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ABSTRACT

Asteroid 469219 Kamo’oalewa, also named 2016 HO3, is a small-size fast-rotating near-

Earth asteroid, which is a potential target for future explorations. Owing to its weak

gravity and fast spin rate, the dynamics on the surface or in the vicinity of 2016 HO3 are

significantly different from those of planets or other small bodies explored in previous

missions. In this study, the geophysical and orbital environments of 2016 HO3 were

investigated to facilitate a potential mission design. First, the geometric and geopotential

topographies of 2016 HO3 were examined using different shape models. The lift-off and

escape conditions on its fast-rotating surface were investigated. Then, the periodic orbits

around 2016 HO3 were studied in the asteroid-fixed frame and the Sun–asteroid frame

considering the solar radiation pressure. The stable regions of the terminator orbits were

discussed using different parameters. Finally, the influence of the nonspherical shape on

the terminator orbits was examined. The precise terminator orbits around a real shape

model of 2016 HO3 were obtained and verified in the high-fidelity model. This study shows

that the polar region of 2016 HO3 is the primary region for landing or sampling, and

the terminator orbits are well suited for global mapping and measurements of 2016 HO3.

The analysis and methods can also serve as references for the exploration of other small

fast-rotating bodies.
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1 Introduction

Solar system small bodies such as asteroids and comets

have attracted scientific study for a long time as

they may contain clues to understand the evolution

of the solar system, the formation of planets, and the

origin of life. Several missions to small bodies have

been successfully performed in the past few years, and

they have obtained abundant information about the

composition and structure of these targets [1–7]. The

targets in previous missions included near-Earth asteroids

(NEAs) and main-belt asteroids with different spectral

types as well as comets. The size of the targets has

varied from hundreds of meters to hundreds of kilometers,

and the rotation period has ranged from less than

1 h to more than 10 h. Meanwhile, more missions to

metal asteroids [8], Trojan asteroids [9], and binary

asteroids [10] are in progress, which will increase our

knowledge of these asteroid types.

With the development of observational techniques,

numerous small-sized asteroids (diameter of less than

100 m) have been found in recent years [11]. Some have a

short rotation period, below “the rotation barrier” (less

than 2 h) [12]. These features differentiate them from

other small bodies studied in previous missions. The

composition, formation, and dynamic evolution of such

small fast-rotating bodies are still unknown, which makes

them interesting targets for exploration. NEA 469219

Kamo’oalewa, or 2016 HO3, is one of such small bodies.

It is also a quasi-satellite of the Earth [13], which has

nearly the same orbital period as the Earth and remains

stable in the neighborhood of the Earth–Moon system for

a long time. Therefore, it is an easily accessible target with
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frequent launch opportunities (approximately every half

a year). Therefore, asteroid 2016 HO3 has been identified

as a destination for several mission proposals [14]. In

particular, the Chinese Space Agency issued its sample

return mission to 2016 HO3 to determine its physical

properties, chemical and mineral components, isotope

composition, and structure.

The geophysical and orbital environments of an

asteroid are crucial for mission planning. Extensive

research has been conducted in this field. The distribution

and evolution of the equilibrium points around irregularly

shaped small bodies have been discussed [15–18].

The stability of orbits around small bodies has

been investigated based on different gravitation field

models [19, 20]. Periodic orbits under the combined

influence of solar tides, solar radiation pressure (SRP),

and nonspherical perturbation have been designed [21–

26]. Meanwhile, the evolution of surface particles has been

analyzed [27–29]. Van wal et al. [30] calculated the lift-off

and escape velocities from the surface. Wen et al. [31]

defined the surface-hopping domain. Li et al. [32] further

discussed the influence of rough surfaces on landing

motion by constructing rocky terrains generated based

on the polyhedral model. These studies help us better

understand the motions around small bodies. Before the

OSIRIS-Rex mission, the detailed surface and interior

states of Bennu were investigated [33] to prepare the

mission plan. However, owing to its small size and fast

spin rate, the dynamic environment on the surface or in

the vicinity of 2016 HO3 might be different from that

of other explored small bodies. The weak gravity cannot

bind materials in low latitude regions [34]. The SRP

is also non-negligible when we discuss orbital motions

around 2016 HO3. It is therefore necessary to investigate

the geophysical and orbital environments of asteroid 2016

HO3 prior to exploration missions. The aim of this study

is to provide a detailed analysis of the possible surface

and orbital motion on/around 2016 HO3 to facilitate the

mission design. The main contributions of this study are

as follows.

First, the geometric and geopotential topographies of

asteroid 2016 HO3 were studied. The lift-off and escape

conditions on the fast-rotating surface were investigated.

Owing to its fast spin rate, objects resting on the surface

may lift off or even escape from 2016 HO3 if they are not

bound. Therefore, we analyzed the required velocities on

the surface to avoid lift-off or escape. The surfaces were

classified based on the different conditions. The range

and direction of the surface velocity in different regions

were examined.

Second, the periodic orbits and their stabilities in

the asteroid-fixed frame and the Sun–asteroid rotating

frame were investigated considering the SRP. Because the

physical parameters of 2016 HO3 are still very uncertain,

the stable region of terminator orbits around 2016 HO3

was analyzed with different parameters.

Third, the influence of the nonspherical perturbation

on terminator orbits was examined. Terminator orbits

of small bodies are usually solved based on a point-mass

model or a spherical model. Asteroid 2016 HO3 has an

elongated shape, which causes large gravity perturbations

when compared with a spherical model. The precise

terminator orbits under the non-spherical perturbation of

2016 HO3 were solved, and the effect of pole orientation

on the offsets of terminator orbits was investigated.

The analysis and methods used in this study provide

preliminary results of the motions around asteroid 2016

HO3, which can be used for mission planning once an

accurate shape model and the physical parameters of

2016 HO3 are available. They also serve as references for

the exploration of other small-sized fast-rotating bodies

with characteristics similar to those of 2016 HO3.

The remainder of this paper is organized as follows.

Section 2 describes the parameters and models of asteroid

2016 HO3 used in this study. Section 3 describes the

geophysical environment of 2016 HO3. The geometric

and geopotential topographies of 2016 HO3 with models

of different shapes are discussed. The lift-off and escape

conditions on the surface are analyzed. Section 4

investigates the orbital motion in the asteroid-fixed

frame. The periodic motions in the Sun–asteroid rotating

frame are described in Section 5. The influence of

the nonspherical perturbation on terminator orbits is

examined. Finally, Section 6 concludes the paper.

