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ABSTRACT

In this study, a novel approach based on the U-Net deep neural network for image

segmentation is leveraged for real-time extraction of tracklets from optical acquisitions.

As in all machine learning (ML) applications, a series of steps is required for a working

pipeline: dataset creation, preprocessing, training, testing, and post-processing to refine

the trained network output. Online websites usually lack ready-to-use datasets; thus, an

in-house application artificially generates 360 labeled images. Particularly, this software

tool produces synthetic night-sky shots of transiting objects over a specified location and

the corresponding labels: dual-tone pictures with black backgrounds and white tracklets.

Second, both images and labels are downscaled in resolution and normalized to accelerate

the training phase. To assess the network performance, a set of both synthetic and real

images was inputted. After the preprocessing phase, real images were fine-tuned for vignette

reduction and background brightness uniformity. Additionally, they are down-converted to

eight bits. Once the network outputs labels, post-processing identifies the centroid right

ascension and declination of the object. The average processing time per real image is less

than 1.2 s; bright tracklets are easily detected with a mean centroid angular error of 0.25

deg in 75% of test cases with a 2 deg field-of-view telescope. These results prove that an

ML-based method can be considered a valid choice when dealing with trail reconstruction,

leading to acceptable accuracy for a fast image processing pipeline.
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1 Introduction

Space pollution is among the most significant concerns

of space agencies worldwide. The increasing population

of resident space objects is a threat to current and

future space missions. In-orbit objects are identified by

their type (according to the SATCAT classification) [1]:

payload and rocket bodies, fragments and debris, or not

identified. Recent evaluations have estimated the number

of these objects to be [2]:

• approximately 34,000 with a size larger than 10 cm;

• approximately 900,000 with a size between 1 and

10 cm (based on statistical models);

• several tens of millions with a size between 1 mm

and 1 cm (still based on statistical models);

• much more with a size less than 1 mm.

They are mainly located in the Low-Earth Orbit

(LEO) (55% of all operational satellites) and in the

Geostastationary Earth Orbit (GEO) (35%) [1]. Space

debris are artificial objects (including fragments resulting

from previous collisions or parts of multistage launchers)

other than a space vehicle that is active or liable to

be used in another way, being in orbit. Half of them

are represented by entire objects (e.g., inactive satellites

or upper stages of launchers), whereas the other half

are composed of fragments of various shapes and sizes

(resulting from explosions or collisions) or of objects

lost during previous missions (e.g., coverage, strap). The

increasing number of space objects jeopardizes operative

satellites with more likely collisions. Consequently,

reliable methods to track and survey space object

populations are crucial to grant a trustworthy Space
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Nomenclature

CCD Charged Coupled Device SATCAT Satellite Catalogue
CNN Convolutional Neural Network SSA Space Situation Awareness
DNN Deep Neural Network SST Space Surveillance & Tracking
FCN Fully Connected Network TLE Two Line Elements
FITS Flexible Image Transport System Dicecoeff Dice coefficient
FoV Field of View err Centroid error (pixel)
GEO Geosynchronous Orbit f Interpolating elevation function (rad)
ITG Image Tracklet Generator rp2a Pixel to angle ratio (pixel/rad)
LEO Low-Earth Orbit ϕ Lagrangian basis function
PNG Portable Network Graphics

Situational Awareness (SSA) with ground-based (optical,

radar, and laser) and space-based sensors.

Usually, debris optical follow-up is achieved using

two different techniques: the staring (or survey) mode

and the chasing (or tracking) mode. With the former,

the telescope is pointed at the sky while moving at a

sidereal rate. Thus, the stars appear as dots in the Field

Of View (FoV), whereas the debris appears as streaks

(usually called “tracklets”), resulting in a bright stripe

of pixels on the image. Regarding the latter, as soon as

the sensor spots an object, it starts chasing the target

while acquiring the image: the object appears as a single

dot, whereas stars slide through the field. The images

collected by these sensors were then preprocessed with

photometric techniques to enhance the features to be

detected by astrometric reduction techniques. In recent

years, several methods have been developed.

