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ABSTRACT

In this study, a dynamical model is developed to describe the secular evolution of navigation

satellites under the geocentric reference frame with the Laplace orbit as the fundamental

plane. The disturbing function, involving the effects of Earth’s oblateness and lunisolar

gravitational attraction, is averaged over the orbital periods of both the satellite and the

perturbers. In the regions of medium-Earth orbits and geosynchronous orbits, there are

varieties of lunisolar resonances for governing the secular dynamics of navigation satellites.

Among these resonances, we are interested in the ones occurring at the critical inclinations

as well as the lunar node resonances. For each resonance of interest, the resonant center

and width are identified analytically. Finally, dynamical maps are compared with the

analytical results.
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1 Introduction

There are four global navigation satellite systems:

the American Global Positioning System (GPS),

Russian Global Navigation Satellite System (GLONASS),

European Galileo System (GALILEO), and Chinese

BeiDou constellations [1]. The navigation satellites in

these constellations move in the regions of medium-Earth

orbits (MEOs) and geosynchronous orbits (GSOs), which

are filled with varieties of lunisolar resonances. As for

navigation satellites, the dominant perturbation comes

from the Earth’s oblateness, which is the main cause of

the precession of the nodal and apsidal lines, and the

secondary perturbation arises from lunisolar gravitational

attraction, which plays an important role in the long-

term evolution of the eccentricity and inclination due

to lunisolar resonances. Lunisolar resonances take place

under the condition that the frequencies of satellite’s

nodal and apsidal precession as well as the regression rate

of the lunar node satisfy φ̇k1,k2,k3 = k1ω̇+k2Ω̇+k3Ω̇M =

0, where k1, k2, k3 ∈ Z, ω and Ω are the argument of

pericenter and longitude of the ascending node of the

satellite’s orbit, respectively, and ΩM is the longitude of

the lunar node.

Concerning a distant Earth satellite, Allan and Cook

obtained an analytical solution for the long-term variation

of orbital plane under the approximation that the lunar

orbit shares the same plane with the ecliptic, and they

concluded that the orbital plane precesses around the

Laplace plane periodically [2]. When the regression of the

lunar node is considered, the dynamical model becomes

non-autonomous, so that the orbital planes can no longer

be frozen on the Laplace plane [3, 4]. Ulivieri et al.

noticed lunar node resonances which happen between the

satellite’s node and the lunar node [4]. Zhu analytically

studied the resonance condition, stability, and phase

structures of the lunar node resonances and concluded

that the orbital plane would exhibit long-term fluctuation

due to nodal resonances [5].

In general, navigation satellites hold non-zero

eccentricity and thus, in the long-term evolution,

the eccentricity and inclination would exhibit coupled

variations due to lunisolar resonances. In this context,

Breite reviewed the lunisolar secular and semi-secular
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resonances theoretically and classified them into several

groups based on fundamental models [6]. To reveal the

causes of orbital instability in the MEO region, Rosengren

et al. investigated the main resonant structures in the

phase space that govern the long-term orbital motion of

navigation satellites [7]. Daquin et al. described the phase

space as an exceedingly complicated web-like structure

of lunisolar secular resonances, and they traced the

topological organization of the manifolds on which chaotic

motion occurs by analyzing the nature of the resonant

interactions [8]. In particular, they introduced the fast

Lyapunov indicator (FLI) and numerically calculated FLI

stability maps to test the Chirikov criterion for resonance

overlap. The FLI is a chaotic index which is usually used

to distinguish stable, resonant, and chaotic orbits [9].

Gkolias et al. found that the FLI map depends on the

initial longitude of the ascending node and the argument

of pericenter [10]. Consequently, different FLI maps are

produced when different initial values of the angles are

used. To remove the angle dependence of conventional

stability maps, they proposed angle-averaged FLI maps to

characterize the degree of chaoticity. In dynamical maps,

the structures arising in the action space are determined

by the occurrence of lunisolar resonance [8, 10], and the

structures arising in the angle space are related to the

locations of the stable and unstable equilibria of the

associated resonant model [11–13].