2 Shape model of 2016 HO3

2.1 Basic dynamics

The shape model of asteroid 2016 HO3 in this study is

given. This observation suggests that 2016 HO3 is an

L-type (S-type) asteroid with a mean radius of 18 m [35]

and a spin period of 0.467 ± 0.008 h. A precise shape

model of 2016 HO3 is currently unavailable, but the light

curve shows a large amplitude, indicating that 2016 HO3
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might be an elongated small body [36]. The possible

size ratios were discussed based on the triaxial shape

model [34]. We selected two size ratios for our study. The

first model S1 had ratios of b/c = 1 and b/a = 0.4786,

which is the superior limit ratio for b/a. The second model

S2 had ratios of b/c = 1.4142 and b/a = 0.3036, which

corresponded to a much more elongated shape. Based on

a mean radius of 18 m, the sizes of the two models were

S1 : 58.8 m × 28.2 m × 28.2 m and S2 : 88.9 m × 27.2 m

× 19.3 m. Meanwhile, to better reflect the influence of

irregular shapes, both ellipsoid and real-shape models

were used to analyze the geophysical environment of

asteroid 2016 HO3. The shape model of asteroid 1998

KY26 was used [37]. It has a similar size and spin rate

to those of 2016 HO3, but the asteroid is closer to a

spherical body. Therefore, the shape model was stretched

or compressed to satisfy the size ratio. The two shape

models are shown in Fig. 1.

(a) Model S1

(b) Model S2

Fig. 1 Shape models of asteroid 2016 HO3 used in the study.

The ellipsoid integral and polyhedron methods were

used to calculate the gravitational fields of the models.

Here, we assume that 2016 HO3 has a constant density

of ρ = 2.5 g/cm3, which is a typical value of an S-

type asteroid [38]. The spin rate is ω = 0.003737 rad/s.

An asteroid-fixed frame was established at the center

of the mass. The X, Y , and Z axes were aligned

with the maximum, medium, and minimum principal

axes of inertia of the body, respectively. The spin

axis was assumed to be along the Z axis. When we

analyzed the geophysical environment of 2016 HO3, other

perturbations, such as the SRP, electromagnetic force,

and third-body gravity, were neglected. However, the

effect of the SRP was considered when examining the

orbital motions.

3 Geophysical environment of 2016 HO3

Based on the shape model and parameters presented

above, the geophysical environment of asteroid 2016

HO3 was analyzed and mapped on the surface, including

the geometric and geopotential topographies and their

derivatives. The methods and definitions used in previous

studies were applied. We modified the lift-off and escape

velocities on the surface of a fast-spinning body.

3.1 Geometric and geopotential topography

First, the geometric topography of 2016 HO3 was

examined, and it was used to describe the relative changes

in the body’s radius from the coordinate center and

the orientation of the surface relative to the body-fixed

frame. It is only related to the shape of an asteroid and

is independent of the gravity and spin rate. The relative

geometric altitudes and tilt angles of the two shape

models are shown in Figs. 2 and 3, respectively. Here, the

sea level or zero value was set as the lowest distance from

the surface to the center. The tilt angle was defined as the

angle between the surface normal vector and radius vector

from the surface. It is evident that shape model S2 has

larger altitude and tilt angle. The relative altitudes were

17 m for S1 and 36 m for S2. Large tilt angles appeared

near the end of the long axis, and small tilt angles were

concentrated near the YZ plane. The maximum tilt
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Fig. 2 Geometric altitude of two shape models.
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Fig. 3 Tilt angle of two shape models.

angle was 74◦ for S2. The geometric topography varied

according to the shape of the model. The tilt angles

in the ellipsoid model had a similar distribution, but

a smaller maximum value as the altitude near the two

extremes changed smoothly. Another azimuthal angle

can be defined within the tangential plane to determine

the orientation of the surface in the body-fixed frame.

Then, the orientation of the surface in the inertial frame

can be solved, which is important for a landing mission,

as the spacecraft needs to determine its attitude relative

to the surface to maintain safety.

Compared with the geometric topography, the

geopotential topography focuses on the relative changes

in geopotential of a body and the orientation of the

surface relative to surface acceleration. This is crucial

to the characteristics of surface motion. Here, previous

definitions of geopotential altitude and slope angle were

used [33]. The surface slope was defined as the relative

orientation between the surface normal vector and the

local acceleration vector. The slope angle supplemented

the angle between the surface normal and the total

acceleration at the location. The lowest value of the

geopotential across the surface was selected as the

“sea level” [39]. Then, the geopotential value at a

given location relative to the reference “sea level” was

solved. The geopotential altitude at a given location was

determined by dividing the relative geopotential value by

the local total acceleration, which is in units of length.

The geopotential altitude reflects the potential difference

between two locations. Its value may be larger than

the real geometric height or radius of the small body.

Figures 4 and 5 show the results for the two models.

The geopotential topography of 2016 HO3 is different

from the geometric topography because of the fast spin

rate. The largest geopotential altitude of 2016 HO3

appears at the pole, but the “sea level” or the lowest

geopotential altitude is located at the extremes of the
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Fig. 4 Geopotential altitude of the two shape models.
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Fig. 5 Slope angle of the two shape models.

major axis, which is opposite to the geometric altitude.

The altitude changes sharply near the pole region. The

maximum altitude is approximately 400 m in S1 and

increases to 800 m in S2, indicating that the difference

in energy across the surface is extremely large in an

elongated fast-spinning body. The pole region is the only

area where the slope angle is less than 90◦, as shown in

Fig. 5. In most areas, the surface has a large slope angle,

indicating positive surface gravity. It requires cohesion

or a grip force to maintain a particle or spacecraft on the

surface. Owing to the uneven terrain, even the pole region

may have a large slope angle. In our shape model, the

minimum slope angle exceeded 40◦. The ellipsoid models

yielded similar results; however, the slope angle at the

pole was reduced to 0. The geopotential altitude and

slope angle are also related to the density of the small

body. A higher density corresponds to lower altitude

and smaller slope angle. These results imply that a fast

spin rate significantly changes the surface environment

of asteroids compared with planets or moons. Moreover,

the elongated shape aggravates the disparity in energy

over the surface.