• Thresholding [3]: In computer vision, thresholding is

a simple method for image segmentation. Adopting

this approach, a grey-scale image is converted to

a binary image. These two values are assigned to

pixels whose intensities are below (0) or above (1) a

specified threshold. In astronomical images (and in

many other fields), thresholding is used to determine

which regions (connected pixels) are considered as

objects and which are perceived as the background.

However, the definition of an appropriate cut-off

is difficult because of several factors, such as noise,

background variations, or diffuse edges of the objects.

Any chosen threshold may cause some true objects

to be overlooked (false negatives) and some spurious

objects to be considered as real (false positives).

Varying the threshold to the extremes minimizes one

of these types of errors but maximizes the other.

Hence, it is difficult to set the threshold to be as

small as possible.

• Edge detection: A famous implemented algorithm

for border detection is Automated Streak Detection

for Astronomical Images (ASTRiDE) [4]. It is a

Python package for streak detection in astronomical

images using the “border” for each object, that

is, “boundary-tracing” and their morphological

parameters. The usual steps required by ASTRIDE

are:

(1) Removing background from the FITS input

image. The background map was derived using

the Phoutils.

(2) Deriving the contour map of the input image.

The contour level was controlled by the

threshold value. By tuning this parameter, the

number of detected contours of bright objects

may vary.

(3) Streak determination is based on the

morphology of each border. ASTRiDE removes

outer sources using morphological parameters

derived from each border: the shape factor,

radius deviation, and area.

However, this type of approach fails at a low

signal-to-noise ratio, and because of brightness

variations along the trail.

• Template matching [5]: It is a general-purpose object

localization technique, which allows the identification

of parts of an image that match, under some criteria

of similarity, an arbitrarily chosen image template.

The matching problem can be summarized as follows:

based on the source image I and the reference

image R, determine the offset (u, v) within the

search region S such that the similarity between the

shifted reference image Ruv and the corresponding

sub-image of I is the maximum. Template matching
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involves two critical points: similarity measurement

and search strategy. A well-prepared template is

a key to successful matching. A template is a

typical model or representative instance of the

target of interest in an image. For space objects,

a template should be a rectangular region containing

a trail. This type of method is time-consuming;

thus, the pixels not belonging to the trail template

can be set to 0 to relieve some computational

burden and to automatically filter out surrounding

targets. Simultaneously, the trail results were bright,

unsaturated, and isolated, meaning that overlapping

or contamination with other trails, targets, or

cosmic rays was avoided. Despite providing an

accurate streak extraction, an astrometric reduction

is generally time-consuming and requires several

intermediate steps. For object tracking in LEO,

telescopes with an FoV of the order of 2◦–3◦ are

commonly employed. Combining this aspect with

the usually high rotation rates of observed objects

in this orbital regime, a faster model would be

beneficial for quick tracklet reconstruction and

follow-up observation scheduling, even at the expense

of accuracy.

• GEO-FPN for RSO detection [6]: The proposed

framework leverages the Feature Pyramid Network

(FPN), a Convolutional Neural Network (CNN) for

image segmentation, to automate GEO RSO sensing

in the telescope images. The backbone used to detect

low-level patterns from images is the pre-trained

EfficientNet-B7 on ImageNet. A simple preprocessing

is applied to images that are overexposed to scale

the pixel values of the input image, consisting of

thresholding driven by training data statistics. A

custom deterministic post-processing method based

on vector mathematics was developed to clean false

detections. The employed dataset is not balanced

regarding over-exposed images and crowded scenes,

and the network may fail in the case of overlapping

stars, blurring owing to atmospheric disturbances,

and low signal-to-noise ratio trails. In addition, no

information on the inference time exists, which is

essential for real-time applications.

This study aims to explore novel approaches to the

problem of space track reconstruction, as opposed to

traditional methods. In particular, owing to the massive

collection of information during space missions and

operations, data-based techniques such as Machine

Learning (ML) have become increasingly efficient

in effectively solving complex and diverse problems.

