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Abstract
The nested error regression (NER) model is a standard tool to analyze unit-level 
data in the field of small area estimation. Both random effects and error terms are 
assumed to be normally distributed in the standard NER model. However, in the 
case that asymmetry of distribution is observed in a given data, it is not appropri-
ate to assume the normality. In this paper, we suggest the NER model with the 
error terms having skew-normal distributions. The Bayes estimator and the poste-
rior variance are derived as simple forms. We also construct the estimators of the 
model-parameters based on the moment method. The resulting empirical Bayes 
(EB) estimator is assessed in terms of the conditional mean squared error, which 
can be estimated with second-order unbiasedness by parametric bootstrap methods. 
Through simulation and empirical studies, we compare the skew-normal model with 
the usual NER model and illustrate that the proposed model gives much more stable 
EB estimator when skewness is present.

Keywords  Conditional mean squared error · Empirical Bayes estimator · Nested 
error regression model · Second-order approximation · Skew-normal distribution · 
Small area estimation

1  Introduction

Linear mixed models and their model-based estimators have been recognized as 
a useful method in small area estimation (SAE). Direct design-based estimates of 
small area means have large standard errors because small sizes of samples from 
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small areas, and the empirical best linear unbiased predictors (EBLUP) in the linear 
mixed models provide reliable estimates by “borrowing strength” from neighboring 
areas and using data of auxiliary variables. Such a model-based method for small 
area estimation has been studied extensively and actively from both theoretical and 
applied aspects. For comprehensive reviews of small area estimation, see Ghosh and 
Rao (1994), Pfeffermann (2013) and Rao and Molina (2015).

Among linear mixed models, Battese et al. (1988) used the nested error regression 
(NER) model for analyzing unit-level data in the context of SAE. This model con-
sists of the two random variables, namely the random area effects depending on areas 
and the sampling error terms. Both the random variables are assumed to be normally 
distributed in standard NER models. While the normality assumption enables us to 
handle the NER models analytically, there is a growing demand for generalization of 
distributional assumptions to model a wider variety of characteristics of data. Asym-
metry, or skewness, of distributions is one such example. When we analyze positive-
valued data like income and price, we transform the data using the logarithm or the 
Box–Cox transformation to fit to the normality. However, the transformations may not 
always remove adequately the asymmetry of the data. In such situations, it is prefer-
able to introduce an asymmetric distribution.

As a tool for relaxing the symmetry assumption, the skew-normal distribution sug-
gested by Azzalini (1985) has been studied in the literature. In the linear mixed models, 
Arellano-Valle et al. (2005) considered the maximum likelihood (ML) estimation in the 
case where the random effect and/or the error term follow skew-normal distributions. 
The same model was treated by Arellano-Valle et al. (2007) from a Bayesian perspective. 
In the context of SAE, Ferraz and Moura (2012) dealt with the Fay–Herriot type area-
level model with random effects and sampling errors having normal and skew-normal 
distributions, respectively, and constructed the hierarchical Bayes estimators. Diallo and 
Rao (2018) considered the NER model with both random effects and sampling errors 
having skew-normal distributions, and treated the estimation of complex parameters, 
such as poverty indicators, based on some optimization techniques. However, the asymp-
totic properties of the estimators were not investigated analytically.

In this paper, we consider the NER model with only the sampling errors having 
skew-normal distributions. This is different from the model treated by Diallo and 
Rao (2018), because the random effects in our model are normally distributed. A 
reason of this setup is that in our investigation, the estimation of the variance and 
skewness of the random effects may become unstable unless the number of areas is 
very large. These distributional assumptions also do not seem inappropriate in our 
empirical study given in Sect. 6.

In our setup of the NER model with the skew-normal errors, we derive the esti-
mator of the model-parameters based on the moment method. The empirical Bayes 
(EB) estimators of parameters related to area means are analytically derived, and 
second-order unbiased estimators of their conditional mean squared errors (CMSE) 
are provided based on the parametric bootstrap. The performances of the suggested 
methods are examined through simulation and empirical studies.

The article is organized as follows. In Sect. 2, we provide a brief review on a skew-
normal distribution and the setup of our model. Bayesian calculations of the poste-
rior mean and variance are analytically described in Sect. 3. In Sect. 4, the estimation 
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methods for the model-parameters estimation are suggested, and the second-order 
unbiased estimator of CMSE of the empirical Bayes estimator is provided. The perfor-
mances of the proposed methods are investigated by simulation and empirical studies 
in Sects. 5 and 6 respectively. Concluding remarks are given in Sect. 7. Finally, all the 
technical proofs are provided in the Appendix.

2 � Nested error regression models with skew‑normal errors

2.1 � Skew‑normal distributions

We begin by explaining the skew-normal distribution which relaxes symmetry of the 
normal distribution. It has been widely studied since Azzalini (1985), mainly owing to 
the mathematical tractability. A random variable Z is said to follow a standard skew-
normal distribution, denoted by  (�) , if the density function is given by

where �(⋅) and Φ(⋅) are the probability density function (pdf) and cumulative distri-
bution function (cdf) of the standard normal distribution  (0, 1) , respectively. Here 
� ∈ ℝ is a parameter which regulates the skewness of the distribution. When � = 0 , 
fZ(z) reduces to �(z) , so that  (�) includes the standard normal distribution as a 
special case. Figure 1 shows the density function of  (�) for several �.

For practical use, consider the location-scale transformation of Z, Y = � + �Z , for 
� ∈ ℝ and 𝜎 > 0 . Then, Y has a skew-normal distribution  (�, �2, �) , whose den-
sity function is

Following Azzalini (2013), the mean, variance and the third central moment of Y 
are, respectively, written as

fZ(z) = 2�(z)Φ(�z), z ∈ ℝ,

fY (y) =
2

�
�
(y − �

�

)
Φ
(
�
y − �

�

)
, y ∈ ℝ.
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Fig. 1   The density function of  (�) for � = 5 (dashed line), � = 2 (dotted), � = 1 (dashed dotted), 
� = 0 (solid)
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which gives the skewness

where � = �∕
√
1 + �2 or � = �∕

√
1 − �2 . The feasible range of �1 is (−�max

1
, �max

1
) 

for �max
1

= lim�→∞ �1 = lim�→1 �1 =
√
2(4 − �)∕(� − 2)3∕2 ≈ 0.9953.

To handle the skew-normal distribution analytically, the following additive repre-
sentation of Z ∼  (�) is useful:

where U0 and U1 are mutually independent random variables with U0 ∼  (0, 1) and 
U1 ∼   (0, 1, 0) . Here   p(�,�, d) denotes a p-variate truncated normal dis-
tribution with untruncated mean vector � , untruncated covariance matrix � and the 
ith variable truncated below the ith element of d . Omitting p implies a univariate 
case. For the derivation of the additive representation, see Henze (1986) and Azza-
lini (1986). This representation is used in the subsequent sections.

It should be remarked that there are some issues in estimation and inference of 
the skew-normal distribution. First, as described above, the skewness is limited in 
the admissible range (−�max

1
, �max

1
) , so that skew-normal distributions cannot treat 

highly skewed situations. Pewsey (2000) investigated the performances of the esti-
mators of �1 based on the moment method (MM) and the ML methods through a 
simulation study, and shows that as � gets larger, more often the MM estimates of �1 
fall out of the admissible range of �1 and the ML estimates reach the boundary val-
ues. As the sample size increases, however, the MM and ML estimates take values 
inside the admissible range more frequently. Another issue, as pointed out by Azza-
lini (1985), is that the Fisher information matrix for Y ∼  (�, �2, �) becomes sin-
gular as � → 0 . This means that the standard asymptotic theory cannot be applicable 

(1)
E[Y] = � + �

�
2

�

�√
1 + �2

,

m2 = Var(Y) = �2

�
1 −

2

�

�2

1 + �2

�
,

(2)m3 = E[(Y − E[Y])3] =
4 − �

2

�
�

�
2

�

�√
1 + �2

�3

,

(3)

�1 =
m3

m
3∕2

2

=
4 − �

2

��
2

�

�√
1 + �2

�3�
1 −

2
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1 + �2
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=
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��
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,

(4)Z =
1√

1 + �2
U0 +

�√
1 + �2

U1,
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around � = 0 . For the details, see Azzalini (1985, 2013), Azzalini and Capitanio 
(1999) and Pewsey (2000). Thus, in this paper, we treat the case of � ≠ 0.

