−�x

� + �
,

(1)MX(t) =
𝛼2(𝛼 + 𝛽 − t)

(𝛼 + 𝛽)(t − 𝛼)2
, t < 𝛼.
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probability when the number of random variables increases. Hence, we need a 
more accurate approximation of the distribution in terms of the amount of calcula-
tion. Under these circumstances, the saddlepoint approximation is commonly used. 
Saddlepoint approximations have been used with great success by many research-
ers. Their applications and usefulness are discussed by Butler (2007), Huzurbazar 
(1999), Jensen (1995), and Kolassa (2006). Eisinga et al. (2013) discussed the use 
of the saddlepoint approximation for the sum of the i.n.i.d. binomial random vari-
ables. In addition, Murakami (2014) and Nadarajah et al. (2015) applied the saddle-
point approximation for the sum of the i.n.i.d. uniform and beta random variables, 
respectively. Additionally, Murakami (2015) gave the approximation for the sum of 
the i.n.i.d. gamma random variables. In Sect. 3, we discuss the use of the saddle-
point approximation of the i.n.i.d. extended exponential random variables. We com-
pare the accuracy of a saddlepoint approximation with the exact distribution func-
tion. Moreover, we discuss the parameter estimation using the maximum likelihood 
method for the case of n = 2 and the real data analysis. Finally, we conclude with 
our results in Sect. 4.

2 � The exact density

In this section, we derive the exact distribution of the sum of the i.n.i.d. extended 
exponential random variables. Let X1,… ,Xn be independent, extended exponential 
random variables with parameters 𝛼i > 0 , �i ≥ 0 for i = 1,… , n . By (1), the moment 
generating function of Y = X1 + X2 +⋯ + Xn is

where � = {0, 1} , and (�)i is the ith component of �.
Herein, let

The inverse transformation of the moment generating function is applicable to h(t). 
Then we obtain Theorem 1.

(2)

MY (t) =

n∏
i=1

�2
i
(�i + �i − t)

(�i + �i)(t − �i)
2

=

(
n∏
i=1

�2
i

�i + �i

) ∑
�∈�n

n∏
i=1

�
(�)i
i

(�i − t)(�)i+1

=

(
n∏
i=1

�2
i

�i + �i

) ∑
�∈�n

(
n∏
i=1

�
(�)i
i

�
(�)i+1

i

)
n∏
i=1

1

(1 −
t

�i
)(�)i+1

,

h(t) =

n∏
i=1

1

(1 −
t

�i
)(�)i+1

.
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Theorem 1  The probability density function of Y is expressed as

where

Proof  We follow a similar procedure as in Moschopoulos (1985) to prove the theo-
rem. Without loss of generality, we assume �1 = max

i
(�i) . We apply the identity

to h(t), and then

Using the Maclaurin expansion log(1 − x) = −

∞∑
j=1

xj∕j , we have

(3)fY (y) = C
∑
�∈�n

D�

∞∑
k=0

𝛿k

𝛤 (𝜌� + k)
(

1

𝛼1

)𝜌�+k
y𝜌�+k−1 exp(−𝛼1y), y > 0,

C =

n∏
i=1

�2
i

�i + �i
, D� =

n∏
i=1

�
(�)i
i

�
(�)i+1

i

, �� =

n∑
i=1

{
(�)i + 1

}
,

�k+1 =
1

k + 1

k+1∑
j=1

j�j�k+1−j, k = 0, 1, 2,… , �0 = 1,

�j =

n∑
s=1

{
(�)s + 1

}(
1 −

�s

�1

)j

∕j, �1 = max
i
(�i).