Supervised learning techniques such as recurrent neural

networks are leveraged in guidance navigation and control

systems to provide solutions to optimal control problems

and the analysis of orbital data files; CNNs are employed

to assist the spacecraft in the landing phase through

visual processing of moon images [7]; in Ref. [8], a

Deep Neural Network (DNN) determines the feasibility

conditions associated with the fuel-optimal powered

landing; in Ref. [9], an AI-based method is developed

to detect, among different features, anomalies in space

objects maneuver history. In this framework, U-Net

(a CNN) focuses on the reconstruction of LEO object

streaks. The advantage of this network is its architecture,

which is specialized in the segmentation of objects in

an image. In contrast to a basic CNN, it can output an

image in which a reliable shape of the target is represented

as a plain color silhouette over a uniform background.

This assists in the characterization of the trail shape and

the computation of their centroids. Adopting this neural

network improves the performance by simply fine-tuning

the architecture or employing custom-made training

datasets. The orbital regime at hand is the toughest to

track because of the target angular speeds involved, which

are much higher than the others. Furthermore, most of

the existing approaches based on astrometric reduction

lack rapidity in terms of processing time. Two key points

are therefore considered: the timing and accuracy of the

proposed solution. In addition, to gradually match real

case scenario standards, both synthetic night-sky images

and real images from observation campaigns are employed

for algorithm performance assessment.

The novelty lies in the application and fine-tuning

of this neural network category to address the optical

track reconstruction task, encouraging the exploitation of

the ever-growing SST-related datasets. This alternative

approach allows for a gain in processing time, given a

suitable preprocessing, and to facilitate the upgrade.

Multiple training sessions on progressively updated

catalogs would lead to increased robustness and

generalization capability. First, a synthetic dataset

was generated using an in-house developed optical

image simulator, allowing a preliminary analysis of the

application.
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2 Datasets and methods

The first step in an ML application is the dataset

generation, aimed, for the specific case, at producing

a set of tracklet and mask images. The major issue in

dealing with neural networks is to obtain a sufficient and

reliable amount of data for the learning phase. However,

the retrieving of a significant pool of night-sky images

with tracklets and the corresponding labels is difficult and

cumbersome. Consequently, a significant effort was spent

to build an Image Tracker Generator (ITG): a Python

application capable of creating simulated images that

faithfully mimic the real case scenario.

2.1 Synthetic images and mask generation

To start the generation process, a TLE file (a data

format encoding a list of orbital elements) of different

known LEO space objects enters an in-house software

named SENSIT [10] that provides the relative azimuth

az and elevation el at every instant of each passage over

a selected ground station. This information, combined

with simulated black and white night-sky images [11]

(as shown in Fig. 1), is sufficient for ITG to generate

two image folders: one for simulated tracklet images

and the other for the mask counterparts. The selected

pictures are in PNG format (8-bit color depth). In ITG,

the input images are preprocessed through a greyscale

conversion and resized to a resolution of (512, 512),

which is considered a suitable compromise between loss

of information owing to downsampling and improvement

of the U-Net training and testing processing time. To

simulate realistic sensor shots, a uniform noise pattern

Fig. 1 Synthetic sky image (black pixels are the background
and white dots are stars) [11].

between two fixed boundaries was added. Subsequently,

the object passages were extracted as arrays of local

angular coordinates. For each image, an available transit

is shortlisted and interpolated with quadratic Lagrangian

basis functions ϕ (see Eq. (1) and Eq. (2)) [12]:

ϕj(az) =



1 + 3
az − azj

hj
+ 2

(
az − azj

hj

)2

,

azj−1 ⩽ az < azj

1− 3
az − azj
hj+1

+ 2

(
az − azj
hj+1

)2

,

azj ⩽ az < azj+1

0, otherwise

(1)

where az is the azimuth angle, and hj = azj − azj−1.