2.2 � Model setup and notations

In this paper, we consider m small areas, and for the ith area we have ni observations 
of (yij, x⊤ij )

⊤, j = 1,… , ni , where xij = (z00, z
⊤
i0
, z⊤

ij
)⊤ is a vector of covariates which 

consists of the following three parts: z00 = 1 is a constant term which is common in 
any i and j, zi0 is a p1-dimensional vector of covariates which do not depend on j, 
and zij is a p2-dimensional vector of covariates which depend on i and j. Let 
N =

∑m

i=1
ni denote the total sample size. Then, we consider the following NER 

model with skew-normal errors:

for j = 1,… , ni and i = 1,… ,m , where � =
(
𝛽0, �

⊤
1
, �⊤

2

)⊤ is a (1 + p1 + p2)-dimen-
sional unknown vector of regression coefficients. Assume that vi ’s and �ij ’s are 
mutually independent random variables with vi ∼  (0, �2), �ij ∼  (0, �2, �) . 
From (4), �ij is expressed as:

where u0ij ’s and u1ij ’s are mutually independent, u0ij ∼  (0, 1) , and 
u1ij ∼   (0, 1, 0) . Note that we do not adjust the location of the error term to 
zero, so that for � ≠ 0 , the error has the non-zero mean

This implies that the constant term �0 differs from that in the normal case.
Let yi = (yi1,… , yini )

⊤ , Xi = (xi1,… , xini )
⊤ and �i = (𝜀i1,… , 𝜀ini )

⊤ . The model 
(5) is expressed in a matricial form as

where �n denotes a vector of size n with all elements equal to one. Also, �i is written 
as

(5)
yij = x⊤

ij
� + vi + 𝜀ij

= 𝛽0 + z⊤
i0
�1 + z⊤

ij
�2 + vi + 𝜀ij,

�ij =
�√

1 + �2
u0ij +

��√
1 + �2

u1ij,

�� = E[�ij] = �

�
2

�

�√
1 + �2

≠ 0.

yi = Xi� + vi�ni + �i, i = 1,… ,m,

�i =
�√

1 + �2
u0i +

��√
1 + �2

u1i,
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where u0i = (u0i1,… , u0ini )
⊤ and u1i = (u1i1,… , u1ini )

⊤ . Throughout the paper, we 
use the notations yi = n−1

i

∑ni
j=1

yij and xi = n−1
i

∑ni
j=1

xij . The vector of unknown 
parameters is denoted by � =

(
�⊤, 𝜎2, 𝜏2, 𝜆

)⊤.

3 � Bayesian calculation on the predictor

3.1 � Bayes estimator

We now consider the problem of estimating (predicting) 𝜃i = c⊤� + vi for known c . 
The Bayes estimator of �i , denoted by 𝜃̂B

i
(�) , is given by the posterior mean of �i:

To evaluate E[vi | yi] , it is noted that the conditional density function of yij given vi 
and u1ij is given by

where �p(⋅;�,�) denotes the density function of p(�,�) , a p-variate normal distri-
bution with mean � and covariance matrix � . Also, the density function of vi and u1ij 
are respectively f (vi) = �(vi;0, �

2) and f (u1ij) = 2𝜙(u1ij)I(u1ij > 0)

where I(⋅) is an indicator function. The conditional density function of (vi, u1i) given 
yi is written as

To rewrite the conditional density, let

Also, let Ri = (1 − 𝜌i)Ini + 𝜌i�ni�
⊤
ni
 for the n × n identity matrix In and

Denote the (j, k) element of Ri by �i,jk , namely,

𝜃̂B
i
(�) = E[𝜃i | yi] = c⊤� + E[vi | yi].

f (yij � vi, u1ij) = 𝜙

�
yij; x

⊤
ij
� + vi +

𝜎𝜆√
1 + 𝜆2

u1ij,
𝜎2

1 + 𝜆2

�
,

f (vi, u1i | yi) ∝
{

ni∏
j=1

f (yij | vi, u1ij)f (u1ij)
}

f (vi).

𝜇vi
=

ni𝜏
2(1 + 𝜆2)

𝜎2 + ni𝜏
2(1 + 𝜆2)

�
yi − x

⊤
i
� −

𝜎𝜆√
1 + 𝜆2

n−1
i

ni�
j=1

u1ij

�
,

𝜎2
vi
=

𝜎2𝜏2

𝜎2 + ni𝜏
2(1 + 𝜆2)

.

�i =
�2�2∕(�2 + ni�

2)

1 + �2�2∕(�2 + ni�
2)
.
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Then, the conditional density can be rewritten as

where �i = (𝜇i1,… ,𝜇ini
)⊤ for

and

The derivation of (6) is given in the Appendix. Let

Then, it can be seen that wi | yi ∼   ni
(�,Ri,−ai) and

In the last expression, we need to calculate the conditional mean of wij given 
yi . As shown in Tallis (1961), the moment of a multivariate truncated normal dis-
tribution involves multiple integrals. However, Diallo and Rao (2018) pointed out 
that a simple structure of Ri allows us to reduce these multiple integrals to one-
dimensional integrals on a product of univariate normal distribution’s cdf’s. This 
simplification leads to a significant reduction of computational cost and gives a 
clear expression of E[wij | yi] described in the following lemma. All the proofs in 
this section are provided in the Appendix.

Lemma 3.1  For j = 1,… , ni,

where

�i,jk =

{
1 for j = k,

�i for j ≠ k.

(6)f (vi, u1i | yi) ∝ 𝜙(vi;𝜇vi
, 𝜎2

vi
)𝜙ni

(u1i;�i, 𝜎
2
ui
Ri)

ni∏
j=1

I(u1ij > 0),

𝜇ij =
𝜆

𝜎
√
1 + 𝜆2

�
yij − x⊤

ij
� −

ni𝜏
2

𝜎2 + ni𝜏
2
(yi − x

⊤
i
�)

�
,

�2
ui
=

1

1 + �2

(
1 +

�2�2

�2 + ni�
2

)
.

wi = (wi1,… ,wini
)⊤ = (u1i − �i)∕𝜎ui and ai = �i∕𝜎ui .

(7)

E[vi � yi] = E[E[vi � yi, u1i] � yi]

=
ni𝜏

2

𝜎2 + ni𝜏
2
(yi − x

⊤
i
�) −

𝜎𝜆√
1 + 𝜆2

ni𝜏
2(1 + 𝜆2)

𝜎2 + ni𝜏
2(1 + 𝜆2)

𝜎uin
−1
i

ni�
j=1

E[wij � yi].

E[wij | yi] =
ni∑
k=1

�i,jk�(aik)
�1ik
�0i

,
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Using this result, we derive the Bayes estimator 𝜃̂B
i
(�) as presented in the fol-

lowing theorem.

Theorem 3.1  The Bayes estimator of �i is given by

It is noted that c⊤� + ni𝜏
2(𝜎2 + ni𝜏

2)−1(yi − x
⊤
i
�) corresponds to the Bayes esti-

mator in the NER model under normality. Thus the last term in the parenthesis is 
interpreted as a correction term for the mean �� of the skew-normal error.

3.2 � Posterior variance

We next calculate the posterior variance of �i . Since 𝜃i − 𝜃̂B
i
(�) = vi − E[vi | yi] , we 

have

so that we need to calculate the second moments of wi given yi . Using the special 
structure of Ri , we obtain an easy-to-calculate expression of E[wijwik | yi].

Lemma 3.2  For any j, k = 1,… , ni,

(8)�0i = ∫
∞

−∞

�
ni�
j=1

�

�
aij +

√
�i�√

1 − �i

��
�(�) d�,

(9)�1ij = �
∞

−∞

��
k≠j

Φ

�
aik − �iaij√

1 − �i
+
√
�i�

��
�(�) d�.

(10)𝜃̂B
i
(�) = c⊤� +

ni𝜏
2

𝜎2 + ni𝜏
2

�
yi − x

⊤
i
� −

𝜎𝜆√
1 + 𝜆2

n−1
i

ni�
j=1

𝜎−1
ui
𝜙(aij)

𝛼1ij

𝛼0i

�
.

(11)

Var(�i | yi) = Var(vi | yi)
= E[�2

vi
| yi] + Var(�vi

| yi)

=
�2�2

�2 + ni�
2(1 + �2)

+
�2�4�2(1 + �2)

{�2 + ni�
2(1 + �2)}2

�2
ui
Var

(
ni∑
j=1

wij
||| yi

)
,

E[wijwik | yi] = �i,jk −

ni∑
q=1

�i,jq�i,kqaiq�(aiq)
�1iq

�0i

+

ni∑
q=1

�i,jq
∑
r≠q

(�i,kr − �i�i,kq)�(aiq, air;�i)
�2iqr

�0i
,
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where �(⋅, ⋅;�) is the density function of 2(�,R) for the correlation matrix R with 
off-diagonal elements � , and

Using Lemma 3.2, we obtain a tractable form of the posterior variance.

Theorem 3.2  The posterior variance of �i given yi is

where

It is noted that the first term of RHS in (13) is identical to the posterior variance of 
�i in the normal case, and the second term comes from the skewness of the error term.