The change in geopotential altitude can be associated

with the amount of work required to move an object

from one position to another, which is called the Jacobi
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speed [33]. The relative Jacobi speed is the speed that a

particle would gain when going from the highest point in

the geopotential to a location, or the speed that a particle

would require at a point to reach the highest point in the

geopotential. The results for the relative Jacobi speeds in

the two shape models are shown in Fig. 6. The difference

in velocity is approximately 0.12 m/s for S1 and increases

to 0.18 m/s when the body has a longer major axis.

However, it only provides the velocity from an energy

perspective. This does not imply that the particle at

the pole can move to the equator at a certain velocity.

More factors should be considered, such as the lift-off

and escape conditions.

3.2 Lift-off and sliding velocity

The applications of geopotential topography include the

determination of lift-off and escape velocities. The lift-off

velocity refers to the required tangential velocity on the

surface to lift an object and is expressed as [30]:

Vl = ±

√
ρ2

l
(b̂δ ·Ω)2 + ρ

l
b̂ρ

l
·
[
Ω× (Ω×R)− ∂U

∂R

]
− ρ

l
b̂δ ·Ω (1)

Here, R is the position vector of the initial point P and

Ω is the angular velocity of the asteroid Ω = [0, 0, ω]T.

U is the gravity potential of the asteroid. ρ
l
is the

effective radius of curvature at point P . b̂ρ
l
is the unit

vector from the center of curvature to point P , which

is equal to the surface normal, b̂δ = b̂ρ
l
× b̂θ, where

b̂θ is an arbitrary unit vector on the tangential surface

at P with azimuth η. Usually, there are two lift-off

velocities along the directions b̂θ and −b̂θ. The curvature

radius ρ
l
(η) changes with the azimuth η. Therefore, at

each initial point P , we can determine the maximum

and minimum lift-off velocities at two azimuth angles.

Meanwhile, the lift-off velocity is significantly affected by

ρ
l
. If applicable, the velocity will be extremely large at

a local concave, and there will be a minimum radius of

curvature if it is locally concave. Therefore, we were more

interested in the lift-off velocity on convex surfaces. The

ellipsoid models of asteroid 2016 HO3 were used first,

as they are fully convex. The surface curvature of the

ellipsoid was solved mathematically, and the principal

curvatures and directions were determined. Subsequently,

the curvature at any azimuth η was obtained to solve

the corresponding lift-off velocity. Owing to the fast spin

rate, the lift-off velocity on the surface of 2016 HO3

was significantly different from that on Bennu or 1999

KW4 alpha [40]. Figure 7 shows the maximum lift-off

velocity in the latitude–longitude λ − ϕ map and the

triaxial ellipsoid shape model. In the figures, the red

points correspond to the initial positions. The length and

direction of the black lines indicate the magnitude and

direction of the maximum and minimum lift-off velocities

at the initial position, respectively. As can be observed,

the regions close to the extremes of the major axis are

unsolvable. This means that there is no lift-off velocity

or the lift-off velocity is zero. The object lifts off the

surface, even if it is stationary. The directions of the

maximum lift-off in the other areas are shown in Fig. 7(b).

The minimum lift-off velocities and directions are shown

in Fig. 8. It is interesting to note that, except for the

polar region, the minimum lift-off velocity has the same

direction as the maximum velocity. This implies that

the minimum velocity was negative in these regions.

An object requires a certain surface velocity to maintain
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Fig. 6 Relative Jacobi speeds.
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Fig. 7 Magnitudes and directions of maximum lift-off/sliding velocity.
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Fig. 8 Magnitudes and directions of minimum lift-off/sliding velocity.

contact with the surface at the initial position. Otherwise,

it will naturally be lifted off. In this case, we refer to

the negative lift-off velocity as the sliding velocity. The

sliding velocity has a constrained direction and value.

Figure 9 shows the boundaries of the sliding velocities at

different initial points. In the figure, the dashed red line

from the stars to the ellipse indicates the maximum or

minimum sliding/lift-off velocity in the given direction.

If the star is inside the ellipse, the initial point has a

lift-off velocity in any direction. An ellipse corresponds

to the maximum value. Otherwise, the initial point had a

sliding velocity in the constrained direction. The feasible

sliding velocity vector falls inside the ellipse. This implies

that the ellipse corresponds to both the maximum and

minimum sliding velocities in a specific direction. The

lift-off velocity was effective in any direction only near

the polar region. Increasing the major axis will increase

the minimum required sliding velocity, but it does not

change significantly, as does the decrease in density.
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Fig. 9 Boundary of sliding/lift-off velocities at different
locations. The sliding velocity is indicated by a blue star, and
the initial point is outside the boundary. The lift-off velocity
is shown as a yellow star, where the initial point is inside the
boundary and the velocity in any direction can be found.

Two conclusions can be drawn from these results. First,

if we want to land on the surface, then the polar region
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is the only possible region to remain stationary. The

tangential velocity of the spacecraft should be smaller

than 0.01 m/s to avoid lifting off when it lands on the

surface. Second, it is still possible to move on the surface

of a fast-spinning asteroid if the surface velocity can be

controlled within a certain range. However, owing to the

existence of an infeasible region near the major axis, the

surface motion might be temperate.

Then, the real shape model was applied, and the mean

curvature at each vertex of the polyhedron model was

solved. Some vertices are concave in one direction but

convex in the other. This means that the maximum lift-

off velocity is unbounded from above. Therefore, we only

provided the minimum sliding velocity or lift-off velocity

on the surface, as shown in Fig. 10. The types of regions

are shown in Fig. 10(a). As shown, the local terrain may

change the type of region. Some regions near the pole

may require a surface velocity to avoid lifting, and the

lift-off velocity might be effective in low-latitude regions.

However, the minimum velocity has the same magnitude

as that of the ellipsoid model.

3.3 Escape and return velocity

Next, the escape velocity was investigated. A previous
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0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.08

0.09

0.1

(m/s)

(b) Minimum value of velocity

Fig. 10 Lift-off/sliding velocity in the real shape model.

study provided the escape velocity in the local normal

direction. The escape velocity ve should make the

magnitude of the inertial velocity at the surface vI =

ven̂+Ω×R equal to the critical escape velocity in the

two-body problem vc =
√
2Umax(R), and Umax(R) =

max(U(R), µa/|R|) [41]. Here, n̂ is the outer surface

normal direction and µa is the gravity constant of the

asteroid. The surface normal velocity is vn = n̂ · (Ω×R)

and the surface tangential velocity is vt = Ω×R− vnn̂.