The subscript j denotes the j-th element of a length N

vector, and 2N is the angle array length. The ϕ basis

associated with element midpoints is expressed as

ϕj−1/2(az) =


1− 4

(
az − azj−1/2

hj

)2

,

azj−1 ⩽ az < azj

0, otherwise

(2)

The final element trial function f(az) mapping az to

elevation el can be written as

f(az) =
N∑
j=0

eljϕj(az) +
N∑
j=1

elj−1/2ϕj−1/2(az)

=
2N∑
j=0

elj/2ϕj/2(az) (3)

It is assumed that f(az) represents the elevation as a

function of azimuth and, whenever this is not possible,

the elevation turns into the independent variable and

azimuth is the dependent variable. Once f is defined, a

curve arc is randomly chosen between two interpolating

points, and the function is evaluated in a range of values

between them. The angular coordinates can be converted

to pixel coordinates by knowing the equivalent sensor

FoV and image resolution.

Usually, tracklets are characterized by an irregular

shape; thus, to make them more realistic, the thickness is

randomly changed and moves along the streak path. The

only missing step is to set the fake trace in the image

to realistic pixel intensity. The notion of randomness is

employed, and thus, two quantities called lb and ub are

defined as arrays of possible lower and upper bounds for

tracklet coloring (an example of a resulting image is shown

in Fig. 2(a)). Thus, the tracklet is shifted differently

for each image to increase the variety of training and
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testing sets. The same idea applies to the mask-creation

process (see Fig. 2(b)): the background pixels were set

to 0 (black), whereas the trace pixels were set to 255

(white). The aforementioned procedure aims to obtain

a dataset composed of input information (images) and

corresponding output problem solution (masks). They are

both fed to U-Net to obtain an input–output relationship.

To ease the learning phase, raw data are normalized with

respect to 255, such that each pixel value shrinks between

0 and 1. The goal was to avoid gradient disappearance

and divergence during training.

2.2 Training phase

The training process involves the minimization of a

loss function that quantifies the distance between the

modeled outputs and given labels (a pixel mask matching

(a)

(b)

Fig. 2 (a) A synthetic input image: the tracklet is added
as a white pixel on the synthetic night sky. (b) A synthetic
input mask: the night sky is completely black, and the white
pixels are the target tracklets.

a given input in the case of segmentation). It is built over

batches of images from the training set and adjustable

weights, the latter being the variables of the problem.

The optimal set is achieved by computing the gradients

linking weights to the loss function to define a gradient

descent-based optimization algorithm. In this case, the

trained neural network is a custom version of U-Net,

meant for segmentation of satellite images (further

information is available in Section 3). Once convergence

is reached, the weights fitting the entire training set are

saved, and the model can be tested (Section 2.3).

Before entering the network, the samples are shuffled

to avoid the recognition of false patterns. The learning

session was performed using 250 of 360 images. The

samples were generated to ensure variability in the

tracklet light intensity, size, and thickness, and to

overcome overfitting during training. At each epoch, 70%

of images were employed for the actual minimization and

the remaining 30% for validation purposes (an unbiased

evaluation of a model fit on the training distribution while

tuning hyperparameters). At the end of this routine,

the model was saved for testing. In Python, because

of the developer community, it is likely to determine

plug-and-play codes for the neural network. The same is

true for Keras-unet [13], the one used for this work. It is a

helper package with multiple U-Net implementations and

utility tools that are helpful when working with image

segmentation tasks.

2.3 Testing phase

Testing consists of the assessment of network

performance: the obtained model predicts new cases

(different from the training ones), the solution of which

is known. If the results of the testing phase do not attest

to a sufficient level of model goodness, the training is

repeated. First, the code was tested on synthetic PNG

images (110 of 360), and then on 80 real tracklet images.

The adopted figure of merit for synthetic images is the

Dice coefficient [14] (see Eq. (4)):

Dicecoeff = 2 · |X ∩ Y |
|X|+ |Y |

(4)

where X and Y are the tracklet pixel position sets. X is

the ground truth (reference tracklet), and Y is the one

predicted by U-Net.