4 � Empirical Bayes (EB) estimator

4.1 � Estimation of parameters

Since the Bayes estimator (10) depends on the unknown parameters 
� =

(
𝛽0, �

⊤
1
, �⊤

2
, 𝜎2, 𝜏2, 𝜆

)⊤ , we need to estimate them from the given observations. 
The procedure of estimation is quite similar to the method proposed by Fuller and Bat-
tese (1973) with some adjustments made for estimating �0 , �2 and �.

We first consider the estimation of � in the case that �2 , �2 and � are known. As 
described in Sect. 2.2, since the location of the error term is not centered at zero in our 
setup, it is seen that

where �0� = �0 + �� . The covariance matrix of yi is given by

(12)

�2iqr = �
∞

−∞

��
s≠q,r

Φ

�
ais − �i(1 + �i)

−1(aiq + air)√
1 − �i

+

�
�i

1 + �i
�

��
�(�) d�.

(13)Var(�i | yi) = �2�2

�2 + ni�
2
− �i�i(�, yi)

�2�2

�2 + ni�
2
,

(14)

�i(�, yi) =

ni∑
j=1

aij�(aij)
�1ij

�0i

− (1 − �i)

ni∑
j=1

∑
k≠j

�(aij, aik;�i)
�2ijk

�0i
+

{
ni∑
j=1

�(aij)
�1ij

�0i

}2

.

E[yij] = x⊤
ij
� + 𝜇𝜀 = 𝛽0𝜀 + z⊤

i0
�1 + z⊤

ij
�2 = x⊤

ij
�𝜀,

Vi = Vi(𝜎
2, 𝜏2, 𝜆) = m2Ini + 𝜏2�ni�

⊤
ni
.
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for m2 defined in (1). Assuming that the matrix 
(
X⊤
1
,… ,X⊤

m

)⊤ is of full rank, one 
can obtain the best linear unbiased estimator (BLUE) of �� as

Then, the estimator �̃ of � is obtained as �� = ��(𝜎2, 𝜏2, 𝜆) =
(
𝛽0, ��

⊤

1
, ��

⊤

2

)⊤ where

In practice, the parameters (�2, �2, �) are unknown, so that we need to estimate them 
beforehand. For those areas with ni ≥ 2 , we take the deviations from the group mean 
yi = n−1

i

∑ni
j=1

yij for the model (5), which gives

where ỹij = yij − yi, z̃ij = zij − zi, 𝜀̃ij = 𝜀ij − 𝜀i , and zi and �i are defined analogously 
to yi . In the method of Fuller and Battese (1973), it is sufficient to consider the sec-
ond moment of 𝜀̃ij for estimating the variance parameter �2 . However, we use the 
second and third moment to jointly estimate �2 and the skewness parameter � . Here 
we see that for j = 1,… , ni,

for m3 defined in (1). It is noted that the third moment can be used for those areas 
with ni ≥ 3 . Assume that (z̃11,… , z̃1n1 ,… , z̃m1,… , z̃mnm)

⊤ has full column rank 
and let 𝜀̂ij be the residual obtained by regressing ỹij on z̃ij . Since � = �∕

√
1 + �2 , 

based on (15) and (16) we get estimators of �2 and � as the solution of the following 
equations:

��𝜀 =
(
𝛽0𝜀, ��

⊤

1
, ��

⊤

2

)⊤
=

(
m∑
i=1

X⊤
i
V−1

i
Xi

)−1 m∑
i=1

X⊤
i
V−1

i
yi.

𝛽0 = 𝛽0𝜀 − 𝜇𝜀 = 𝛽0𝜀 − 𝜎

�
2

𝜋

𝜆√
1 + 𝜆2

.

ỹij = z̃⊤
ij
�2 + 𝜀̃ij,

(15)

E[𝜀̃2
ij
] = E[{(𝜀ij − 𝜇𝜀) − (𝜀i − 𝜇𝜀)}

2]

= E[(𝜀ij − 𝜇𝜀)
2] − 2n−1

i
E[(𝜀ij − 𝜇𝜀)

2] + n−1
i
E[(𝜀ij − 𝜇𝜀)

2]

= {(ni − 1)∕ni}m2,

(16)

E[𝜀̃3
ij
] = E[{(𝜀ij − 𝜇𝜀) − (𝜀i − 𝜇𝜀)}

3]

= E[(𝜀ij − 𝜇𝜀)
3] − 3n−1

i
E[(𝜀ij − 𝜇𝜀)

3] + 3n−2
i
E[(𝜀ij − 𝜇𝜀)

3] − n−2
i
E[(𝜀ij − 𝜇𝜀)

3]

= {(ni − 1)(ni − 2)∕n2
i
}m3,

(17)

m̂2 =
RSS(1)

N − m − p2
= �2

(
1 −

2

�
�2
)
= m2,

m̂3 =
RSC(1)

�1
=

4 − �

2

(
�

√
2

�
�
)3

= m3,
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where �1 =
∑m

i=1
n−1
i
(ni − 1)(ni − 2) , RSS(1) =

∑m

i=1

∑ni
j=1

𝜀̂2
ij
 is the residual sum of 

squares and RSC(1) =
∑m

i=1

∑ni
j=1

𝜀̂3
ij
 is the residual sum of cubes. Note that the 

degrees of freedom associated with the residual is taken into account only in the first 
formula of (17), so that m̂2 is an unbiased estimator of m2 but m̂3 is not unbiased. 
Solving the equations (17) gives the estimators as

We remark that ||�𝛿|| < 1 is assumed here. As mentioned in Sect. 2.1, however, smaller 
sample size or larger |�| value may increase the possibility of violating this condition. 
In this case, we suggest the truncated estimators

This problem is examined in the simulation study presented in Sect. 5.
Next, using m̂2 , an unbiased estimator �̃2 of �2 is given by

where RSS(2) is the residual sum of squares obtained by regressing yij on xij , and

Since �̃2 can take a negative value, we truncate �̃2 at zero and get the truncated esti-
mator as 𝜏2 = max(�𝜏2, 0) . Now � can be estimated as �� = ��(𝜎̂2, 𝜏2, �𝜆) . Substituting 
the estimator �� =

(
�𝛽0, ��

⊤

1
, ��

⊤

2
, 𝜎̂2, 𝜏2, �𝜆

)⊤ into the Bayes estimator 𝜃̂B
i
(�) , one gets the 

empirical Bayes (EB) estimator 𝜃̂EB
i

= 𝜃̂B
i
(��) of �i.

Finally, we show the consistency and other asymptotic properties of the estima-
tor �̂ , which implies that the EB estimator 𝜃̂B

i
(��) converges to the Bayes estimator 

𝜃̂B
i
(�) as m → ∞ . The asymptotic properties are used in the next section for deriving 

a second-order unbiased estimator of the conditional mean squared error of 𝜃̂EB
i

 . To 
this end, we assume the following regularity condition:

(RC) ni ’s are bounded below and above, that is, there exist positive constants n 
and n satisfying n ≤ ni ≤ n . Elements of Xi are uniformly bounded, 

∑m

i=1
X⊤
i
V−1

i
Xi 

is a positive definite matrix, and m−1
∑m

i=1
X⊤
i
V−1

i
Xi converges to a positive definite 

matrix.

𝜎̂2 = �m2 +
(

2

4 − 𝜋
�m3

)2∕3

,

�𝛿 =
1

𝜎̂

√
𝜋

2

(
2

4 − 𝜋
�m3

)1∕3

.

�𝛿 =

⎧
⎪⎨⎪⎩

1 − 1∕m for �𝛿 > 1 − 1∕m,
�𝛿 for ��𝛿� ≤ 1 − 1∕m,

−1 + 1∕m for �𝛿 < −1 + 1∕m,

and �𝜆 = �𝛿∕

�
1 − �𝛿2.

�̃2 = �−1
2

{
RSS(2) − (N − 1 − p1 − p2)m̂2

}
,

𝜂2 =

m�
i=1

ni

⎧⎪⎨⎪⎩
1 − nix

⊤
i

�
m�
i=1

X⊤
i
Xi

�−1

xi

⎫⎪⎬⎪⎭
.
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As remarked before, the standard asymptotic theory does not hold when � = 0 . 
Thus, in addition to (RC), the condition � ≠ 0 is required to obtain the usual rate of 
convergence in the skew-normal case.

Theorem 4.1  If (RC) and � ≠ 0 hold, then

Thus it follows from (18) that �̂ − � | yi = Op(m
−1∕2).