On the leading side, or vn > 0, the surface normal velocity

points outwards from the surface, whereas the surface

normal velocity points inward from the surface on the tilt

side vn < 0. Owing to the fast spin rate of 2016 HO3, the

surface velocity itself may be larger than vc. Therefore,

three cases can be differentiated:

Case I. If ∥vt∥ > vc or ∥vI∥ > vc, vn > 0, changing the

velocity along the surface-normal direction cannot reduce

the inertial velocity below vc. This means that we cannot

determine an escape velocity ve ⩾ 0 on the surface.

Case II. If ∥vI∥ > vc, ∥vt∥ < vc, and vn < 0, the

escape velocity is vemax = |vn| +
√
2Umax(R)− ∥vt∥2.

Meanwhile, a minimum normal velocity is required to

avoid escape vemin = |vn| −
√
2Umax(R)− ∥vt∥2. This

implies that an object will escape from the asteroid when

0 < ve < vnmin or ve > vnmax.

Case III. If ∥vI∥ < vc, the traditional escape velocity

is solved as vemax = |vn| +
√
2Umax(R)− ∥vt∥2. There

is no minimum normal velocity or vemin = 0.

Based on this definition, the escape velocity in 2016

HO3 is shown in Fig. 11. It was found that the escape

velocity could only be found near the polar region, and

the velocity varied between 0 and 0.027 m/s. Shape model

S2 had a higher velocity than S1. The minimum normal

velocity was found in only one facet of S2, as shown in

Fig. 11. The minimum normal velocity was close to the

escape velocity. No such region was found in S1. The

0
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0.015

0.025

0.01

0.005

(m/s)

Minimal normal velocity

Fig. 11 Escape velocity of the two shape models.
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other regions belonged to Case I, and the escape velocity

could not be determined. Objects do not require a normal

velocity to escape from 2016 HO3.

Furthermore, similar to the lift-off velocity, we revised

the escape velocity to determine the range of tangential

velocity on the surface to avoid escaping. The inertial

velocity at the surface was revised to vI = vb +Ω×R.

Here, vb denotes the velocity in the tangential plane of

the local frame. The surfaces can be classified into three

types:

Type A: vn ⩾ vc, and regardless of how we change vb,

∥vI∥ is larger than
√
2Umax(R). Similar to Case I, the

region belongs to the absolute escape region. Unbound

objects will escape from 2016 HO3 at any surface velocity.

Type B: ∥vI∥ > vc, but for vn < vc, we can adjust vb

to make the inertial velocity smaller than
√
2Umax(R).

The minimum vbmin to avoid escaping should be in the

opposite direction to vt and has a magnitude ∥vbmin∥ =

∥vt∥ −
√
2Umax(R)− |vn|2. In addition, the maximum

vbmax is also in the opposite direction to vt and has

a magnitude of ∥vbmax∥ = ∥vt∥ +
√
2Umax(R)− |vn|2.

Here, we call vbmin and vbmax the minimum and

maximum return velocities on the surface, respectively.

This region is known as the conditional escape region.

Type C: ∥vI∥ < vc, the minimum return velocity is

vbmin = 0, and the maximum return velocity is the same

as that in Type B: ∥vbmax∥ = ∥vt∥+
√
2Umax(R)− |vn|2.

The region is equal to that of Case III for the escape

velocity. We refer to this as the conditional stable region.

The three types of surfaces in the two shape models

are shown in Fig. 12. The absolute escape region is shown

in dark blue and is close to the major axis. These regions

cover both the leading and trailing sides. The cyan region

corresponds to the conditional escape region. Objects

can avoid escaping if they have a return velocity in a

certain direction. The cyan region covers the middle axis

Absolute escape region
Conditional escape region
Conditional stable region

Fig. 12 Escape types of the two models.

and most high-latitude regions, except for the pole. The

polar region belongs to the conditional stable region and

is presented in yellow. Figure 13 shows the minimum and

maximum return velocities for the two shape models.

Similar to the sliding velocity, the return velocity is

constrained in a circular region in a certain direction.

Any surface velocity outside the circular region will

result in escape. In most regions, the relative Jacobi

velocity lies between the minimum and maximum return

regions. This means that the particles displaced from

the pole may temporally remain in the vicinity if they

move to the conditional escape region, but they are

likely to escape eventually as the return condition is

too strict. It should be noted that the definitions of the

escape/returning velocity do not consider the energy

change of possible collisions. Collision on a fast-rotating

surface may significantly change the inertial velocity,

which complicates the escape condition. Because the

collision dynamics of an object largely depend on the
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Fig. 13 Minimum (top) and maximum (bottom) escape/
return velocities of the two shape models.
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surface parameters (coefficient of restitution and friction

factor), the escape condition under different surface

parameters will be further investigated in the future.

By combining the sliding and return velocities, we can

obtain indications about how an object moves on the

surface of asteroid 2016 HO3. It is interesting to note

that the maximum sliding velocity is larger than the

maximum return velocity, which means that even sliding

on the surface may result in escape. The results show

that if we want to operate a lander on the surface of

2016 HO3, the lander needs to control its velocity in time

to prevent escape. Meanwhile, any operation should be

far from the absolute escape region to avoid unexpected

motion.

4 Orbital motion in the asteroid-fixed
frame

The above analysis of the geophysical environment of

asteroid 2016 HO3 reflects the complicated motions on

the surface due to the fast spin rate and elongated shape.

These factors also significantly affect the orbital motion

in the vicinity of 2016 HO3. Moreover, 2016 HO3 has

a small size and weak gravity, and the SRP becomes

an unignorable perturbation when examining the orbital

motion. The SRP has the same magnitude as gravity

when the orbital radius is larger than 100 m. Therefore,

we built an equation of motion considering the SRP. SRP

acceleration can be expressed as Eq. (2) [22]:

ρSRP =
crPSRPR

2
SRP

σR2
s

(2)

Here, PSRP = 4.56 µN/m2 denotes the solar pressure

at RSRP = 1 AU, cr represents the reflection coefficient,

and σ denotes the effective mass-to-area ratio of the

spacecraft. Rs is the distance from 2016 HO3 to the Sun,

which is considered to be a constant.

First, the motion in the asteroid-fixed frame of 2016

HO3 O–XYZ was investigated. Here, the ellipsoid model

of 2016 HO3 was used. We adopted the semi-major axis of

the ellipsoid model as the length scale, and the reciprocal

of the spin rate of 2016 HO3 was taken as a time scale.