When the altitude of satellite is not low, the inclination

of a circular or quasi-circular orbit exhibits long-

period oscillation around the frozen solution (i.e., the

Laplace plane). On the Laplace plane, the long-period

perturbation due to the J2 effect of the Earth counteracts

the lunisolar long-period perturbations. Thus, it is

possible to remove the long-period variation if the Laplace

orbit is adopted as the reference plane of coordinate

system (see Figs. 2 and 3). Naturally, the dependence

of secular dynamics of navigation satellites upon the

initial longitude of ascending node can be removed. In

this study, we revisit the secular dynamics of navigation

satellites moving in the MEO and GSO regions under the

dynamical model formulated in the geocentric Laplace

reference frame.

The remainder of this paper is organized as follows.

In Section 2, the dynamical model is introduced. The

lunisolar resonances are discussed in Section 3, and the

determination of resonant width is described in Section 4.

Dynamical maps are reported in Section 5, and the

conclusions are presented in Section 6.

2 Dynamical model

Our previous paper presented explicit expressions of

the double-averaged disturbing function under both the

geocentric equatorial and ecliptic reference frames [14].

These two reference frames have a common x-axis

direction, and the coordinates of satellites measured

in both reference frames can be converted between

each other using a rotation matrix along the x axis,

Rx(± ε), where ε(= 23.439◦) is the obliquity of the

ecliptic relative to the Earth’s equator. Between the

equatorial and ecliptic planes, there is an intermediate

plane, called Laplace plane, which shares the same nodal

line with the ecliptic [15]. Figure 1(a) shows the relative

geometry of the Earth’s equator, the ecliptic, and Laplace
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Fig. 1 Relative geometry of the Earth’s equator, ecliptic,
and Laplace planes (a) and the inclination of the Laplace
plane relative to the Earth’s equator as a function of the
semimajor axis (b). The normal directions of the Earth’s
equator, the ecliptic, and Laplace plane are denoted by n0,
nε, and n, respectively. The angular separation between n
and n0 is denoted by α and the relative angle between nε

and n0 is denoted by ε(= 23.439◦).
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orbit. By taking these orbits as the fundamental planes

and their normal directions as the directions of the z

axes, three right-handed reference frames with origins

at the barycenter of the Earth can be defined and, for

convenience, they are called the geocentric equatorial,

ecliptic, and Laplace reference frames.

In a certain reference frame, the state of an object

is described by orbital elements: the semimajor axis

(a), eccentricity (e), inclination (i), longitude of the

ascending node (Ω), argument of pericenter (ω), and

mean anomaly (M). Alternatively, M can be replaced

by the eccentric anomaly E or true anomaly f . For

convenience, we use the variables with the subscripts

S and M to represent the orbital elements of the Sun

and the Moon, respectively, and the variables without

subscripts to represent the orbital elements of navigation

satellites. For the sake of computation accuracy, the

variables are normalized by taking the mass of the Earth

and the mean radius of Earth’s equator as units of mass

and length, respectively. The time unit is selected such

that the universal gravitational constant G is equal to

unity.

Unless otherwise specified, the orbits of the Sun and

the Moon are described under the geocentric ecliptic

reference frame, in which the inclination of the Sun is

iS = 0◦, the inclination of the lunar orbit is approximated

as a constant (iS ≈ 5.09◦), and both the longitude of the

lunar ascending node and lunar argument of pericenter

can be approximated as linear functions of time [16].

The nodal line of the lunar orbit regresses with a period

of ∼ 18.61 years (i.e., Ω̇M = −0.053 deg/day), and the

apsidal line precesses with a period of ∼ 8.85 years (i.e.,

ω̇M = 0.111 deg/day) [7].