4.2 � Measuring uncertainty of the EB estimator

In this section, we evaluate the conditional mean squared error of the EB estima-
tor for measuring the uncertainty. Although the unconditional mean squared error 
(MSE) is often used as a measure of uncertainty of the predictors, we employ the 
conditional mean squared error (CMSE) because the area-specific prediction of �i 
given yi is our main interest. The CMSE is initially proposed by Booth and Hobert 
(1998), suggesting that the MSE is inappropriate when small domains are supposed 
in mixed model settings and researchers focus on area-specific prediction. The 
CMSE of the EB estimator is defined as

which is decomposed as

because the cross product term is 
E[E[{𝜃̂B

i
(𝜔) − 𝜃

i
}{𝜃̂B

i
(𝜔̂) − 𝜃̂B

i
(𝜔)} ∣ y1,… , y

m
] ∣ y

i
] = E[{𝜃̂B

i
(𝜔) − E[𝜃

i
∣ y1,… , y

m
]}

{𝜃̂B
i
(𝜔̂) − 𝜃̂B

i
(𝜔)} ∣ y

i
= 0 . Let g1i(�, yi) = E

[{
𝜃̂B
i
(�) − 𝜃i

}2 | yi
]
 and 

g2i(�, yi) = E
[{
𝜃̂B
i
(��) − 𝜃̂B

i
(�)

}2 | yi
]
 . It is seen that g1i(�, yi) is the CMSE of the 

Bayes estimator and g2i(�, yi) involves the uncertainty on the estimation of the 
model parameters. Since the CMSE of the Bayes estimator corresponds to the poste-
rior variance, from (13) in Theorem 3.2, we have

Also, g2i(�, yi) can be approximated as

which implies that g2i(�, yi) = Op(m
−1).

(18)
E
[
(�� − �)(�� − �)⊤ | yi

]
= Op(m

−1),

E[�� − � | yi] = Op(m
−1).

CMSEi(�, yi) = E
[{
𝜃̂B
i
(��) − 𝜃i

}2 | yi
]
,

CMSEi(�, yi) = E
[{
𝜃̂B
i
(�) − 𝜃i

}2 | yi
]
+ E

[{
𝜃̂B
i
(��) − 𝜃̂B

i
(�)

}2 | yi
]
,

g1i(�, yi) = Var(�i | yi) = {�2�2∕(�2 + ni�
2)}{1 − �i�i(�, yi)}.

g2i(�, yi) = E
[{

(�� − �)⊤
𝜕

𝜕�
𝜃̂B
i
(�)

}2 |||yi
]
+ op(m

−1),
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We derive the second-order unbiased estimator of the CMSE for � ≠ 0 case. Since it 
is difficult to calculate analytically the second-order approximations of g1i(�, yi) and 
g2i(�, yi) , we use parametric bootstrap methods. Consider conditioning on the area i, 
thus yi is fixed. A parametric bootstrap sample y∗

k
= (y∗

k1
,… , y∗

knk
)⊤ is generated from 

the model

where v∗
i
 ’s and �∗

ij
 ’s are mutually independent. We construct the estimator �̂∗ using 

the same method as used to obtain �̂ except that the bootstrap sample

is used to obtain �̂∗ . It is noted that the given data yi is used in the bootstrap sample, 
because we consider the conditional expectation given yi . Since we have the analytical 
form of g1i(�, yi) as (13), a second-order unbiased estimator of g1i(�, yi) is given by

where E∗[⋅ | yi] is the expectation with respect to the bootstrap sample. Also, 
g2i(�, yi) is estimated by

It can be shown that E[ĝ1i | yi] = g1i(�, yi) + op(m
−1) and 

E[ĝ2i | yi] = g2i(�, yi) + op(m
−1) , thus a second-order unbiased estimator of the CMSE 

is given by

Proposition 4.1  Assume (RC) and � ≠ 0 . Then, ĈMSEi is a second-order unbiased 
estimator of the CMSE:

y∗
kj
= x⊤

kj
�� + v∗

k
+ 𝜀∗

kj
, j = 1,… , nk, k = 1,… ,m, k ≠ i,

v∗
k
∼  (0, 𝜏2),

𝜀∗
kj
∼  (0, 𝜎̂2, �𝜆),

y∗
1
,… , y∗

i−1
, yi, y

∗
i+1

,… , y∗
m

ĝ1i = 2g1i(��, yi) − E∗[g1i(��
∗
, yi) | yi],

ĝ2i = E∗
[{
𝜃̂B
i
(��

∗
) − 𝜃̂B

i
(��)

}2 | yi
]
.

�CMSEi = ĝ1i + ĝ2i.

E
[
ĈMSEi | yi

]
= CMSEi(�, yi) + op(m

−1).
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5 � Simulation study

In this section we examine the performance of the proposed methods numerically 
through Monte Carlo simulation. Through this section, we consider the simple nested 
error regression model yij = �0 + zi0�1 + zij�2 + vi + �ij for j = 1,… , n, i = 1,… ,m , 
where values of zi0 and zij are generated from  (0, 1) and fixed throughout the simu-
lation runs. For simplicity, we set �0 = �1 = �2 = �2 = �2 = 1 and conduct the sim-
ulation experiment for different values of m, n and �.

We first investigate the performance of the suggested estimators of the model-
parameters. For the parameter � we treat the two cases of � = 1 and � = 6 which 
correspond to �1 = 0.3873 and �1 = 0.9285 for �1 defined in (3). Concerning (m, n), 
we treat four combinations (m, n) = (20, 5), (20, 10), (70, 5), (70, 10) . Based on 
R = 5, 000 simulation runs, we compute the bias and MSE for the estimator of each 
parameter, and the value of Pr

{||�𝛿|| < 1
}
 , the probability that the estimated skewness 

is in the feasible range introduced in Sect. 2.1. These quantities are respectively cal-
culated as

Bias =
1

R

R∑
r=1

(rth estimate − true parameter),

MSE =
1

R

R∑
r=1

(rth estimate − true parameter)2,

PFE (%) = 100 × Pr
{||�𝛿|| < 1

}
= 100 ×

#{|rth value of �𝛿| < 1}

R
,

Table 1   Biases and square roots of MSEs for 
(
�𝛽0, �𝛽1, �𝛽2, 𝜎̂

2, 𝜏2, �𝜆
)
 and PFE

For each choice of (�,m, n) the biases are given with the square roots of MSEs provided in the parenthe-
ses below. Values for �̂0, �̂1 and �̂2 are multiplied by 100

� m n 𝛽0 𝛽1 𝛽2 𝜎̂2 𝜏2 𝜆̂ PFE

1 20 5 34.196 
(79.14)

− 0.407 
(33.88)

− 0.042 
(8.37)

0.169 
(0.38)

− 0.007 
(0.37)

− 0.461 
(1.60)

99.2

10 22.894 
(62.16)

− 0.640 
(33.19)

− 0.192 
(6.41)

0.058 
(0.25)

− 0.003 
(0.36)

− 0.311 
(1.10)

100.0

70 5 21.064 
(54.83)

− 0.058 
(13.47)

− 0.095 
(5.05)

0.045 
(0.22)

− 0.004 
(0.20)

− 0.286 
(1.03)

100.0

10 10.269 
(36.31)

− 0.064 
(12.98)

0.000 
(3.44)

− 0.002 
(0.16)

− 0.002 
(0.18)

− 0.144 
(0.63)

100.0

6 20 5 6.933 
(30.96)

− 0.404 
(32.91)

− 0.014 
(6.27)

− 0.036 
(0.29)

− 0.053 
(0.36)

− 3.307 
(3.37)

70.7

10 3.804 
(26.85)

− 0.684 
(32.72)

− 0.099 
(4.76)

− 0.016 
(0.19)

− 0.052 
(0.35)

− 3.074 
(3.09)

74.2

70 5 1.736 
(14.31)

− 0.147 
(13.10)

− 0.051 
(3.83)

− 0.011 
(0.16)

− 0.017 
(0.19)

− 1.347 
(1.88)

74.0

10 0.743 
(12.75)

− 0.031 
(12.83)

− 0.007 
(2.59)

− 0.005 
(0.10)

− 0.011 
(0.18)

− 0.998 
(1.41)

82.4
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and those values are reported in Table 1. Note that values for �̂0, �̂1 and �̂2 are mul-
tiplied by 100. It is observed that MSEs decrease as m increases, which coincides 
with the consistency of the estimators. As remarked in Sects. 2.1 and 4.1, it is seen 
that PFE increases as m and n increase, or |�| decreases. From Table 1, it is seen that 
the estimator �̂  has large values of the bias and the MSE for m = 20 , but it gets more 
stable for m = 70 . This shows that we need data with large m to estimate � precisely.

In the next study, we examine the performance of the estimator of the 
CMSE given in Sect.  4.2. Without loss of generality, we treat the predic-
tion of 𝜃1 = x

⊤
1
� + v1 which is related to the area mean in the area i = 1 . 