κ = ρSRP/(ω
2aR2

s ) denotes the normalized SRP. Here a

is the semi-major axis of 2016 HO3. For 2016 HO3, κ is

in the magnitude of 10−4 owing to the high spin rate.

Because the spin period of the asteroid is far smaller

than its revolution period, we assume that the Sun is on a

circular orbit parallel to the equator plane with a certain

latitude λe and time-varying longitude ϕe = −ωt+ ϕ0 in

the asteroid-fixed frame. Here, ϕ0 is the initial longitude

and is set to ϕ0 = 0 for simplicity. Then, the direction

vector of the Sun becomes

R̂s =

lx
ly
lz

 =

cosλe cosϕe

cosλe sinϕe

sinλe

 (3)

Here, the first order of the SRP acceleration is considered,

as it is the major term compared with the gravitational

perturbation of the Sun and its second order. Then, the

equation in the asteroid-fixed frame becomes [23]:
Ẍ − 2Ẏ =

∂U

∂X
− νκ cosλe cosϕe

Ÿ + 2Ẋ =
∂U

∂Y
− νκ cosλe sinϕe

Z̈ =
∂U

∂Z
− νκ sinλe

(4)

where ν is the eclipse factor, which can be solved using a

cylindrical and conical solar eclipse model [42].

Owing to the fast spin rate, it was found that the

equilibrium points in the asteroid-fixed frame were

beneath the surface with or without the SRP. Therefore,

the natural periodic orbit around the equilibrium does

not exist in the vicinity of 2016 HO3, as do the forced

periodic orbits when SRP is considered [23]. Retrograde

periodic orbits were found around 2016 HO3. Two families

of orbits exist at λe = 0. They have similar shapes, but

different orbital periods, as shown in Fig. 14. With an

increase in the orbital radius, the period of Type 1 family

decreases, and the period of Type 2 family increases.

However, neither of them equals 2π, which is the period

of the Sun in the asteroid-fixed frame. This means that

there is a phase difference between the spacecraft and the

Sun, which breaks the periodicity. Although the orbit was

stable in one period, the SRP perturbation destabilized

it after several periods. The orbit gradually diverged

and eventually escaped from the system or impacted the

surface, driven by the SRP. Figure 15 shows the evolution

of a periodic orbit over 60 different periods. The orbit can

only remain stable for approximately 30 periods, which is

only approximately 0.58 days in real time. If we increase

λe, the periodic orbit is hard to find. One exception is

that λe = π/2, where stable orbits can be found. It is

exactly the terminator orbit in the Sun–asteroid rotating

frame. This issue will be discussed later. Given the short

rotation period of 2016 HO3, the results show that long-

term stable orbits in the asteroid-fixed frame are difficult

to find, as both the SRP and acceleration induced by the
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Fig. 14 Planar periodic orbits in the asteroid-fixed frame.

fast spin rate seriously affect motions. Frequent orbital

maintenance is necessary to offset the influence of the

SRP.

5 Orbital motion in the Sun–asteroid
rotating frame

Although an stable motion in the asteroid-fixed frame

may not exist, we can find stable orbits around 2016

HO3 in the Sun–asteroid rotating frame o-xyz, where the

origin of the frame is centered at the asteroid and the x

direction points from the Sun to 2016 HO3, the z axis

is aligned with the angular velocity of the asteroid, and

the y direction completes the right-handed frame. The

augmented hill three-body problem (AH3BP) is suitable

for describing the motion under the influence of the SRP

and solar tides [43]. The equation of motion under the

point-mass gravity of the asteroid was first established.
ẍ = 2ωaẏ + 3ω2

ax− µax

r3
+ ρSRP

ÿ = −2ωaẋ− µay

r3

z̈ = −ω2
az −

µaz

r3

(5)

where ωa is the orbital angular velocity of 2016 HO3

around the Sun. If we define the normalized length and

time unit as [L] =
(

µa

µs

) 1
3

Rs and [T ] =
√

R3
s

µs
, where µs is

the gravitation parameter of the Sun, a non-dimensional

SRP acceleration in the Sun–asteroid rotating frame can

be expressed as

β = ρSRP
[T ]2

[L]
=

crPSRPRSRP

σµ
2/3
s µ

1/3
a

(6)

A larger SRP parameter β indicates a stronger

perturbation caused by the SRP. The mass-to-area ratio
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Fig. 15 Evolution of the planar periodic orbit under SRP
(60 periods).

of spacecraft σ was selected as 24–80 kg/m2 with a

reflection coefficient cr = 1. For asteroid 2016 HO3 with a

mean radius of 18 m and a density of 2.5 g/cm3, β varies

between 300 and 1,000, which is a larger value than that

found in previous asteroid missions (β for NEAR at Eros

is 0.6, for Hayabusa at Itokawa is 97, for OSIRIS-Rex at

Bennu is 33, and for Hayabusa 2 at Ryugu is 35) [43].

This means that the SRP has a greater influence on the

motion near 2016 HO3 than that for other asteroids.

5.1 Periodic orbits in the AH3BP

Previous research has found that a stable terminator orbit

exists in the Sun–asteroid rotating frame. Its orbital plane

is always perpendicular to the Sun–asteroid line, and the

orbit center is slightly offset from the asteroid center along

the Sun–asteroid direction. The initial guess of terminator

orbits can be determined by a grid search. Because of

the symmetry of the dynamics, the terminator orbit

should be symmetric with the xz plane. This provides
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Fig. 16 Terminator orbits around 2016 HO3 with different σ.

the constraints for the differential corrector. Once one

terminator orbit is found, the family of terminator orbits

can be obtained using the continuation method. The

continuation method was also used to gradually change

the SRP parameter. Moreover, the stability of terminator

orbits was solved by the eigenvalue of the monodromy

matrix [44] in the form of [λ1, 1/λ1, λ2, 1/λ2, 1, 1]. Here,

the stability index νs was used [45]:

νs =
1

2

∣∣∣∣λmax +
1

λmax

∣∣∣∣ (7)

λmax denotes the maximum eigenvalue. If νs ⩽ 1, the

orbit is considered stable. The larger the stability index,

the more susceptible the orbit is to disturbances.

The terminal orbit near asteroid 2016 HO3 was

investigated at different σ values. Figure 16 shows the

results for different offsets along the x-axis. The point-

mass gravity of 2016 HO3 is used. However, a shape

model is presented to compare the size. The stable orbit

is shown in blue and the unstable orbit is shown in red.