The Laplace plane is a stable equilibrium solution (or

frozen solution) for satellites moving in circular orbits

around the Earth (corresponding to the solution of Ω̇ = 0

and i̇ = 0). By determining the frozen condition, the

inclination of the Laplace plane relative to the equator,

denoted by α, can be obtained as a function of the

semimajor axis of the satellite in the following form (the

eccentricities of satellites are assumed to be zero, and

those terms involving the angle ΩM, which is on the order

of sin iM, are neglected):

tan 2α =
[2C2 + (3cos2iM − 1)C3] sin 2ε

4C1 + [2C2 + (3cos2iM − 1)C3] cos 2ε
(1)

The coefficients in Eq. (1) are given by

C1 =
1

2

J2µER
2
E

a3

C2 =
1

2

µS

aS

(
a

aS

)2
1

(1− e2S)
3/2

C3 =
1

2

µM

aM

(
a

aM

)2
1

(1− e2M)
3/2

where µE = GME and RE are the gravitational parameter

and mean equatorial radius of the Earth, respectively,

and a3b, e3b, i3b, and µ3b = GM3b are the semimajor axis,

eccentricity, inclination, and gravitational parameter of

the Sun or the Moon (in the entire work the subscript 3b

represents S for the Sun or M for the Moon). In practical

computations, we take the following parameters: aS = 1

au, aM = 384,400 km, eS = 0.0167, eM = 0.0549, iS = 0◦,

and iM = 5.09◦. It is not difficult to show that, when the

lunar inclination relative to the ecliptic is set as zero (i.e.,

iM = 0◦), Eq. (1) can be reduced to the conventional

expression [2, 4]:

tan 2α =
(C2 + C3) sin 2ε

2C1 + (C2 + C3) cos 2ε
In Fig. 1(b), the inclination of the Laplace plane relative

to the equator is plotted as a function of the semimajor

axis. Clearly, α increases with the semimajor axis,

showing that the difference between the geocentric

equatorial and Laplace reference frames can be neglected

for satellites moving in low Earth orbit but it is significant

for high-altitude satellites.

On the Laplace plane, the long-period perturbations

resulting from the J2 effect and lunisolar gravitation

cancel each other out for circular or nearly circular orbits.

If the Laplace orbit is taken as the reference plane to

measure satellite orbits, the evolution of the inclination

depends weakly on the longitude of the ascending

node, indicating that the long-period oscillations of the

satellite’s inclination can be greatly reduced. To show

this behavior, a practical trajectory measured in three

different reference frames is presented in Fig. 2, which

shows that, in the geocentric Laplace frame, the evolution

of the inclination is relatively stable, and the longitude of

the ascending node exhibits quasi-linear evolution with

respect to time. However, in the geocentric equatorial or

ecliptic reference frame, the inclination shows a periodic

variation with large magnitude, and the longitude of the

ascending node changes nonlinearly with time.

As discussed in Ref. [14], it is expected to find a

reference frame in which the longitude of the ascending
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Fig. 2 Time histories of the inclination (a) and longitude of the ascending node (b) measured in three different reference
frames for the trajectory with initial elements of a0 = 6.61RE and e0 = 0.001.

node undergoes quasi-linear evolution in order to study

secular resonances in low-eccentricity regions. Thus, the

geocentric Laplace reference frame is a good choice. In

the following, we adopt the geocentric Laplace reference

frame to formulate the dynamical model of navigation

satellites and revisit the dynamics of secular resonances.

In the studies of long-term dynamics, the disturbing

function is averaged over the orbital periods of the

satellite and the perturbing body. Following the procedure

described in Refs. [14, 17], we take into account the

leading terms of the perturbation due to the Earth’s

oblateness and of the lunisolar gravitational perturbations

to derive an explicit expression for the double-averaged

disturbing function under the geocentric Laplace reference

frame as Eq. (2):

⟨⟨R⟩⟩ = 1

2

µER
2
EJ2

a3(1− e2)
3/2

[
1

8
(3 cos 2α+ 1)(3cos2i− 1)