The model setup is the same as in the previous simulation except that we set 
n1 = ⋯ = nm = n = 5 throughout the simulation runs. For values of � and m, 
consider the four cases (�,m) = (0, 20), (0, 50), (3, 20), (3, 50) . As condition-
ing values of y1j’s, we use the qth quantile of the marginal distribution of y1j , 
denoted by y1j(q) , for q = 0.05, 0.25, 0.50, 0.75, and 0.95. y1j(q) is given by 
y1j(q) = �0 + z10�1 + z1j�2 + r1j(q) where r1j(q) is the qth quantile of r1j = v1 + �1j . 
Here r1j is distributed as  (0, �2 + �2, �̃) where �̃ = ��∕

√
�2 + (1 + �2)�2 . 

In advance, we calculate the true value of the CMSE for each q value based on 
R = 100,000 simulation runs as follows:

Table 2   True values of the CMSE, means and relative biases of the estimates for the CMSE

� m q r1j(q) SN Normal

CMSE1 E[ĈMSE1]
RB CMSE1 E[ĈMSE1]

RB

0 20 0.05 − 2.33 0.691 0.636 − 8.0 0.183 0.181 − 1.3
0.25 − 0.95 0.666 0.622 − 6.5 0.173 0.172 − 0.3
0.50 0.00 0.658 0.614 − 6.6 0.169 0.168 − 0.7
0.75 0.95 0.667 0.623 − 6.7 0.173 0.172 − 0.3
0.95 2.33 0.693 0.639 − 7.8 0.183 0.181 − 1.2

50 0.05 − 2.33 0.595 0.539 − 9.5 0.174 0.174 − 0.1
0.25 − 0.95 0.577 0.524 − 9.2 0.169 0.169 0.2
0.50 0.00 0.572 0.520 − 9.2 0.168 0.168 0.3
0.75 0.95 0.577 0.523 − 9.2 0.169 0.169 0.2
0.95 2.33 0.595 0.537 − 9.7 0.174 0.174 − 0.1

3 20 0.05 − 1.17 0.096 0.156 62.4 0.170 0.081 − 52.5
0.25 − 0.06 0.104 0.165 58.2 0.177 0.079 − 55.1
0.50 0.73 0.111 0.173 55.3 0.187 0.079 − 58.0
0.75 1.55 0.123 0.187 51.7 0.208 0.079 − 62.0
0.95 2.76 0.147 0.206 40.3 0.276 0.081 − 70.8

50 0.05 − 1.17 0.060 0.076 27.9 0.169 0.080 − 52.7
0.25 − 0.06 0.066 0.082 23.4 0.176 0.079 − 55.0
0.50 0.73 0.073 0.089 23.0 0.187 0.079 − 57.9
0.75 1.55 0.081 0.098 21.4 0.208 0.079 − 62.0
0.95 2.76 0.097 0.115 19.1 0.266 0.080 − 69.9
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where y1(q) = (y11(q),… , y1n(q))
⊤ and 𝜃̂EB(r)

1
 is the EB estimate of �1 in the rth itera-

tion. After preparing the true values of the CMSE, we calculate the mean of the 
estimates for the CMSE and the percentage relative bias (RB) based on R = 1000 
simulation runs with each 100 bootstrap samples. These values are respectively cal-
culated as

where ĈMSE
(r)

1
 is the estimate of the CMSE in the rth replication. Those values are 

reported in Table 2. For comparison, we calculate the corresponding quantities of 
the estimates for the CMSE and the percentage relative bias (RB) under the stand-
ard NER model where both the random effect and the error term are assumed to be 
normally distributed. The results of the proposed skew-normal model and the usual 
NER model are respectively reported in the columns ‘SN’ and ‘Normal’ in Table 2.

As for the true value of the CMSE in the SN column of Table 2, it can be seen 
that the CMSE in the case of � = 0 takes larger values than that in the case of � = 3 . 
Also, the CMSE decreases insignificantly as m increases when � = 0 . These behav-
iors may be caused by considerable variation of the estimators in the case of a = 0 . 
The result of the RB implies that the CMSE tends to be overestimated in the case 
of � = 3 , though getting more samples suppress this inflation. Also, the effect of 
the conditioning value is not negligible when � = 3 : the RB decreases as the con-
ditioning values are located to the right. Comparing the results of the two methods 
for � = 0 case, the proposed model gives larger true CMSE and the performance 
of the CMSE estimate is worse, which is a reasonable consequence caused by the 
redundancy of the skewness parameter � . For � = 3 case, however, the true CMSE 
is smaller and the effect of the sample size on reduction of both true CMSE and RB 
is more significant in the skew-normal model. When we use the normal model in 
the case of � = 3 , in contrast, the true CMSE cannot be reduced by increasing the 
sample size, which may result from inconsistency of the estimators for the param-
eters. Moreover, the CMSE is seriously underestimated regardless of the sample 
size. These results motivate us to use the proposed model in the situations where the 
skewness is present.

CMSE1 = g11(�, y1(q)) +
1

R

R∑
r=1

(
𝜃̂EB(r)
1

− 𝜃̂B
1

)2
,

E
[
ĈMSE1

]
=

1

R

R∑
r=1

ĈMSE
(r)

1
,

RB (%) = 100 ×
E
[
ĈMSE1

]
− CMSE1

CMSE1

,



391

1 3

Japanese Journal of Statistics and Data Science (2019) 2:375–403	

6 � An illustrative example

We investigate the performance of the suggested model and estimation methods 
through an illustrative example. We use the posted land price data along the Keikyu 
train line in 2001. This train line connects the suburbs in the Kanagawa prefecture 
and the metropolitan area in Tokyo, so that the commuters and students who live in 
the suburb area in the Kanagawa prefecture take this line to go to Tokyo. Thus the 
land price is expected to depend on the distance from Tokyo. The posted land price 
data are available for 52 stations on the Keikyu line. We consider each station as a 
small area, namely m = 52 , and for the ith station, the land price data of ni spots are 
available. Of the 52 stations, 37 stations have at least 3 observations.

For j = 1,… , ni , we have a set of observations (yij, T∗
i
,D∗

ij
,FAR∗

ij
) , where yij 

denotes the log-transformed value of the posted land price (Yen/10,000) per square 
meter of the jth spot, T∗

i
 is the time (minute) it takes from the nearby station i to 

Tokyo station around 8:30 by train, D∗
ij
 is the geographical distance (meter) between 

the spot j and the station i and FAR∗
ij
 denotes the floor-area-ratio (%) of the spot j. Let 

yij
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Fig. 2   Histogram of y
ij
 (left) and dot plot of the standardized value of y

ij
 (right) for the areas with n

i
≥ 3

Table 3   The estimates of parameters and their standard errors

𝛽0 𝛽1 𝛽2 𝛽3 𝜎̂2 𝜏2 𝜆̂

SN
 Estimate 5.281 − 0.631 − 0.068 0.139 0.036 0.008 1.936
 s.e. 0.029 0.003 0.001 0.002 0.031 0.003 4.677

Normal
 Estimate 5.415 − 0.631 − 0.068 0.139 0.018 0.008
 s.e. 0.021 0.003 0.001 0.002 0.004 0.003
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Ti , Dij and FARij be the log-transformed values of T∗
i
 , D∗

ij
 and FAR∗

ij
 . Then we con-

sider the NER model with skew-normal errors, described as

where vi ’s and �ij ’s are mutually independent and distributed as  (0, �2) and 
 (0, �2, �) , respectively.

yij = �0 + Ti�1 + Dij�2 + FARij�3 + vi + �ij,
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Fig. 3   Histogram of v̂
i
 (left) and e

ij
 (right) with the density of  (0, 𝜏2) (left) and  (0, 𝜎̂2, �𝜆) (right) 

superimposed

Table 4   Predicted values of 
�
i
 and the CMSE using the 

proposed model (SN) and usual 
NER model (Normal) for the 
selected 12 areas

Values of ĈMSE1 are multiplied by 100

Area n
i

SN Normal

EB ĈMSE1
EB ĈMSE1

25 1 3.28 0.816 3.41 0.636
32 1 3.15 0.776 3.28 0.615
2 2 2.72 0.639 2.85 0.466
24 3 2.89 0.554 3.01 0.372
49 6 2.73 1.292 2.90 0.240
43 7 2.75 0.924 2.91 0.213
29 7 3.15 0.440 3.27 0.221
5 7 2.77 0.396 2.90 0.212
18 8 3.04 0.394 3.16 0.189
52 10 2.67 0.527 2.79 0.159
41 11 3.04 0.340 3.17 0.147
10 18 2.95 0.435 3.06 0.103
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The left panel of Fig. 2 gives the histogram of yij for those areas satisfying ni ≥ 3 . 
It is revealed that the histogram of yij has a right-skewed shape, which means that 
after taking logarithm of the land price there still exists positive skewness. Hence, 
in this case, it is not appropriate to model the data based on symmetric distributions. 
However, the sample skewness of yij ’s for the areas with ni ≥ 3 is 1.317, which is 
out of the feasible range of the population skewness described in Section 2.1. The 
plot of the standardized values of yij for ni ≥ 3 areas is depicted in Fig. 2, and it is 
observed that a couple of observations take extremely large values, which yields the 
strong positive-skewness. In our analysis given below, we remove the first and sec-
ond largest observations from our analysis, and the resulting sample skewness drops 
to �̃ = 0.637.