The stable orbits are close to those of 2016 HO3. The

radius of the terminator orbit first increases and then

decreases as the center of orbit moves away from asteroid

2016 HO3. The radius of the stable orbit is between 25

and 50 m for σ = 25 kg/m2 and increases to 100 m

for σ = 80 kg/m2. Finally, the orbit is convergent to

equilibrium in the Sun–asteroid rotating frame.

Figure 17 shows the stability index of terminator orbits

with different offsets and mass-to-area ratios. A smaller σ

means a larger SRP acceleration. As can be observed, the

offset of stable orbits is less than 50 m. In the meantime,

at the same offset, an increase in σ leads to a smaller

stability index. Figure 18 shows the orbital period of

different terminal orbits. The period ranges from 0.6 to

5 days. A larger σ and larger offset tend to a longer period.
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Fig. 18 Stability index of terminator orbit.

For the stable orbits, the orbit period varies between 0.6

and 2.3 days. Figure 19 compares the terminal orbits with

different σ and with the same offset. The SRP parameter

β is inversely proportional to σ. Therefore, orbits with

larger β are closer to the asteroid.

In addition to the single-period terminator orbit, quasi-

terminator orbits can also be found near asteroid 2016
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Fig. 20 Quasi-terminator orbits near asteroid 2016 HO3.

HO3 [43]. They can be built using the two-dimensional

(2D) invariant torus of terminal orbits. Figure 20 shows

two examples. There are two types of terminator orbits

based on different stable eigenvalues. The Sun-side quasi-

terminator orbits will curve in the direction of the Sun,

and the dark-side quasi-terminator orbits will extend

away along the x direction. Compared with terminal

orbits, quasi-terminator orbits cover more regions with

the same stability. These are also options for mission

orbits.

Meanwhile, based on grid searching, more periodic

orbits can be found in the frame of AH3BP, including

periodic orbits near equilibrium, as shown in Fig. 21. The

orbits look like arcs and extend mostly in the y direction.

They do not move around the equilibrium but are located

on the asteroid side. The stability indices of these orbits

are larger than 3,000, indicating poor stability. Most of

the periodic orbits in AH3BP are unstable and unsuitable

for mission orbits. Because periodic orbits are sensitive to

parameters, a thorough search might be interesting once

the physical parameters of the asteroid and spacecraft

are determined.
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Fig. 21 Periodic orbit near equilibrium in AH3BP.

5.2 Influence of irregular shape perturbation

In AH3BP, the irregular-shape of an asteroid has not been

considered. Because of the weak gravity of 2016 HO3, the

terminator orbits are very close to the surface, which

makes the non-spherical perturbation non-negligible,

especially for an extremely elongated shape. Therefore,

the influence of the non-spherical shape on the terminator

orbits was examined. The orientation of the spin axis can

be determined using two angles, α and γ. Here, γ is the

angle between the spin axis and xy plane. α is the angle

between the projection of the spin axis in the xy-plane

and the x-axis. As 2016 HO3 revolves around the Sun,

the spin axis rotates clockwise along the z-axis over a

period of one year. The direction vector of the spin axis

is l̂ = [cosα(t) cos γ, sinα(t) cos γ, sin γ]. α(t) = α0−ωat.

Another angle θ was defined to describe the rotation

angle with respect to the spin rate. The transfer matrix
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RM from the Sun–asteroid frame to the asteroid-fixed

frame is as Eq. (8):

RM = Rz(θ)Ry

(π
2
− γ

)
Rz(α) (8)

Here, Ry and Rz are rotation matrices along the y and

z axes, respectively. The rotation angle was θ = θ0 + ωt.

The numerical simulation shows that if a non-spherical

perturbation is considered, the stable terminator orbit

is seriously perturbed and the unstable terminator orbit

may escape from nearby within one period. Figure 22

gives two examples. Here the ellipsoid gravity model is

used and the size ratio S2 is selected. The orientation of

the spin axis is chosen as α0 = 0, γ = π/2, and θ0 = 0.

The mass-to-area ratio is σ = 50 kg/m2.

The terminator orbit is no longer periodic when the

shape perturbation of the asteroid is considered. In fact,

a strict periodic orbit may not be able to be found, as

the orbit period will be different from the spin period of

the asteroid in general. However, the stable terminator

orbit can still be bound to a narrow region using certain

techniques. Here, we define a virtual periodic terminator

orbit (different from the quasi-terminator orbit) under

the following assumptions.

First, the period of the virtual periodic terminator

orbits is far smaller than the orbital period of 2016 HO3

around the Sun. Therefore, we assume that the spin axis

does not change direction in a rotating frame in a short

time. Second, the spin period of 2016 HO3 is far smaller

than that of the non-perturbed terminator orbits. Hence,

we consider that an orbit is virtual periodic if it starts

and ends at the same points with the same velocity in

the Sun–asteroid frame and the difference in the rotation

angle θ at the initial and terminal moments is ignored.

The asymmetric correction algorithm, which has been

used to find periodic orbits at the L4/L5 points in

the circular-restricted three-body problem (CRTBP),

is applied here [46]. We assume that an orbit starts on

the yz plane and y = 0 is used as the index variable

to design the orbits. The initial states of the orbit are

X0 = [x0, 0, z0, ẋ0, ẏ0, ż0]. Based on this assumption, the

orientation of the asteroid is fixed at α0 and γ. The initial

rotation angle is arbitrarily chosen as θ0. The orbit ends

at Xf = [xf , 0, zf , ẋf , ẏf , żf ], when ẏ0 · ẏf > 0. The virtual

periodic conditions are x0 = xf , z0 = zf , ẋ0 = ẋf , ẏ0 = ẏf ,

and ż0 = żf . We only need to build the equation for four

variables, and the last one is constrained automatically by

the integral of the orbital energy. Here, variables x, z, ẋ,

and ż are chosen. The goal is to eliminate the variations

δx, δẋ, δz, δż and find a virtual-periodic orbit.