− 3

4
sin 2α sin 2i cosΩ +

3

4
sin2αsin2i cos 2Ω

]
+

∑
3b∈{S,M}

1

2

µ3b

a3b

(
a

a3b

)2
1

(1− e23b)
3/2

×
[
+

1

32
(3e2 + 2)(3cos2(ε− α)− 1)(3cos2i3b − 1)

· (3cos2i− 1)

+
15

128
e2(1− cos(ε− α))2sin2i3b(1 + cos i)2

· cos(2Ω + 2ω + 2Ω3b)

− 15

64
e2 sin(ε− α)(1− cos(ε− α)) sin 2i3b(1 + cos i)2

· cos(2Ω + 2ω +Ω3b)

+
15

64
e2sin2(ε− α)(3cos2i3b − 1)(1 + cos i)2

· cos(2Ω + 2ω)

+
15

64
e2 sin(ε− α)(1 + cos(ε− α)) sin 2i3b(1 + cos i)2

· cos(2Ω + 2ω − Ω3b)

+
15

128
e2(1 + cos(ε− α))2sin2i3b(1 + cos i)2

· cos(2Ω + 2ω − 2Ω3b)

− 15

32
e2 sin(ε− α)(1− cos(ε− α))sin2i3b sin i(1 + cos i)

· cos(Ω + 2ω + 2Ω3b)

+
15

32
e2(1− cos(ε− α))(1 + 2 cos(ε− α)) sin 2i3b

· sin i(1 + cos i) cos(Ω + 2ω +Ω3b)

− 15

32
e2 sin 2(ε− α)(3cos2i3b − 1) sin i(1 + cos i)

· cos(Ω + 2ω)

+
15

32
e2(1− 2 cos(ε− α))(1 + cos(ε− α)) sin 2i3b

· sin i(1 + cos i) cos(Ω + 2ω − Ω3b)

+
15

32
e2 sin(ε− α)(1 + cos(ε− α))sin2i3b sin i(1 + cos i)

· cos(Ω + 2ω − 2Ω3b)

+
45

64
e2sin2(ε− α)sin2i3bsin

2i cos(2ω + 2Ω3b)

− 45

64
e2 sin 2(ε− α) sin 2i3bsin

2i cos(2ω +Ω3b)

+
15

32
e2(3cos2(ε− α)− 1)(3cos2i3b − 1)sin2i cos(2ω)

− 45

64
e2 sin 2(ε− α) sin 2i3bsin

2i cos(2ω − Ω3b)

+
45

64
e2sin2(ε− α)sin2i3bsin

2i cos(2ω − 2Ω3b)
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+
15

128
e2(1− cos(ε− α))2sin2i3b(1− cos i)2

· cos(2Ω− 2ω + 2Ω3b)
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e2 sin(ε− α)(1− cos(ε− α)) sin 2i3b(1− cos i)2

· cos(2Ω− 2ω +Ω3b)
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e2sin2(ε− α)(3cos2i3b − 1)(1− cos i)2

· cos(2Ω− 2ω)

+
15

64
e2 sin(ε− α)(1 + cos(ε− α)) sin 2i3b(1− cos i)2

· cos(2Ω− 2ω − Ω3b)

+
15

128
e2(1 + cos(ε− α))2sin2i3b(1− cos i)2

· cos(2Ω− 2ω − 2Ω3b)

+
15

32
e2 sin(ε− α)(1− cos(ε− α))sin2i3b sin i(1− cos i)

· cos(Ω− 2ω + 2Ω3b)

+
15

32
e2(2 cos(ε− α) + 1)(cos(ε− α)− 1) sin 2i3b

· sin i(1− cos i) cos(Ω− 2ω +Ω3b)

+
15

32
e2 sin 2(ε− α)(3cos2i3b − 1) sin i(1− cos i)

· cos(Ω− 2ω)

+
15

32
e2(1 + cos(ε− α))(2 cos(ε− α)− 1) sin 2i3b

· sin i(1− cos i) cos(Ω− 2ω − Ω3b)

− 15

32
e2 sin(ε− α)(1 + cos(ε− α))sin2i3b sin i(1− cos i)