The estimated values of the model parameters and their standard errors under 
the proposed model (SN) and the usual NER (Normal) are provided in Table 3, 
where the standard errors are provided by square roots of the jackknife variance 
estimators. The values for the two models are identical except for �0, �2 , and � . 
The effect of Ti and Dij are negative, which implies that the land price decreases 
as the time for going to Tokyo and/or the distance to the nearby station increase. 
The estimate of � means that the land price data is still skewed to the right after 
log-transformation, though its standard error is so large. Since in the estimation 
of � , we use the data of 37 areas with ni ≥ 3 , we need more data to lower the 
standard error of �̂  . The histogram of the predicted random effect and the residual 
of the proposed model , denoted as v̂i = E[vi | yi]|�=�� and eij = yij − x⊤

ij
�� − v̂i 

respectively, are presented in Fig. 3. Using the estimates of parameters, the den-
sity of  (0, 𝜏2) for v̂i and  (0, 𝜎̂2, �𝜆) for eij are depicted in each panel in Fig. 3. 
The sample coefficient of skewness is −0.33 for v̂i and 1.02 for eij . Though v̂i has a 
week negative skewness, departure of its histogram from the normal density does 
not seem to be so great. Thus it is reasonable to assume the normal distribution 
on the random effect. For eij , positive skewness is observed both in its skewness 
value and histogram in Fig. 3.

Next we predict (estimate) the land price of a spot with specific values of 
covariates. As covariates, we set a distance from the nearby station as 1000 m and 
a floor-area-ratio as 100%. Thus for each i, we want to predict

for D0 = log(1000) and FAR0 = log(100) . The predicted values of �i and their CMSE 
estimates for 12 selected areas based on 2000 bootstrap samples are provided as the 
column ‘SN’ in Table  4. These quantities are also calculated under the standard 
NER model and reported in Table 4 as the column ‘Normal’. It is easily observed 
that the EB estimates under the proposed model are smaller than those obtained by 
the usual NER model. As described in Sect.s 2.2 and 4.1, the major source of this 
gap is the difference between the estimates of �̂0 for the two models, which equals to 
0.134. Comparing the estimates of the CMSE, the skew-normal model gives larger 
values and, especially, in some areas the estimated CMSE in our model are sev-
eral times larger than those in the normal model. Since the given data has strong 
positive skewness, it is considered that the values in the ‘SN’ and ‘Normal’ columns 
are respectively overestimated and underestimated. This point is illustrated in the 

�i = �0 + Ti�1 + D0�2 + FAR0�3 + vi,
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simulation study presented in the previous section. Concerning the effect of area 
sample size, from the decreasing value of the CMSE estimate in the ‘Normal’ col-
umn it is suggested that the CMSE obtained under the normality assumption is a 
decreasing function of ni . In general, decreasing tendency like this is not observed 
for the conditional MSE but for the unconditional MSE because the former usually 
also depends on yi . As shown by Booth and Hobert (1998), however, the leading 
term of the CMSE does not depend on yi only in the model with normality assump-
tion, so that increasing area sample size leads to reduction of the CMSE estimates in 
this case. In contrast, the estimated values of the CMSE for the proposed method do 
not appear to depend solely on ni.

7 � Concluding remarks

In this paper, we have considered the NER model with skew-normally distributed 
errors. Under this model, the Bayesian calculation has been conducted to provide sim-
ple forms of the posterior mean and variance. We have constructed the estimators of 
the model parameters similar to the method by Fuller and Battese (1973) and obtained 
the EB estimator. The uncertainty of the EB estimator has been studied in terms of the 
CMSE and the second-order unbiased estimator of the CMSE has been derived with 
the parametric bootstrap method. In the simulation study, it has been revealed that 
the proposed method yields the EB estimates with greater accuracy than the standard 
NER model does when the underlying distribution of the error term has skewness.

These results suggest that the proposed skew-normal model is useful if skewness 
is observed in the given data. However, it is a major problem that a skew-normal dis-
tribution cannot apply to highly skewed situations, which actually happened in our 
example in Section 6. This issue may be overcome by adopting more heavy-tailed 
distributions like a skew-t distribution and remains to be solved in the future works.
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Appendix: Proofs

All the proofs of lemmas and theorems given in the paper are provided here.

Proof of expression (6)  We explain briefly the derivation of the expression (6). The 
exponent in f (vi, u1i ∣ yi) is proportional to

1 + 𝜆2

𝜎2

ni�
j=1

�
vi −

�
yij − x⊤

ij
� −

𝜎𝜆√
1 + 𝜆i

u1ij

��2

+
v2
i

𝜏2
+

ni�
j=1

u2
1ij
,
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which is rewritten as

The first part corresponds to the density �(vi;�vi
, �2

vi
) . For simplicity, let 

Jni = �ni
�⊤
ni
,

Then the second term can be expressed as 𝜎2u⊤
1i
u1i − 2c⊤

i
u1i − du⊤

1i
Jniu1i . After 

completing square, one gets 
{u1i − (𝜎2Ini − dJni)

−1ci}
⊤(𝜎2Ini − dJni){u1i − (𝜎2Ini − dJni)

−1ci} , which corre-
sponds to the density �ni

(u1i;�i, �
2
ui
Ri) . Thus, we have the expression given in (6). 	

� □

Proof of Lemma 3.1  Following Tallis (1961), we have

where ai(−k) and wi(−k) are respectively (ni − 1)-dimensional vector obtained by drop-
ping the kth element of ai and wi , wk

i
= (wi(−k) + �iaik�ni−1)(1 − �2

i
)−1∕2 , and Rk

i
 is the 

matrix of the partial correlation coefficients for wi . Using results from Dunnett and 
Sobel (1955), we reduce the two multiple integrals in (19) to one-dimensional inte-
grals. Since the denominator of the fraction in (19) is written as

where W = (W1,… ,Wni
)⊤ ∼ ni

(�,Ri) with (Ri)qr = �i ∈ [0, 1) for q ≠ r . Thus Wj 
can be represented as

(vi − 𝜇vi
)2

𝜎2
vi

+
1 + 𝜆2

𝜎2

⎡
⎢⎢⎣

ni�
j=1

�
𝜎𝜆√
1 + 𝜆2

u1ij − (yij − x⊤
ij
�)

�2

+
𝜎2

1 + 𝜆2

ni�
j=1

u2
1ij

−
(1 + 𝜆2)𝜏2

𝜎2 + (1 + 𝜆2)𝜏2ni

�
𝜎𝜆√
1 + 𝜆2

ni�
j=1

u1ij −

ni�
j=1

(yij − x⊤
ij
�)

�2⎤
⎥⎥⎦
.

ci =
𝜎𝜆√
1 + 𝜆2

(yi − Xi�) −
ni𝜎𝜆√
1 + 𝜆2

(yi − x
⊤
i
�)�ni and d =

𝜏2𝜎2𝜆2

𝜎2 + ni(1 + 𝜆2)𝜏2
.