This formulation conveys a simple concept: the higher

the intersection score between two sets, the greater the

similarity between the two sets. This ratio can assume
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values from 0 (the two sets have nothing in common) to 1

(the two sets are identical). However, a modified version

is presented in Section 4 (Eq. (5)):

Dice∗coeff = 1−Dicecoeff (5)

Dice∗coeff is adopted to establish how well the reference

and produced tracklets overlap. To check the network

precision, the centroid error was chosen as a figure of

merit. The computation starts with the detection of

white pixels across the output and the expected masks.

Subsequently, an average of the corresponding x and y

pixel coordinates was calculated to obtain the pixel grid

position associated with the tracklet centroid. Next, the

pixel-to-angle ratio is computed as

rp2a =
FoV

resolution
(6)

where FoV is the characteristic dimension of the sensor

field of view (in degree), whereas resolution is the pixel

resolution of the square images used to train the network.

Using rp2a, the centroid error in degree is eventually

defined as

err = rp2a

√
(xc,pred − xc,exp)2 + (yc,pred − yc,exp)2 (7)

where xc,pred and xc,exp are the predicted and expected

horizontal centroid pixel coordinates, respectively, and

yc,pred and yc,exp represent the predicted and expected

vertical coordinates, respectively.

Once the performances on the synthetic images have

been assessed, it is worth evaluating how the trained

network works on real images. Specifically, a set of 80 real

16-bit greyscale FITS images were provided by the Italian

Air Force and taken with PdM-MITE [15], an optical

telescope designed for SST by GMSpazio and Officina

Stellare [16]. It is built with exclusive Riccardi-Honders

flat field optical design with a diameter of 350 mm and

a focal ratio f = 2:8. It is also equipped with two CCD

sensors: one with a wide FoV used for surveillance tasks

and the other with a narrow FoV dedicated to tracking

specific objects. The latter (used as a reference benchmark

for the optical part) is composed of an array of (4096,

4096) pixels in resolution, leading to a 16 Mpxl detector.

FITS is an archiving format for images used in astrometric

analysis. The FITS file has a header (a text file) aimed

at concisely describing additional metadata (such as the

tracklet centroid right ascension and declination). In

selecting the test bench, a few aspects were considered:

• The tracklet should be visible in the original file.

Sometimes, even if the FITS header accounts for the

angular coordinates of the object, it is not necessarily

easy to determine a match in the picture, even when

changing the visualization settings.

• For the remaining pictures, where the tracklet

is visible to the naked eye, only those that are

sufficiently thick are picked. The resolution has to

be decreased eight times, from (4096, 4096) to (512,

512), and by the force of circumstances, there is an

information loss.

Real pictures suffer from vignetting (see Fig. 3).

Vignetting is the effect in photography or optics wherein

peripheral brightness of the photo appears reduced

with respect to the center. Segmentation networks are

susceptible to variations in brightness; to have consistent

performance, all the input acquisitions should resemble

the training images; otherwise, the detection might fail.

To address this, a filter is specifically designed to work

regardless of the telescope or sensor used during the

observation campaign. Because the shots are on a 16-bit

scale, they must be down-converted to 8-bit with a few

steps. By switching between these two color depths, some

of the information is lost. Two methods are employed

to address this issue: compressing the initial color to a

smaller scale or extracting a subset of the entire color

range containing the features of interest (for tracklets, it

is the base of the attainable spectrum). The first approach

is conservative: if the image is too noisy, the output will

not be entirely influenced; however, fainter tracklets may

not be detected. Conversely, the second method is far

more effective for dimmer tracklets; however, the noise is

enhanced. The following steps were identical to synthetic

PNG preprocessing.

Fig. 3 An example of real detection, taken from PdM-MITE
sensor.
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2.4 Post-processing phase

Post-processing aims to refine the label that originates

from the model when fed with real images. Usually,

the output masks not only show the trace itself but

also undesired spots that have nothing to do with the

tracklet. They must be filtered out; otherwise, centroid

identification will be less accurate. It is possible for false

positives to be valued as real traces, e.g, output mask

with only sparse bright points: they do not lay down a

real tracklet. If nothing is identified (for instance, because

of an incorrect color depth filter), the application should

retry label generation with other options. The centroid

error computation is again applied as a benchmark for

the algorithm performance in the real-case scenario.