1 −
t

�i
=

�
1 −

t

�1

�
�1

�i

⎡⎢⎢⎣
1 −

1 −
�i

�1

1 −
t

�1

⎤⎥⎥⎦

log h(t) = log

n�
i=1

�
1 −

t

�i

�−(�)i−1

= log

n�
i=1

�
1 −

t

�1

�−(�)i−1
�
�1

�i

�−(�)i−1⎡⎢⎢⎣
1 −

1 −
�i

�1

1 −
t

�1

⎤⎥⎥⎦

−(�)i−1

= log

n�
i=1

�
1 −

t

�1

�−(�)i−1
�
�1

�i

�−(�)i−1

+

n�
i=1

log

⎡⎢⎢⎣
1 −

1 −
�i

�1

1 −
t

�1

⎤⎥⎥⎦

−(�)i−1

.
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where

This expression is defined by t such that max
i

|(1 − 𝛼i∕𝛼1)∕(1 − t∕𝛼1)| < 1 . 
Therefore,

Herein, we calculate together the terms of the same order in the Taylor series, and 
we obtain

The coefficient �k is obtained by the recursive formula:

log h(t) = log

n�
i=1

�
1 −

t

�1

�−(�)i−1
�
�1

�i

�−(�)i−1

+

n�
i=1

(−(�)i − 1)

⎡
⎢⎢⎢⎣
−

∞�
j=1

⎛
⎜⎜⎝

1 −
�i

�1

1 −
t

�1

⎞
⎟⎟⎠

j

∕j

⎤
⎥⎥⎥⎦

= log

n�
i=1

�
1 −

t

�1

�−(�)i−1
�
�1

�i

�−(�)i−1

+

∞�
j=1

�
n�
i=1

((�)i + 1)

�
1 −

�i

�1

�j

∕j

��
1 −

t

�1

�−j

= log

�
n�
i=1

�
�i

�1

�(�)i+1
�
1 −

t

�1

�−��
�
+

∞�
j=1

�j

�
1 −

t

�1

�−j

,

�� =

n∑
i=1

{
(�)i + 1

}
, �j =

n∑
i=1

{
(�)i + 1

}(
1 −

�i

�1

)j

∕j.

h(t) =

n∏
i=1

(
�i

�1

)(�)i+1
(
1 −

t

�1

)−��

exp

(
∞∑
j=1

�j

(
1 −

t

�1

)−j
)
.

exp

(
∞∑
j=1

�j

(
1 −

t

�1

)−j
)

=

∞∑
k=0

�k

(
1 −

t

�1

)−k

.

�k+1 =
1

k + 1

k+1∑
j=1

j�j�k+1−j, k = 0, 1, 2,… ,
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with �0 = 1 . Thus, the moment generating function of Y is

Remark that 
(
1 −

t

�1

)−(��+k)

 is the same as the moment generating function of the 
gamma distribution. Then, we apply the inverse transformation of the moment gen-
erating function term-by-term. Therefore, the theorem is completely proved. 	�  ◻

Theorem 2  The exact cumulative distribution function FY (y) = P(Y ≤ y) is derived 
by term-by-term integration of (3), that is,

In addition, the truncation error is obtained by

where Fm(y) is the sum of the first m + 1 terms of (4)  for k = 0, 1,… ,m.

Proof  The interchange of the integration and summation in FY (y) can be justified 
from the uniform convergence. For i = 1, 2,… and a = max2≤�≤n(1 − �

�
∕�1) , we 

have

From the definition of � , we obtain

from the recursive equation as

Therefore,

MY (t) =

(
n∏
i=1

�2
i

�i + �i

) ∑
�∈�n

n∏
i=1

�
(�)i
i

�
(�)i+1

1

∞∑
k=0

�k

(
1 −

t

�1

)−(��+k)

.

(4)FY (y) = C
∑
�∈�n

D�

∞∑
k=0

�k ∫
y

0

1

� (�� + k)
(

1

�1

)��+k
w��+k−1 exp(−�1w)dw.

Em(y) = C
∑
�∈�n

D�

�
��

1

� (��) ∫
y

0

w��−1 exp
{
−(1 − a)�1w

}
dw − Fm(y),

|�j| =
n∑

s=1

((�)s + 1)(1 − �s∕�1)
j

j
≤ ��a

j

j
, j = 1, 2,… , k + 1.

|�k+1| ≤ ��

k + 1

k+1∑
j=1

aj|�k+1−j|, k = 0, 1, 2,… ,

|�k+1| ≤ ��(�� + 1)⋯ (�� + k)

(k + 1)!
ak+1.