(19)E[wij | yi] =
ni∑
k=1

�i,jk�(aik)
∫ ∞

−ai(−k)
�ni−1

(wk
i
;�,Rk

i
) dwi(−k)

∫ ∞

−ai
�ni

(wi;�,Ri) dwi

,

∫
∞

−ai

𝜙ni
(wi;�,Ri) dwi = Pr{Wj > −aij, j = 1,… , ni},

(20)Wj =
√
�i�0 +

√
1 − �i�j, j = 1,… , ni,
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where for j = 0, 1,… , ni , �j ’s are mutually independently distributed as  (0, 1) . 
This transformation gives

which corresponds to (8).
Similarly, we see that the numerator in (19) is

where Wk = (Wk
1
,… ,Wk

k−1
,Wk

k+1
,… ,Wk

ni
)⊤ ∼ ni−1

(�,Rk
i
) with (Rk

i
)qr = �i∕(1 + �i) 

for q ≠ r . Thus, analogously to (20), Wk
l
 can be expressed as

where �l ’s are mutually independent standard normal variables again. Then it fol-
lows that

which gives (9). 	�  □

Proof of Theorem 3.1  It suffices to transform the second term of (7) into the desired 
form. Using Lemma 3.1 and the fact that (Ri)jk = �i for j ≠ k , we have

Pr{W
j
> −a

ij
, j = 1,… , n

i
} = Pr

�
𝜉
j
>

−a
ij
−
√
𝜌
i
𝜉0√

1 − 𝜌
i

, j = 1,… , n
i

�

= ∫
∞

−∞

�
ni�
j=1

�
1 − Φ

�
−a

ij
−
√
𝜌
i
𝜉0√

1 − 𝜌
i

���
𝜙(𝜉0) d𝜉0 = ∫

∞

−∞

�
ni�
j=1

Φ

�
a
ij
+
√
𝜌
i
𝜉0√

1 − 𝜌
i

��
𝜙(𝜉0) d𝜉0,

�
∞

−ai(−k)

𝜙ni−1
(wk

i
;�,Rk

i
) dwi(−k) = Pr

{
Wk

l
>

−ail + 𝜌iaik

(1 − 𝜌2
i
)1∕2

, l = 1,… , ni, l ≠ k

}
,

Wk
l
=

√
�i

1 + �i
�0 +

√
1

1 + �i
�l, l = 1,… , ni, l ≠ k,

Pr

�
Wk

l
>

−ail + 𝜌iaik

(1 − 𝜌2
i
)1∕2

, l = 1,… , ni, l ≠ k

�

= �
∞

−∞

��
l≠k

�
1 − Φ

�
−ail + 𝜌iaik√

1 − 𝜌i
−
√
𝜌i𝜉0

���
𝜙(𝜉0) d𝜉0

= �
∞

−∞

��
l≠k

Φ

�
ail − 𝜌iaik√

1 − 𝜌i
+
√
𝜌i𝜉0

��
𝜙(𝜉0) d𝜉0,

(21)

ni�
2(1 + �2)

�2 + ni�
2(1 + �2)

�ui

ni∑
j=1

E[wij | yi]

=
ni�

2(1 + �2)

�2 + ni�
2(1 + �2)

�ui(1 + (ni − 1)�i)

ni∑
j=1

�(aij)
�1ij

�0i
.



397

1 3

Japanese Journal of Statistics and Data Science (2019) 2:375–403	

Since

the formula (21) reduces to

which gives the desired expression. 	�  □

Proof of Lemma 3.2  The outline is the same as in the proof of Lemma 3.1. Using the 
results of Tallis (1961) and Theorem 3.1, we have

where ai(−q,r) and wi(−q,r) are respectively (ni − 2)-dimensional vectors obtained by 
dropping the qth and rth elements of a and w,

and Rqr

i
 is the matrix of the second-order partial correlation coefficients for wi . 

The (ni − 2)-fold integral in (23) is written as

(22)1 + (ni − 1)�i =
1

(1 + �2)�2
ui

�2 + ni�
2(1 + �2)

�2 + ni�
2

,

ni�
2

�2 + ni�
2

ni∑
j=1

�−1
ui
�(aij)

�1ij

�0i
,

(23)

E[wijwik | yi] = �i,jk −

ni∑
q=1

�i,jq�i,kqaiq�(aiq)
�1iq

�0i

+

ni∑
q=1

�i,jq
∑
r≠q

(�i,kr − �i�i,kq)�(aiq, air;�i)�
−1
0i

× �
∞

−ai(−q,r)

�ni−2
(w

qr

i
;�,R

qr

i
) dwi(−q,r),

w
qr

i
=

wi(−q,r) + �i(1 + �i)
−1(aiq + air)�ni−2√

(1 − �i)(1 + 2�i)(1 + �i)
−1

,

�
∞

−ai(−q,r)

𝜙ni−2
(w

qr

i
;�,R

qr

i
) dwi(−q,r)

= Pr

�
Wqr

s
>

−ais + 𝜌i(1 + 𝜌i)
−1(aiq + air)√

(1 − 𝜌i)(1 + 2𝜌i)(1 + 𝜌i)
−1
, s = 1,… , ni, s ≠ q, r

�
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where Wqr ∼ ni−2
(�,R

qr

i
) with (Rqr

i
)st = �i∕(1 + 2�i) for s ≠ t . Here the definition 

of Wqr is analogous to Wq in the proof of Lemma 3.1. Then using the similar method 
to (20) with �i∕(1 + 2�i) instead of �i , we have

where �s ’s are mutually independent standard normal random variables. Then we 
have

which corresponds to (12). 	�  □

Proof of Theorem 3.2  It follows from Lemmas 3.1 and 3.2 that

Wqr
s

=

√
�i

1 + 2�i
�0 +

√
1 + �i
1 + 2�i

�s, s = 1,… , ni, s ≠ q, r

Pr

�
Wqr

s
>

−ais + 𝜌i(1 + 𝜌i)
−1(aiq + air)√

(1 − 𝜌i)(1 + 2𝜌i)(1 + 𝜌i)
−1
, s = 1,… , ni, s ≠ q, r

�

= �
∞

−∞

��
s≠q,r

�
1 − Φ

�
−ais + 𝜌i(1 + 𝜌i)

−1(aiq + air)√
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−

�
𝜌i
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𝜉0

���
𝜙(𝜉0) d𝜉0
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∞
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�
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�
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1 + 𝜌i
𝜉0

��
𝜙(𝜉0) d𝜉0,

ni∑
j=1

E[wij | yi] = (1 + (ni − 1)�i)

ni∑
q=1

�(aiq)
�1iq

�0i
,

ni∑
j=1

E[w2
ij
| yi] = ni − (1 + (ni − 1)�i)

2

ni∑
q=1

aiq�(aiq)
�1iq

�0i

+ �i(1 − �i)(1 + (ni − 1)�i)

ni∑
q=1

∑
r≠q

�(aiq, air;�i)
�2iqr

�0i
,

ni∑
j=1

∑
k≠j

E[wijwik | yi] = ni(ni − 1)�i − (ni − 1)�i(2 + (ni − 2)�i)

ni∑
q=1

aiq�(aiq)
�1iq

�0i
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The conditional variance of 
∑ni

j=1
wij given yi is

where �i(�, yi) is defined as (14). Then it follows from (11), (22) and (24) that

which proves Theorem 3.2. 	�  □

Proof of Theorem  4.1  First, we derive the desired properties for the parameters (
�⊤
𝜀 , 𝜎

2, 𝜏2, 𝜆
)
 . In general, consider the case that two estimators 𝜃̂1 of �1 and 𝜃̂2 of �2 

have the forms

where h1i(yi) and h2i(yi) (written as h1i and h2i for simplicity) are functions of yi such 
that hki = Op(1), E[hki] = O(1) for k = 1, 2 . Since yi ’s are mutually independent, it 
is shown that

(24)

Var
( ni∑

j=1

wij
||| yi

)
=

ni∑
j=1

E[w2
ij
| yi] +

ni∑
j=1

∑
k≠j

E[wijwik | yi] −
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ni∑
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E[wij | yi]
}2

= ni(1 + (ni − 1)�i) − (1 + (ni − 1)�i)
2�i(�, yi),

Var(�i | yi) = �2�2

�2 + ni�
2(1 + �2)

+
ni�

2�4�2

(�2 + ni�
2(1 + �2))(�2 + ni�
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−
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(�2 + ni�
2)2

�i(�, yi)

=
�2�2
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2�2
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�2�4�2

(�2 + ni�
2)2
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=
�2�2

�2 + ni�
2
−
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2

�2�2∕(�2 + ni�
2)

1 + �2�2∕(�2 + ni�
2)
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=
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2
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m
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which means that it is enough to obtain the required results for the unconditional 
expectations. Note that all the moments of a skew-normal distribution exist. Since 
the methods of estimating �� and m2 are the same as those of the usual NER model, 
it follows from the results of Fuller and Battese (1973) that

The last formula comes from the unbiasedness of m̂2.
Next we treat m̂3 . Let �̂

FE

2
 be the OLS estimator obtained by regressing yij on z̃ij . 