· cos(Ω− 2ω − 2Ω3b)

+
3

64
(3e2 + 2)(1− cos(ε− α))2sin2i3bsin

2i

· cos(2Ω + 2Ω3b)

− 3

32
(3e2 + 2) sin(ε− α)(1− cos(ε− α)) sin 2i3bsin

2i

· cos(2Ω + Ω3b)

+
3

32
(3e2 + 2)sin2(ε− α)(3cos2i3b − 1)sin2i cos(2Ω)

+
3

32
(3e2 + 2) sin(ε− α)(1 + cos(ε− α)) sin 2i3bsin

2i

· cos(2Ω− Ω3b)

+
3

64
(3e2 + 2)(1 + cos(ε− α))2sin2i3bsin

2i

· cos(2Ω− 2Ω3b)

+
3

32
(3e2 + 2) sin(ε− α)(1− cos(ε− α))sin2i3b sin 2i

· cos(Ω + 2Ω3b)

+
3

32
(3e2 + 2)(2 cos(ε− α) + 1)(cos(ε− α)− 1) sin 2i3b

· sin 2i cos(Ω + Ω3b)

+
3

32
(3e2 + 2) sin 2(ε− α)(3cos2i3b − 1) sin 2i cosΩ

+
3

32
(3e2 + 2)(2 cos(ε− α)− 1)(cos(ε− α) + 1) sin 2i3b

· sin 2i cos(Ω− Ω3b)

− 3

32
(3e2 + 2) sin(ε− α)(1 + cos(ε− α))sin2i3b sin 2i

· cos(Ω− 2Ω3b)

+
3

32
(3e2 + 2)sin2(ε− α)sin2i3b(3cos

2i− 1) cos(2Ω3b)

− 3

32
(3e2 + 2) sin 2(ε− α) sin 2i3b(3cos

2i− 1) cosΩ3b

]
(2)

where the elements (a, e, i,Ω, ω) are measured under

the geocentric Laplace reference frame, and J2 is the

coefficient of the second-order zonal harmonics of the

Earth (in practical computations, it is taken as 1.083×
10−3). The coefficients of the terms involving the angle

±2ω are on the order of e2, and thus these terms can be

ignored if the eccentricity remains sufficiently small. In

this case, the degrees of freedom are reduced by one, and

the resulting simplified model is generally used to study

the long-term evolution of satellites’ orbital planes. In

addition, the coefficients of the terms involving the angle

±2Ω3b contain the factor of sin2 i3b, and the coefficients

of the terms involving the angle ±Ω3b contain the factor

of sin 2i3b. Thus, all the terms involving ±2ΩS or ±ΩS

disappear from the disturbing function for the solar

perturbation because of iS = 0◦.

In particular, there are two reduced cases for the

disturbing function: (i) when the angle α is artificially

assumed to be zero (i.e., the reference plane coincides

with the Earth’s equator), the double-averaged disturbing

function represented by Eq. (2) naturally reduces to the

form obtained under the geocentric equatorial reference

frame [14], and (ii) when the angle α is artificially taken

as ε (i.e., the reference frame coincides with the ecliptic),

the double-averaged disturbing function represented by

Eq. (2) reduces to the expression derived under the

geocentric ecliptic reference frame [14]. Thus, we can

easily retrieve the double-averaged disturbing function

formulated under the geocentric Laplace, equatorial, or

ecliptic reference frame by taking a certain value of α.

According to the expression shown in Eq. (2), the

double-averaged disturbing function can be divided into

secular terms (which are independent of the angular

variables) and periodic terms (which are related to the
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angular variables). Denote the periodic part by Rp.

Figure 3 presents the variations of Rp evaluated in

the Laplace, equatorial, and ecliptic reference frames.

For the same setting of parameters, the periodic part

of the disturbing function measured in the geocentric

Laplace reference frame is suppressed in a small range,

which is expected from the viewpoint of perturbation

treatment (the first-order perturbation theory is adopted

in Section 3 to formulate the resonant models).
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Fig. 3 Periodic terms of the double-averaged disturbing
function.