29

1 3

Japanese Journal of Statistics and Data Science (2020) 3:23–37	

Here, (5) shows the uniform convergence of (3), and then we have (4). 	�  ◻

3 � Numerical results

In this section, we discuss the evaluation of the tail probability using the saddlepoint 
approximation. Furthermore, we estimate parameters by the maximum likelihood 
method and apply it for the real data analysis.

3.1 � Saddlepoint approximation

We consider the use of the saddlepoint approximation for the distribution of the sum 
of the i.n.i.d. extended exponential random variables. The saddlepoint approxima-
tion was first proposed by Daniels (1954), and a higher order approximation was 
also given by Daniels (1987).

Herein, we consider an approximation of the distribution of Y. The cumulant gen-
erating function of Y is given by

Lugannani and Rice (1980) gave the formula to approximate the distribution func-
tion as follows:

where �(⋅) and �(⋅) are the standard normal probability density function and its cor-
responding cumulative distribution function, respectively. In addition, we denote

(5)

fY (y) = C
∑
�∈�n

D�

�
��

1

� (��)
y��−1 exp(−�1y)

∞∑
k=0

�k

��(�� + 1)⋯ (�� + k − 1)
(�1y)

k

≤ C
∑
�∈�n

D�

�
��

1

� (��)
y��−1 exp(−�1y)

∞∑
k=0

(�1ay)
k

k!

= C
∑
�∈�n

D�

�
��

1

� (��)
y��−1 exp

{
−(1 − a)�1y

}
.

k(t) =

n∑
i=1

log

(
�2
i
(�i + �i − t)

(�i + �i)(t − �i)
2

)
.

(6)FS(x) = 𝛷(ŵ) + 𝜙(ŵ)
(
1

ŵ
−

1

û

)
+ O(n−

3

2 ),

ŵ = sgn(ŝ)
√
2{ŝx − k(ŝ)}, û = ŝ

√
k��(ŝ),
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where ŝ is the root of k�(s) = x , which is solved numerically by the Newton–Raph-
son algorithm; sgn(ŝ) = ±1, 0 if ŝ is positive, negative, or zero; and

Herein, we compare the accuracy of approximation with the following distributions 
by calculating the probability. ŷ is a percentile derived from 100, 000, 000 random 
numbers generated by Y, and p is its exact probability. Note that we generate X as 
a mixture distribution of two random variables (see Gómez et al. 2014). More pre-
cisely, they are exponential and gamma distribution. Then, a random number Y is 
obtained by the sum of n random numbers X.

–	 Fm : the approximate cumulative distribution function, which is truncated in the 
infinite series in (4) after m + 1 terms.

–	 FN : the normal approximation.
–	 FS : the saddlepoint cumulative distribution function from (6).

In the tables, Conv. represents the exact probability calculated by convolution, r.e. is 
the relative error between the approximation and p, and MCT is the mean calculat-
ing time. In our study, we use Mathematica version 11 (CPU 2.80 GHz and 32.0 GB 
RAM). The parameters � = (�1,… , �n) , and � = (�1,… , �n) are generated from the 
uniform distribution U(0, 3), as in Murakami (2014) and Nadarajah et al. (2015):

Case 1:	 n = 2

Case 1-A:	 � = (2.30699, 1.43842), � = (2.13769, 2.69432).

Case 1-B:	 � = (2.76659, 0.30096), � = (0.65938, 1.07876).

Case 2:	 n = 5

Case 2-A:	 � = (1.79204, 1.52231, 0.827571, 1.69002, 1.18927),
	   � = (1.23271, 0.343942, 0.840907, 1.7232, 0.585717).

Case 2-B:	 � = (0.62841, 2.73007, 0.795827, 1.55644, 1.22646),
	   � = (0.942398, 0.866528, 1.43792, 0.631225, 2.01407).

Case 3:	 n = 10

Case 3-A:	 � = (1.82047, 1.53669, 0.887251, 1.70666,

	   0.866679, 1.85662, 1.3083, 0.16474, 1.40535, 1.19952), 
	   � = (1.17206, 0.331381, 0.811715, 1.10704, 0.575096,
	   1.63428, 0.412453, 0.151229, 1.83359, 1.37744).
Case 3-B:	 � = (1.36622, 2.63063, 2.94352, 0.105937, 1.76873,

	   2.20458, 2.22706, 2.34693, 1.91121, 1.76058), 

k�(t) =

n∑
i=1

t − �i − 2�1

(t − �i)(�i + �i − t)
,

k��(t) =

n∑
i=1

(
2

(t − �i)
2
−

1

(�i + �i − t)2

)
.
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	   � = (2.62005, 0.21023, 1.00028, 0.472836, 2.63518,

	   1.26672, 1.25457, 0.743258, 0.103399, 1.609467).