F (x0 + δx0, z0 + δz0, ẋ0 + δẋ0, ż0 + δż0, ẏ0 + ẏ0)

= x0 + δx0

G(x0 + δx0, z0 + δz0, ẋ0 + δẋ0, ż0 + δż0, ẏ0 + ẏ0)

= z0 + δz0

H(x0 + δx0, z0 + δz0, ẋ0 + δẋ0, ż0 + δż0, ẏ0 + ẏ0)

= ẋ0 + δẋ0

I(x0 + δx0, z0 + δz0, ẋ0 + δẋ0, ż0 + δż0, ẏ0 + ẏ0)

= ż0 + δż0
(9)

By Taylor expansion to the first order, it has
δx
δz
δẋ
δż

 = (Q− P )


δx0

δz0
δẋ0

δẏ0
δż0

 (10)

where

Q =


∂F
∂x0

∂F
∂z0

∂F
∂ẋ0

∂F
∂ẏ0

∂F
∂ż0

∂G
∂x0

∂G
∂z0

∂G
∂ẋ0

∂G
∂ẏ0

∂G
∂ż0

∂H
∂x0

∂H
∂z0

∂H
∂ẋ0

∂H
∂ẏ0

∂H
∂ż0

∂I
∂x0

∂I
∂z0

∂I
∂ẋ0

∂I
∂ẏ0

∂I
∂ż0



P =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1


Then, based on the first-order approximation for the

variation δX,

δX = ΦδX0 + Ẋδt (11)

Q is rewritten as

Q =


∂x
∂x0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂ẋ
∂x0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ż
∂x0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0



− 1

ẏ


ẋ
ż
ẍ
z̈


[
∂y

∂x0

∂y

∂z0

∂y

∂ẋ0

∂y

∂ẏ0

∂y

∂ż0

]
(12)

The initial state vector of a terminal orbit in

AH3BP is used as the initial guess and updated

via δx0, δz0, δẋ0, δẏ0, δż0 in an iterative process until

δx0, δz0, δẋ0, δż0 < ε to find a virtual-periodic terminator

orbit in the real shape model.

By correction, the orbit was closed only during the first

period. As the rotation angle θ changed in each turn,

small deviations existed in the following orbital periods.
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Fig. 22 Terminator orbits under non-spherical perturbation (α0 = 0, γ = π/2, θ0 = 0, σ = 50 kg/m2).
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Fig. 23 Virtual-periodic terminator orbits under non-spherical perturbation (α0 = π/3, γ = π/3, θ0 = 0, σ = 50 kg/m2).

However, the stability analysis shows that the virtual

periodic orbit is still a stable orbit. The small error did not

diverge over multiple periods. The numerical calculations

are shown in Fig. 23. Here, the orbit is integrated for ten

periods with initial states α0 = π/3, γ = π/3, θ0 = 0, σ =

50 kg/m2. The corrected orbit was bound and moved

close to the virtual periodic orbit. Compared with the

uncorrected orbit, the corrected orbit remained nearly

in the same plane as the terminator orbit in AH3BP. A

close-up image shows that the bounded orbit becomes a

spatial curve. It bends and twists owing to perturbations.

The evolutions of the virtual periodic orbits at different

initial rotation angles θ0 = 0, π/6, π/3, π/2, 2π/3, and

5π/6 are shown in Fig. 24. The virtual periodic orbit was

solved at θ0 = 0. The virtual periodic orbit was found

to be insensitive to the initial rotation angle θ0. Because

of the fast spin rate of 2016 HO3, the spacecraft moves

in a short arc on orbit in one spin period. Therefore,

the average perturbation force in one spin period for

the same orbital segment was similar for all situations.

The maximum position error was less than 0.5 m, which

can be neglected compared with the orbital radius of

approximately 80 m.

Compared to the rotation angle, the orientation of

the spin axis had a greater impact on the terminator

orbit. The influence of rotation angle θ was limited. The

initial rotation angle was set to θ0 = 0. Here, we adopted

different pole orientations of the triaxial ellipsoid model

in the Sun–asteroid rotating frame. By correction, the

virtual periodic terminator orbits were compared with

the terminator orbits in the AH3BP, as shown in Fig. 25.

The virtual periodic terminator orbit is shown as a solid



Geophysical and orbital environments of asteroid 469219 2016 HO3 45

−100

−100

0

0
11

11.5
12

100

100

x-axis (m)

y-axis (m)

z-
ax

is
 (

m
)

−100

−100

0

0
11

11.5
12

100

100

x-axis (m)

y-axis (m)

z-
ax

is
 (

m
)

−100

−100

0

0
11

11.5
12

100

100

x-axis (m)

y-axis (m)

z-
ax

is
 (

m
)

−100

−100

0

0
11

11.5
12

100

100

x-axis (m)

y-axis (m)

z-
ax

is
 (

m
)

−100

−100

0

0
11

11.5
12

100

100

x-axis (m)

y-axis (m)

z-
ax

is
 (

m
)

−100

−100

0

0
11

11.5
12

100

100

x-axis (m)

y-axis (m)

z-
ax

is
 (

m
)Virtual-periodic orbit

θ0=2π/3θ0=π/2

θ0=π/3θ0=π/6

θ0=5π/6

θ0=0

Fig. 24 Evolutions of virtual-periodic orbits at different initial rotation angles.
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Fig. 25 Influence of pole orientation on terminator orbits (solid line: virtual-periodic terminator orbits in the shape model;
dash line: terminator orbit in the point mass model).

line, and the terminator orbit in the point-mass model is

shown as a dashed line. The spin axes are shown in each

plot. As can be observed, the differences are reflected in

two aspects: the change in size and offset of the orbit

center.

Two types of average perturbation accelerations are

defined. The spin-average perturbation is the average

perturbation acceleration at point P in one spin period

of the asteroid:

∆as(r) =
1

2π

∫ 2π

0

(
∂U(θ)

∂r
− µa

∥r∥3
r

)
dθ (13)

Here, U(θ) is the gravitational potential function at the

rotation angle θ.

Integrating the spin-average perturbation along orbit Γ

in one orbital period T , we obtained the orbital-average

perturbation:

∆ao =
1

T

∫ T

0

∆as(r(t))dt, r(t) ∈ Γ (14)

The change in size was noticeable at γ = 0, α = 0,

and γ = 0, α = π/2. The spin axis was parallel to the

x and y axes. The spin-average perturbation ∆as was

symmetric along the xz and xy planes. Therefore, ∆ao

should be close to zero, and the center of the orbit should

not change in the yz plane. However, the elongated shape

changed the average gravitational acceleration along the

three axes. For pole orientations γ = 0 and α = 0, it
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has ∆aox > 0. In addition, ∆aoyy < 0 and ∆aozz < 0.