3 Theory and calculation

The core of the algorithm is U-Net, a neural network

belonging to the CNN family, aimed at semantic

segmentation. A CNN [17] is a deep learning algorithm

that can take in an input image, assign importance

(through adjustable weights and biases) to various

aspects/features of the image, and classify it accordingly.

An example of an input can be a greyscale image

consisting of a 2D matrix. The first two dimensions

represent the number of pixels given by the resolution,

whereas the third spans across its channels (a single

one in greyscale). The input data structure information

is preserved in a CNN, and the information that

accompanies it. CNNs reduce images into feature maps

without unwrapping them into vectors until their last

layer, limiting structural feature loss that could be critical

to obtaining reliable predictions. The architecture is

usually organized into several layers (as shown in Fig. 4),

combined to achieve effective feature decomposition and

classification: convolutional, max pooling, and fully

connected ones. In a convolutional layer, a filter is

convolved with the input image (i.e., sliding over the

image spatially, computing dot products), and a bias term

is added to produce an activation map. Max pooling layers

output a downsampled version of their input volumes

through a max summary to reduce the data size and

processing time. A fully connected layer consists of an

FCN that computes a vector of scores, one for each target

class. Typically, it serves as the final processing step for

a CNN.

A widespread CNN application category is semantic

segmentation [19]. It consists of the classification of each

pixel in an image according to different labels, with

no distinction between instances of the same class (for

example, two cows together are perceived as one in Fig. 5).

In general, the method used to perform this task is

based on a CNN aimed at generating a feature map to

label every region of the image. Owing to its structure

(a sequence of convolution and pooling layers), the

resulting volume is characterized by low resolution.

Consequently, the final model is usually complemented

with a “symmetric” network in which the downsampled

output can be interpolated back to the initial resolution

such that a segmented version of the input is obtained.

This type of neural network can have diverse

applications in SST frameworks. Whenever images are

involved and a history of data analyzed with deterministic

techniques is available, a structured dataset can be built,

and a data-driven method can be used to address the

problem. Meaningful examples can be the application

developed in this study, providing a valid alternative

to trail reconstruction, or a filter to delete disturbances

and highlight particular features in a telescope image.

In this case, the selected network was U-Net [20]. Its

architecture can be broadly considered as an encoder

Feature extraction Classification

Output layer

Fully connected layerMaxout pooling layer

Convolution
layer

Pooling
layerConvolution

layer

Maxout

Fig. 4 An example of a simple convolutional neural network. Reproduced with permission from Ref. [18], © IEEE 2015.
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network, followed by a decoder network (see Fig. 6):

• The encoder is the first half in the architecture

diagram (see Fig. 6). It is usually a pre-trained

classification network such as VGG/ResNet where

convolution blocks are applied, followed by a

maxpool downsampling to encode the input image

into feature representations at multiple levels.

• The decoder is the second half of the architecture.

The goal is to semantically project the discriminative

features (lower resolution) learned by the encoder

onto the pixel space (higher resolution) to obtain

a dense classification. The decoder consists of

upsampling and concatenation, followed by regular

convolution operations.

The most commonly used loss function for image

segmentation is the pixel-wise cross-entropy loss. This

examines each pixel individually and compares the

class predictions (depth-wise pixel vector) to a one-hot

encoded target vector. More specifically, the last layer of

U-Net performs classification using a Softmax activation

(a) (b)

Fig. 5 Comparison between an input image (a) and a segmented one (b). Reproduced with permission from Ref. [19].
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Fig. 6 Schematic representation of U-Net, with the encoder and decoder sections. Reproduced with permission from Ref. [21],
© Elsevier Inc. 2018.
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function pk which generates class scores for each pixel [20]:

pk(x) =
eak(x)∑K

k′=1 e
ak′ (x)

(8)

where ak denotes the k-th kernel channel comprising the

final feature map element for pixel position x, and K

represents the total number of classes (a single one in

this case). The resulting feature map is then compared

with the ground-truth mask using a cross-entropy loss

function type for each pixel x:

L(x) = −
K∑

k′=1

tk′(x) log(pk′(x)) (9)

where the distance from the ground-truth pixel mask is

considered for each class k′ by comparing the true label

tk′ with pk′ .