To determine the appropriate value of m is difficult. Therefore, we compared per-
centiles of Fm for various m with the exact probability calculated by convolution. 
Then, we determine m = 5000 for simulating Fm . There is no difference between the 
Conv. and p, as shown in Table 1. Hence, we use the simulated p as the exact prob-
ability for Case 2 ( n = 5 ) and Case 3 ( n = 10).

Tables  1, 2 and 3 show that Fm is closer to p than any other approximation. 
However, it is difficult to apply the real data analysis because it takes many times 
to calculate the probability. On the other hand, FN and FS overcome the calculat-
ing time; in particular, FS gives better accuracy than FN.

3.2 � Parameter estimation

In this section, we discuss the parameter estimation for the sum of extended expo-
nential distribution for the case of n = 2.

We estimate the parameter from the random number generated from the distri-
bution of the sum of the extended exponential random variables.

Table 1   Numerical results for n = 2

ŷ Conv. p F
m

F
N

F
S

r.e. F
N

r.e. F
S

Case 1-A
 1.8912 0.6000 0.6000 0.6000 0.5226 0.6005 0.1290 0.0009
 2.2256 0.7000 0.7000 0.7000 0.6373 0.7006 0.0895 0.0008
 2.6609 0.8000 0.8000 0.8000 0.7688 0.8005 0.0390 0.0006
 3.3471 0.9000 0.9000 0.9000 0.9098 0.9003 0.0109 0.0003
 3.9896 0.9500 0.9500 0.9500 0.9717 0.9502 0.0228 0.0002
 4.6048 0.9750 0.9750 0.9750 0.9928 0.9751 0.0183 0.0001
 5.3904 0.9900 0.9900 0.9900 0.9992 0.9900 0.0092 0.0000
 MCT (s) 84 1039 0.016 0.031

Case 1-B
 6.4006 0.6000 0.6000 0.6001 0.5042 0.5999 0.1597 0.0002
 7.7789 0.7000 0.7000 0.7000 0.6203 0.6998 0.1139 0.0003
 9.6176 0.8000 0.8000 0.8000 0.7582 0.7998 0.0522 0.0002
 12.586 0.9000 0.9000 0.9000 0.9095 0.8998 0.0105 0.0002
 15.421 0.9500 0.9500 0.9500 0.9742 0.9499 0.0254 0.0001
 18.170 0.9750 0.9750 0.9750 0.9944 0.9749 0.0199 0.0001
 21.713 0.9900 0.9900 0.9900 0.9995 0.9900 0.0096 0.0000
 MCT (s) 70 731 0.000 0.016
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Table 2   Numerical results for 
n = 5

ŷ p F
m

F
N

F
S

r.e. F
N

r.e. F
S

Case 2-A
 5.6105 0.6000 0.6000 0.5425 0.6008 0.0958 0.0014
 6.2899 0.7000 0.7000 0.6544 0.7008 0.0651 0.0012
 7.1533 0.8000 0.8000 0.7784 0.8007 0.0271 0.0009
 8.4794 0.9000 0.9000 0.9089 0.9005 0.0099 0.0006
 9.6923 0.9500 0.9500 0.9680 0.9503 0.0190 0.0003
 10.8360 0.9750 0.9750 0.9904 0.9752 0.0158 0.0002
 12.2754 0.9900 0.9900 0.9985 0.9900 0.0085 0.0000
 MCT (s) 132 19385 0.016 0.031