Then, �̂
FE

1
 is written as ��

FE

2
= �2 + (

∑m

i=1

∑ni
j=1

z̃ijz̃
⊤
ij
)−1

∑m

i=1

∑ni
j=1

z̃ij𝜀̃ij . It follows 
from (RC) and �̂

FE

2
− �2 = Op(m

−1∕2) that

Since 𝜀̃ij ’s are independent for different i and E[𝜀̃ij] = 0 , the bias of m̂3 is

E[𝜃̂1 − 𝜃1 | yi] = E[𝜃̂1 − 𝜃1] +
1

m
(h1i − E[h1i]) = E[𝜃̂1 − 𝜃1] + Op(m

−1),
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+
1
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{
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E[�m3 − m3] = −
3

𝜂1

m∑
i=1

E
[ ni∑

j=1

ni∑
k=1

z̃⊤
ij
𝜀̃ij

( m∑
q=1

ni∑
r=1

z̃qr z̃
⊤
qr

)−1

z̃ik𝜀̃
2
ik

]
+ o(m−1)

= −
3

m𝜂1

m∑
i=1

ni∑
j=1

ni∑
k=1

z̃⊤
ij

(
1

m

m∑
q=1

ni∑
r=1

z̃qr z̃
⊤
qr

)−1

z̃ikE[𝜀̃ij𝜀̃
2
ik
] + o(m−1),
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which is of order O(m−1) . From the fact that �m3 = 𝜂−1
1

∑m

i=1

∑ni
j=1

𝜀̃3
ij
+ Op(m

−1) 
and 𝜂−1

1

∑m

i=1

∑ni
j=1

𝜀̃3
ij
= Op(m

−1∕2) , it follows that

The expectation in (25) is bounded under the condition (RC) and the existence 
of up to the sixth moment of �ij , which leads to E[(m̂3 − m3)

2] = O(m−1) . Then we 
have m̂2 − m2 = Op(m

−1∕2) and m̂3 − m3 = Op(m
−1∕2) . Also, E[(m̂2 − m2)(m̂3 − m3)] 

can be treated by Schwarz’s inequality as

The inverse transformation of (m2(�
2, �),m3(�

2, �)) is derived from (1) and (2) as

Since � ≠ 0 , � ≠ 0 , or m3 ≠ 0 , it is easy to check these functions are three times 
continuously differentiable. Thus, using the Taylor series expansion we have

which, together with the results obtained up to this point, gives

Concerning the truncated estimator �̂ = max(−1 + 1∕m, min(�̃, 1 − 1∕m)) , 
we consider the case of 0 < 𝛿 < 1 . For large m, we have 1 − 1∕m − 𝛿 > 0 . Then, 
Pr(�𝛿 > 1 − 1∕m) = Pr(�𝛿 − 𝛿 > 1 − 1∕m − 𝛿) ≤ E[(�𝛿 − 𝛿)2]∕(1 − 1∕m − 𝛿)2 , so that 
Pr(�𝛿 > 1 − 1∕m) = O(m−1) . This shows the consistency of �̂  . Using the same argu-
ments as below, we can show that E[�̂ − �] = O(m−1) and E[(�̂ − �)2] = O(m−1) . 
These results lead to the asymptotic properties of �̂ .

(25)

E[(�m3 − m3)
2] = E

⎡
⎢⎢⎣

�
1

𝜂1

m�
i=1

ni�
j=1

𝜀̃3
ij
− m3

�2⎤
⎥⎥⎦
+ o(m−1)

=
1

𝜂2
1

m�
i=1

E

⎡
⎢⎢⎣

�
ni�
j=1

𝜀̃3
ij
−

(ni − 1)(ni − 2)

ni
m3

�2⎤
⎥⎥⎦
+ o(m−1).

(26)|E[(m̂2 − m2)(m̂3 − m3)]| ≤ (E[(m̂2 − m2)
2]E[(m̂3 − m3)

2])1∕2 = O(m−1).

�2(m2,m3) = m2 +
(

2

4 − �
m3

)2∕3

,

�(m2,m3) =

√
�

2

(
2

4 − �
m3

)1∕3
{
m2 +

(
2

4 − �
m3

)2∕3
}−1∕2

.

(
𝜎̂2 − 𝜎2

�𝛿 − 𝛿

)
=

(
𝜕𝜎2∕𝜕m2 𝜕𝜎2∕𝜕m3

𝜕𝛿∕𝜕m2 𝜕𝛿∕𝜕m3

)(
�m2 − m2

�m3 − m3

)

+
1

2

3∑
r=2

{
𝜕

𝜕mr

(
𝜕𝜎2∕𝜕m2 𝜕𝜎2∕𝜕m3

𝜕𝛿∕𝜕m2 𝜕𝛿∕𝜕m3

)}(
�m2 − m2

�m3 − m3

)
(�mr − mr) + Op(m

−3∕2),

E

[(
𝜎̂2 − 𝜎2

�𝛿 − 𝛿

)(
𝜎̂2 − 𝜎2

�𝛿 − 𝛿

)⊤
]
= O(m−1), E

[(
𝜎̂2 − 𝜎2

�𝛿 − 𝛿

)]
= O(m−1).
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Concerning 𝜏2 , we have E[(𝜏2 − 𝜏2)2] = O(m−1) , because (vi, �ij) ’s are independ-
ent for different i and all the moments of vi and �ij exist. Following Prasad and Rao 
(1990),

which is of order O(m−1) . Then we have

which is of order O(m−1) . Also, it follows from E[𝜏2 − 𝜏2] = 0 that

As for the first term,

which is of order O(m−1) . Thus, together with (27), we obtain E[𝜏2 − 𝜏2] = O(m−1).
We have derived the desired properties for the unconditional case, so that from 

the argument at the beginning of the proof, the statement of the theorem has been 
checked for 

(
�⊤
𝜀 , 𝜎

2, 𝜏2, 𝜆
)
 . Lastly, we need to consider �0 instead of �0� . Since 

�� = �
√
2∕��∕

√
1 + �2 is a three times continuously differentiable function of 

(�2, �) , it follows that

Using this expansion, the desired results can be easily obtained.
It remains to show the expectations of cross terms are O(m−1) . Analogously to 

(26), this can be achieved by Schwarz’s inequality, and the proof is complete. 	�  □

Proof of Proposition 4.1  From Theorem  4.1, g1i(�̂, yi) can be expanded as 
g1i(�̂, yi) = g1i(�, yi) + G1i(�̂,�, yi) + Op(m

−3∕2) where

(27)
Pr{𝜏2 ≤ 0} = Pr{𝜏2 − 𝜏2 ≤ −𝜏2} ≤ Pr{|𝜏2 − 𝜏2| ≥ 𝜏2} ≤ E[(𝜏2 − 𝜏2)2]

𝜏4
,

E[(𝜏2 − 𝜏2)2] = E[(𝜏2 − 𝜏2)2 | 𝜏2 > 0]Pr{𝜏2 > 0} + E[(0 − 𝜏2)2 | 𝜏2 ≤ 0]Pr{𝜏2 ≤ 0}

≤ E[(𝜏2 − 𝜏2)2] + 𝜏4 Pr{𝜏2 ≤ 0},

E[𝜏2 − 𝜏2] = E[𝜏2I(𝜏2 > 0) − 𝜏2] = E[𝜏2{1 − I(𝜏2 ≤ 0)} − 𝜏2]

= E[−𝜏2I(𝜏2 ≤ 0)] = E[(−𝜏2 + 𝜏2)I(−𝜏2 + 𝜏2 ≥ 𝜏2)] − 𝜏2 Pr{𝜏2 ≤ 0}.

E[(−𝜏2 + 𝜏2)I(−𝜏2 + 𝜏2 ≥ 𝜏2)] = 𝜏2E
[
−𝜏2 + 𝜏2

𝜏2
I
(
−𝜏2 + 𝜏2

𝜏2
≥ 1

)]

≤ 𝜏2E
[(

−𝜏2 + 𝜏2

𝜏2

)2

I
(
−𝜏2 + 𝜏2

𝜏2
≥ 1

)]

≤ E[(𝜏2 − 𝜏2)2]

𝜏2
,

�𝜇𝜀 − 𝜇𝜀 =

(
𝜎̂2 − 𝜎2

�𝜆 − 𝜆

)⊤ (
𝜕𝜇𝜀∕𝜕𝜎

2

𝜕𝜇𝜀∕𝜕𝜆

)

+
1

2

(
𝜎̂2 − 𝜎2

�𝜆 − 𝜆

)⊤ (
𝜕2𝜇𝜀∕(𝜕𝜎

2𝜕𝜎2) 𝜕2𝜇𝜀∕(𝜕𝜆𝜕𝜎
2)

𝜕2𝜇𝜀∕(𝜕𝜎
2𝜕𝜆) 𝜕2𝜇𝜀∕(𝜕𝜆𝜕𝜆)

)(
𝜎̂2 − 𝜎2

�𝜆 − 𝜆

)
+ Op(m

−3∕2).
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Thus we have E[g1i(�̂, yi) | yi] = g1i(�, yi) + E[G1i(�̂,�, yi) | yi] + op(m
−1) . It fol-

lows from Theorem 4.1 that E[G1i(�̂,�, yi) | yi] = Op(m
−1) , so that applying the same 

arguments as in Butar and Lahiri (2003) shows E[ĝ1i | yi] = g1i(�, yi) + op(m
−1) . 

Also, using Theorem 4.1 again, it can be seen that E[ĝi2 | yi] = g2i(�, yi) + op(m
−1) . 

Then the proposition can be immediately obtained. 	�  □
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+

1

2
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𝜕2g1i(�, yi)

𝜕�𝜕�⊤
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