The most important network entries are summarized in

Table 1, highlighting the network structure, specifications

of the minimization process, and input type.

Table 1 U-Net entries

Input Value

Image size (512, 512, 1)
Classes 1
Batch size 2
Epochs 2
Validation split 0.3
Number of layers 6

Input Value

Filters 64
Up-conv-filters 96
Output activation Sigmoid
Loss Binary cross entropy
Optimizer Adam
Metrics Accuracy

4 Results

This section reports the results of the training and testing

phases. The training loss function helps to determine

the best possible values for the weights and biases that

would provide the right class attribution for each input.

Progressively reaching loss function convergence to a

near-null value is the first requirement for the network

to make predictions with unseen data (validation set and

real case scenarios). In the present case, the final loss

value was 0.0270 after 350 iterations (see Fig. 7). The

total number of iterations is composed of two distinct

epochs, each corresponding to an optimization process

0
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Fig. 7 Loss function trend during the training process.

window, where the weights are initialized using the ones

coming from the last iteration of the previous epoch.

Testing consists of the assessment of model

performance. U-Net is used to predict new cases (different

from the training cases), the solution of which is

known. Different types of tests were performed on

synthetic and real images. Regarding the former, the

relevant benchmarks are Dice∗coeff and the centroid error

distribution (see Figs. 8 and 10(a) and Table 2).
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Fig. 8 Cumulative plot of the occurrence of Dice coefficient
values obtained with synthetic images.

Table 2 Dice∗coeff percentiles on synthetic input images
referred to Fig. 8

Percentile Dice∗coeff

25% 2.99× 10−2

50% 1.83× 10−1

75% 9.09× 10−1

Dice∗coeff is very conservative when the establishment of

good outcomes is concerned. When a tracklet is partially

recognized and there is no other spurious illuminated
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pixel, it might score close to 0.5, or even more. In the

same scenario, the error associated with the centroid

could still be acceptable (see Fig. 9). As shown in Fig. 8,

75% (the third quartile) of the analyzed input pictures

have a Dice∗coeff value of 9.09 × 10−1, which does not

seem satisfactory; however, looking at the centroid error

cumulative distribution, at the same percentage, the

error is approximately 1.46× 10−1 deg (see Table 3 for a

detailed percentile description).

Moving to a real-case scenario (see Fig. 10(b) and

Table 4 for a precise percentile description), the Dice

coefficient cannot be evaluated because no exact output

masks are available. It is only possible to compute the

error between the estimated centroid and the exact

centroid from the FITS metadata.

Table 3 Centroid error percentiles for the synthetic case
linked to Fig. 10(a)

Percentile Centroid error (deg)

25% 2.88× 10−3

50% 3.26× 10−2

75% 1.46× 10−1

Table 4 Centroid error percentiles for the real case linked
to Fig. 10(b)

Percentile Centroid error (deg)

25% 1.69× 10−1

50% 2.16× 10−1

75% 2.92× 10−1

In 75% of the cases (the third quartile), the error

is below 2.92 × 10−1 deg (the estimated FoV is

(a) (b)

Fig. 9 (a) Synthetic tracklet; (b) equivalent prediction for Dice∗coeff ≈ 0.5.
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Fig. 10 Cumulative plots of the occurrence of centroid error values obtained with synthetic (a) and real (b) images.
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approximately 2◦; thus, most of the time, the related

error would be less than 14%). An example with a low

estimation error is presented in Fig. 11. A high error value

from 0.4 to 0.5 deg on the horizontal axis is associated

with false positive detection (see Fig. 12). The outcome

could vary owing to:

• The resolution reduction of the input pictures from

4096 to 512.