Case 2-B
 7.5544 0.6000 0.6001 0.5434 0.6006 0.0944 0.0009
 8.4581 0.7000 0.7000 0.6553 0.7005 0.0639 0.0007
 9.6059 0.8000 0.8000 0.7790 0.8004 0.0262 0.0006
 11.3643 0.9000 0.9000 0.9090 0.9003 0.0100 0.0003
 12.9702 0.9500 0.9500 0.9680 0.9502 0.0189 0.0002
 14.4816 0.9750 0.9750 0.9903 0.9751 0.0157 0.0001
 16.3811 0.9900 0.9900 0.9984 0.9901 0.0085 0.0001
 MCT (s) 103 13621 0.000 0.016

Table 3   Numerical results for n = 10

ŷ p F
m

F
N

F
S

r.e. F
N

r.e. F
S

Case 3-A
 17.5029 0.6000 More than 100 h 0.5177 0.6011 0.1372 0.0019
 19.5850 0.7000 More than 100 h 0.6294 0.7002 0.1008 0.0004
 22.3481 0.8000 More than 100 h 0.7611 0.7997 0.0486 0.0003
 26.8066 0.9000 More than 100 h 0.9069 0.8997 0.0077 0.0004
 31.0632 0.9500 More than 100 h 0.9717 0.9498 0.0229 0.0002
 35.1904 0.9750 More than 100 h 0.9933 0.9749 0.0188 0.0001
 40.5149 0.9900 More than 100 h 0.9993 0.9899 0.0094 0.0001
 MCT (s) 229 – 0.016 0.031

Case 3-B
 23.4805 0.6000 More than 100 h 0.5069 0.5999 0.1552 0.0002
 27.4155 0.7000 More than 100 h 0.6223 0.6998 0.1111 0.0003
 32.6564 0.8000 More than 100 h 0.7590 0.7998 0.0512 0.0003
 41.1107 0.9000 More than 100 h 0.9091 0.8998 0.0101 0.0002
 49.1727 0.9500 More than 100 h 0.9737 0.9499 0.0249 0.0001
 56.9841 0.9750 More than 100 h 0.9942 0.9749 0.0197 0.0001
 67.0520 0.9900 More than 100 h 0.9995 0.9900 0.0096 0.0000
 MCT (s) 165 – 0.000 0.031



33

1 3

Japanese Journal of Statistics and Data Science (2020) 3:23–37	

Table 4 reveals that the estimated parameters are close to the true parameters 
as sample size r increases. 𝛽1 and 𝛽2 are different from true parameters �1 and �2 ; 
however, there is almost no difference in the moments. The simulation results 
show that parameter estimation works well. Nevertheless, since the variance is 
large when the sample size is small, the initial value problem in the parameter 
estimation is considered. Furthermore, it is necessary to discuss the identifiability 
of the parameters in the future.

3.3 � Real data analysis

We compare the Akaike information criterion (AIC) with the extended exponential 
distribution of Gómez et al. (2014) (i.e., the case of n = 1 , EE1) and fY with n = 2, 3 
(EE2, EE3), Gamma distribution G(�1, �2 ), and Weibull distribution W(�1, �2 ) 
based on the maximum likelihood approach.

We consider two data sets of the life of the fatigue fracture of Kevlar 49/epoxy, 
which is a widely used synthetic fiber, given in Glaser (1983) as follows:

Dataset 1:
0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 

0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 
0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 
1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 
1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 
2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 
2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 
4.8073, 5.4005, 5.4435, 5.5295, 6.5541, and 9.0960.

Dataset 2:
0.7367, 1.1627, 1.8945, 1.9340, 2.3180, 2.6483, 2.8573, 2.9918, 3.0797, 3.1152, 

3.1335, 3.2647, 3.4873, 3.5390, 3.6335, 3.6541, 3.7645, 3.8196, 3.8520, 3.9653, 
4.2488, 4.3017, 4.3942, 4.6416, 4.7070, 4.8885, 5.1746, 5.4962, 5.5310, 5.5588, 
5.6333, 5.7006, 5.8730, 5.8737, 5.9378, 6.1960, 6.2217, 6.2630, 6.3163, 6.4513, 

Table 4   The mean (the variance) of numerical simulation based on 1000 iterations and the first four 
moments

True r True r

100 500 2000 100 500 2000

𝛼
1

2.2 1.99 2.07 2.12 E[Y] 1.67 1.74 1.70 1.68
(2.21) (0.76) (0.64)