The Delaunay action-angle variables,
L =

√
µEa, l = M

G = L
√
1− e2, g = ω

H = G cos i, h = Ω

(3)

are adopted to describe the dynamics of navigation

satellites. Because the angle l is absent from the averaged

dynamical model, its conjugated action L remains

constant; that is, the semimajor axis remains stationary.

In addition, the longitude of the lunar ascending node

ΩM depends explicitly on time, and thus the dynamical

model is a non-autonomous system. To obtain an

autonomous dynamical model, it is necessary to introduce

an additional pair of conjugate variables:

T, τ = ΩM (4)

where T is conjugate to τ (T is a constant). Consequently,

the Hamiltonian of the system can be written as

H = − µ2
E

2L2
+ τ̇ × T − ⟨⟨R⟩⟩ (5)

which describes a dynamical model with two and a half

degrees of freedom. The equations of secular motion can

be obtained by substituting the Hamiltonian given by

Eq. (5) into the following canonical equations:
ġ =

∂H
∂G

, Ġ = −∂H
∂g

ḣ =
∂H
∂H

, Ḣ = −∂H
∂h

τ̇ =
∂H
∂T

, Ṫ = −∂H
∂τ

(6)

In Section 5, the equation of motion given by Eq. (6) is

used to produce dynamical maps.

3 Secular resonances

In the previous section, we formulated a dynamical model

that describes the secular behavior of navigation satellites

in the geocentric Laplace reference frame. In this section,

we study the secular resonances using the formulated

Hamiltonian model.

3.1 Resonance curves

The averaged Hamiltonian is composed of secular and

periodic parts. The terms that are independent of the

angle variables (h, g, and τ) belong to the secular part,

and the remaining terms belong to the periodic part.

The critical arguments appearing in the periodic part are

denoted by

φk1,k2,k3
= k1h+ k2g + k3τ = k1Ω+ k2ω + k3ΩM (7)

where k1 is in {0, 1, 2}, k2 is in {−2, 0, 2}, and k3 is

in {−2,−1, 0, 1, 2}. When the time rate of φk1,k2,k3
is

zero, secular resonance occurs. The effect of secular

resonance on the dynamics depends on the expression

of the critical argument. In particular, resonances with

critical arguments in the form of φk1,0,k3 , which are

called nodal resonances, affect only the evolution of the

inclination (i.e., they change the normal direction of

the orbital plane), and other resonances have dynamical

effects on both the eccentricity and inclination (i.e., they



Secular dynamics of navigation satellites in the MEO and GSO regions 363

change the normal direction and shape of the orbital

plane simultaneously).

The resonance condition is given by

φ̇k1,k2,k3 = k1ḣ+ k2ġ + k3τ̇ = k1Ω̇ + k2ω̇ + k3Ω̇M = 0
(8)

where the precession rate of the apsidal line and the

regression rate of the nodal line can be approximated by

substituting the secular part of the disturbing function

given by Eq. (2) into the Lagrange planetary equations:

Ω̇ = − 3

4
J2n

(
RE

a

)2

(3cos2α− 1)
cos i

(1− e2)
2

−
∑

3b∈{S,M}

3

32
(3e2 + 2)(3cos2(ε− α)− 1)

· µ3b(3cos
2i3b − 1)

a33b(1− e23b)
3/2

cos i

n
√
1− e2

ω̇ =
3

8
J2n

(
RE

a

)2

(3cos2α− 1)
5cos2i− 1

(1− e2)
2

+
∑

3b∈{S,M}

1

64
(3cos2(ε− α)− 1)

· µ3b(3cos
2i3b − 1)

a33b(1− e23b)
3/2

30cos2i+ 6(e2 − 1)

n
√
1− e2

(9)

where n is the mean motion of the satellite and is given

by n2a3 = µE. By solving the resonance equation given

by Eq. (8), the solution can be expanded to a series of

three dimensional (3D) surfaces in the space (a, e, i) to

reveal the distribution of the resonance locations. One

secular resonance corresponds to one or two 3D surfaces.