Therefore, the current system is equivalent to a system

in which the asteroid has a larger mass but the SRP

decreases, which results in a smaller β. Therefore, as

shown in Fig. 19, the orbit radius will increase if the offset

of the orbit center along the x-axis does not change. For

the pole orientation of γ = 0, α = π/2, opposite results

were obtained, which corresponded to a system with a

larger SRP parameter. The radius of the terminator orbit

was reduced. A similar situation occurred at γ = π/2, α =

0. In other situations, ∆as was not symmetric along

the xz or xy plane. Therefore, a peculiar disturbance

acceleration ∆aoy or ∆aoz existed, which offset the orbit

center in the yz plane. The offset direction is related

to the pole direction and may be incorporated into the

size change. Nevertheless, the virtual periodic terminator

orbit was still close to the nominal orbit in all situations.

The maximum deviation was less than 5 m, which is a

tolerable value compared to the orbital radius.

The above correction process can be used to find the

virtual periodic orbit when a real-shape model of the

asteroid is applied. However, calculations based on a

shape model, such as the polyhedron method, are time-

consuming and the convergence is difficult. Therefore,

based on the above analysis, we developed a new method

for designing a virtual-periodic orbit around a non-

spherical small body using the average perturbation

acceleration ∆as.

The terminator orbit in the point-mass model

Γ0(r(t),v(t)) was selected as the initial estimate. Using

Eq. (13), the spin-average perturbation acceleration along

the orbit Γ was calculated as ∆as(r(t) ∈ Γ0) and added

to Eq. (5):
ẍ = 2ωaẏ + 3ω2

ax− µax

r3
+ ρSRP +∆asx

ÿ = −2ωaẋ− µay

r3
+∆asy

z̈ = −ω2
az −

µaz

r3
+∆asz

(15)

An asymmetric differential corrector was applied based

on Eq. (15) to find a virtual-periodic orbit Γ1. Γ1 and Γ0

may have errors in the position and period, which results

in an inaccurate ∆as in Eq. (15). Γ1 was integrated

for one period in the real gravitational field, and the

difference between the initial and terminal states was

denoted as ∆X1. If ∆X was larger than the critical

threshold εp, Γ1 was considered a new initial estimate

for calculating the spin-average perturbation acceleration

and starting the correction process until ∆Xi < εp (i =

1, 2, 3, · · · ,m). Through iterations, orbit Γm was obtained

as the virtual periodic orbit in the real gravitational field.

As the gravity field of the shape model was replaced by

a time-variant function ∆as in the correction process,

the efficiency was significantly improved. In general, if

we set εp = 0.1, the virtual periodic terminator orbit can

be found in less than eight iterations. Figure 26 shows

an example with the parameters σ = 50 kg/m2, γ = π/3,

α = π/6, θ0 = 0. The corrected orbit was solved using

Eq. (15), while the uncorrected orbit was the original

terminate orbit in the point-mass model. The revised

orbit was well-bounded in multiple periods, even in a

complicated gravitational field.
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0
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100

100

x-axis (m)
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z-
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 (

m
)

Revised orbit

Unrevised orbit

Fig. 26 Virtual-periodic terminator orbits in the real shape
model.

5.3 Terminator orbits in the high-fidelity
model

Finally, we transferred the solution in the Sun–asteroid

rotating frame to the inertial frame to investigate the

stability of terminator orbits in the ephemeris model

of 2016 HO3 [13]. The initial time was selected as

January 1, 2026. The axis orientation was chosen as

γ = π/3, α = π/3 in the initial rotating frame. The

radius of the terminator orbit was approximately 93.7 m.

The orbit was revised in a real-shape gravity field, as

mentioned above. Figure 27 shows the evolution of a

terminator orbit over one year. The orbits in both inertial

and rotating frames are presented. As can be observed,

the revised terminator orbit shows good stability in the

ephemeris model. The orbit will neither escape from 2016
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Fig. 27 Evolution of a terminator orbit in the ephemeris model of 2016 HO3.

HO3 nor impact the surface in one year. In particular,

the orbit is well bounded for at least 250 days. As the

orbit of 2016 HO3 is not a perfect circle (e = 0.1),

the effect of SRP will increase when the asteroid is

near the periapsis and decrease when it moves to the

apoapsis. Therefore, when 2016 HO3 is close to its

periapsis (perihelion moment October 6, 2026), a strong

SRP pushes the terminator orbit away from the asteroid,

as shown in Fig. 27(b). However, the orbit can remain

stable as long as the offset of the orbit center is within the

stable region (see Fig. 17). In contrast, the uncorrected

terminal orbit based on the point-mass model is more

sensitive to the change in SRP, as the orbit fluctuates in a

large space owing to irregular-shape gravity perturbation.

The orbit escapes from 2016 HO3 in less than half a

year. The results indicate that the precise orbit design

in Section 5.2 is necessary, as it improves the orbital

stability against perturbations and reduces the frequency

of orbital maintenance.

6 Conclusions

In this study, the geophysical and orbital environments of

asteroid 2016 HO3 were investigated. Asteroid 2016 HO3

is a potential target for future exploration. However, its

fast spin rate, weak gravity, and elongated shape make the

dynamic environment of 2016 HO3 significantly different

from those of planets and other explored small bodies.

First, the geometric and geopotential topographies of

2016 HO3 were examined based on shape and ellipsoid

models with different size ratios. Owing to the fast spin

rate, the geometric and geopotential topographies differ

over the entire surface. The surface slope is less than

90◦ only near the polar regions. The elongated shape

aggravates the disparity in the geopotential over the

surface. Subsequently, the lift-off and escape velocities

on the surface were investigated. The polar region was

determined as the primary region for landing or sampling.

Objects in other regions require tangential velocity along

a certain direction to avoid lifting off or escape. The

surface was classified, and the ranges of the sliding

and returning velocities were solved. Then, the orbital

motion around 2016 HO3, considering the SRP, was

investigated. No stable orbit was observed in the fixed

asteroid frame. However, stable terminator orbits exist

in the Sun–asteroid rotating frame. The stability and

range of terminator orbits with different parameters

were investigated. The influence of the nonspherical

perturbation on the terminator orbits was analyzed.

In particular, a numerical method was proposed to

determine the precise terminator orbits in real shape

models. Finally, simulations in the high-fidelity model of

2016 HO3 showed that terminator orbits are stable over

perturbations, which is an ideal option for target orbits

in exploration missions. The analysis and orbit design

in this study can serve as references for future landing

or rendezvous exploration of asteroid 2016 HO3 or small

bodies with similar characteristics.
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