𝛼
2

1.4 1.45 1.39 1.38 E[Y2] 3.99 4.21 4.06 4.01
(0.07) (0.04) (0.03)

𝛽
1

2.6 4.28 4.28 3.60 E[Y3] 12.27 13.04 12.48 12.34
(18.4) (13.9) (5.34)

𝛽
2

0.8 0.60 0.43 0.49 E[Y4] 46.26 49.08 46.98 46.57
(3.07) (1.62) (0.89)



34	 Japanese Journal of Statistics and Data Science (2020) 3:23–37

1 3

6.8320, 6.9447, 7.2595, 7.3183, 7.3313, 7.7587, 8.0393, 8.0693, 8.1928, 8.4166, 
8.7558, 8.8398, 9.2497, 9.2563, 9.5418, 9.6472, 9.6902, 9.9316, 10.018, 10.4028 , 
10.4188, 10.7250, 10.9411, 11.7962, 12.075, 12.6933, 13.5307, 13.8105, 14.5067, 
15.3013, 16.2742, 18.2682, and 19.2033.

In addition, we consider another type of data set consisting of the waiting times 
between 65 consecutive eruptions of the Kiama Blowhole. These data can be 
obtained at http://www.stats​ci.org/data/oz/kiama​.html.

Dataset 3:

Table 5   Parameter estimates for 
various models

Distribution 𝛼
1 𝛽

1
𝛼
2 𝛽

2
𝛼
3 𝛽

3
AIC

Dataset 1
 EE1 0.954 6.365 – – – – 247.3
 EE2 0.709 0.000 2.296 0.817 – – 253.2
 EE3 156.3 1.320 99.54 118.6 1.007 15.91 256.8
 Gamma 1.641 0.838 – – – – 248.5
 Weibull 1.326 2.133 – – – – 249.0

Dataset 2
 EE1 0.281 835.7 – – – – 405.1
 EE2 0.474 10.77 0.476 0.348 – – 402.5
 EE3 1.898 0.498 0.462 1.064 0.465 0.201 406.5
 Gamma 3.071 0.432 – – – – 398.5
 Weibull 1.877 8.039 – – – – 400.0

Dataset 3
 EE1 0.050 7.038 – – – – 597.6
 EE2 0.335 2.5 × 106 0.032 0.003 – – 594.8
 EE3 0.715 4.125 0.030 0.001 0.519 4.823 596.9
 Gamma 1.621 0.041 – – – – 595.8
 Weibull 1.274 43.21 – – – – 597.8

Fig. 1   Fitted pdfs of the distribution for Dataset 1

http://www.statsci.org/data/oz/kiama.html
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83, 51, 87, 60, 28, 95, 8, 27, 15, 10, 18, 16, 29, 54, 91, 8, 17, 55, 10, 35,47, 77, 
36, 17, 21, 36, 18, 40, 10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73, 69, 9, 37, 
10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9 and 12.

Results of the parameter estimation of various models are shown in Table 5.
Moreover, Figs. 1, 2 and 3 reveal data fitting for various models.
In Dataset 1, as same as Gómez et  al. (2014), AIC indicated that EE1 is the 

most suitable models. Another example, EE2 is more suitable than EE1 while 
the gamma model is a better fit in Dataset 2. However, EE2 is the best model to 
Dataset 3. As a whole, the sum of the extended exponential models has versatility 
for these data sets.

Fig. 2   Fitted pdfs of the distribution for Dataset 2

Fig. 3   Fitted pdfs of the distribution for Dataset 3
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4 � Conclusion and discussion

In this study, we obtained the exact distribution of the sum of the i.n.i.d. extended 
exponential n random variables using the simple gamma series and recursive for-
mula. Numerical simulation showed that the saddlepoint approximation is the most 
appropriate for the cumulative distribution function, as well as in terms of the cal-
culation time. Distribution of the sum of the extended exponential random variables 
was a suitable model for real data based on the AIC.

We need to consider the initial value problem of the parameter estimation. In addi-
tion, the upper bound in (5) is just one example. Then, it is necessary to determine 
the minimum upper bound of fY (y) . The future challenge is to obtain the distribution 
of the sum of the non-independent and non-identically extended exponential random 
variables.
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