• Information loss owing to the transition from 16 to

8 bits.

• False positives may be perceived as true positives in

wrong grid locations.

• The tracklet is identified together with outer sources,

resulting in a poor estimation.

The implemented algorithm should balance both

accuracy and processing time to enable immediate

follow-up observations, possibly during the same transit

of the object in the sensor field of regard. Therefore, the

cumulative distribution showing the timing performance

is shown in Fig. 13 and Table 5. In 75% of the cases,

the total time (summation of preprocessing, testing, and

post-processing) for a single prediction is approximately

1.22 s. The distribution is split into two regions: on the

left, the prediction is made only once; on the right, it is

performed twice, probably owing to an incorrect initial

color depth filter choice in the first attempt, in which

case the processing time doubles. The test bench is the

Python version of the code, running on the CPU of a

machine equipped with an AMD 3700X (3.6 GHz) and

(a) (b)

Fig. 11 (a) A bright trail (NORAD ID 31598); (b) the linked output mask.

(a) (b)

Fig. 12 (a) A cloudy scene (ID 33412); (b) the relative false-positive mask.
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Fig. 13 Cumulation of the occurrence of a range of total
processing time obtained with real images.

Table 5 Total processing time percentiles obtained with
real FITS image processing

Percentile Total time (s)

25% 6.56× 10−1

50% 6.92× 10−1

75% 1.18

16 GB of RAM.

Timing mostly depends on the computer hardware.

However, U-Net grants sufficiently low processing time

to predict the object’s angular position such that the

telescope pointing can be modified to follow its trajectory

in real time. This is the driving parameter for the entire

algorithm development, and the few seconds needed for

the Python code to run on a desktop clarify that: if

translated into operative language, processing time can

reach even one half or a third of the obtained result and

that target follow-ups can be performed. Regarding the

centroid error values, they may seem large if the FoV of

the sensor (a few degrees) is considered. However, because

the downstream actions performed by the telescope do not

require high precision (the sensor needs an area in which

it is confident to a certain level to determine the object

after the image acquisition), it is considered acceptable

for the application. Precise astrometric reduction and

orbit determination can be performed offline as image

post-processing with traditional methods, with no waste

of processing time during the tracking phase.

5 Conclusions

Based on the results, the network can generate reliable

masks, performing better with synthetic input images

than with real ones. This accuracy difference occurs

because similar simulated image distributions were used

for both the training and testing phases, and real images

feature different disturbances such as clouds and stray

light sources. The time taken for every photo to be

processed was always under 1.22 s. The development

of a compiled application, rather than an interpreted

one, can undoubtedly relieve it from processing overhead.

Furthermore, the Dice test run on synthetic images,

despite not promising, shows that this figure of merit is

sensitive to the small number of scattered pixels usually

involved in the tracklet coloring. Consequently, even

partial recognition of the trail leads to a meager result.

The key findings are reported in Table 6.

Table 6 Total time for prediction, centroid error with simu-
lated and real images, and Dice coefficient on synthetic masks

Quantity Performance

Total time (75%) 1.18 s
ε synthetic case (75%) 0.15◦

ε real case (75%) 0.29◦

Dice∗coeff (75%) 0.91

In addition to showing significant achievements, some

improvements can be implemented to refine them.

Owing to limitations in the scenario generation variety,

the trained model cannot handle clouds and similar

disturbances. It would be better to start with a set

of training images taken from real telescope shots and

append an extracted streak from other observations in

advance. This addition will make the network more robust

against unexpected circumstances and also increase the

success rate and cause the overall error to drop. A

drastic change in network architecture can result in

more efficient image processing, such as object detection

or instance segmentation. In contrast to U-Net and

traditional semantic segmentation, the aforementioned

techniques succeed in the perception of targets belonging

to the same class as different entities. A further step

forward could be the integration of this tool as part

of an autonomous space object tracking pipeline to be

performed by optical telescopes equipped with a suitable

processing unit.
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