When one of the parameters a, e, or i is fixed, the 3D

surface reduces to a curve, which is called the resonance

curve. In particular, the nodal resonance of φ1,0,0 = Ω

occurs on the polar orbit; in addition, the resonances of

φk1,k2 ̸=0,0 make the dominant contributions to the secular

evolution of the eccentricity and inclination, and their

resonance locations appear at the critical inclinations,

that is, ∼ 46.4◦ for 2ω+2Ω, ∼ 56.1◦ for 2ω+Ω, ∼ 63.4◦ for

2ω, ∼ 69.0◦ for 2ω−Ω, and ∼ 73.2◦ for 2ω− 2Ω [13, 18–

20].

Figure 4 shows the distribution of the resonance curves

in the space (e, i) for MEO satellites with the semimajor

axis at 4.38RE and GSO satellites with the semimajor

axis at 6.61RE. Figure 5 presents the resonance curves

in the space (a, i) when the eccentricities are fixed at

e = 0.01 and e = 0.2.

Figures 4 and 5 show that (i) all the resonance curves

form a complex network in phase space; (ii) the resonance
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Fig. 4 Resonance curves in the space (e, i) for MEO satellites
with semimajor axis of a = 4.38RE (a) and GSO satellites
with semimajor axis of a = 6.61RE (b). The subscript s is in
{2, 1, 0,−1,−2}, and k is in {2,−2}. The orbital elements are
measured in the geocentric Laplace reference frame.

curves are symmetric with respect to the polar line; (iii)

in the space (e, i), there are seven families of resonance

curves, which are shown in different colors; and (iv) in

both the spaces (e, i) and (a, i), the curves associated with

the resonances of φk1,k2,0 are nearly vertical lines, which

indicates that the locations of these resonances depend

mainly on the inclination (they are known to occur at

the critical inclinations). Note that, using the lunisolar

disturbing function originally provided by Ref. [16], Ely

and Howell [21] and Rosengren et al. [7] retrieved the

resonance curves in the geocentric equatorial reference

frame but they neglected the contribution of lunisolar

perturbations when they computed the rates of nodal

regression Ω̇ and apsidal precession ω̇.

3.2 Resonant Hamiltonian

To study the secular resonances, we need to formulate
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Fig. 5 Resonance curves distributed in the space (a, i) for
eccentricity e = 0.01 (a) and e = 0.2 (b). The subscript s is
in {2, 1, 0,−1,−2}, and k is in {2,−2}. The orbital elements
are measured in the geocentric Laplace reference frame.

the resonant Hamiltonian. In the Hamiltonian function,

the terms in the secular part are independent of the angle

variables and can be written as Eq. (10):

Hsec = − µ2
E

2L2
+ τ̇ × T − 1

16
CJ2

(3 cos 2α+ 1)

· 1

G5
(3H2 −G2)− 1

32
CSM(3cos2(ε− α)− 1)

· 1

G2
(5L2 − 3G2)(3H2 −G2) (10)

where the coefficients are

CJ2
=

J2R
2
Eµ

4
E

L3
, CSM = CS +

1

2
CM(3cos2iM − 1)

with

CS =
µS

a3S

1

(1− e2S)
3/2

L2

µ2
E

, CM =
µM

a3M

1

(1− e2M)
3/2

L2

µ2
E

The resonant terms in the Hamiltonian function that

represent the secular resonances associated with critical

arguments θ1 = 2g+2h, θ2 = 2g+h, θ3 = 2g, θ4 = 2g−h,

and θ5 = 2g − 2h are

H1 = −15

64
CSMsin2(ε− α)

1

G2
(L2 −G2)(G+H)2 cos θ1

(11)

H2 =
15

32
CSM sin 2(ε− α)

1

G2
(L2 −G2)(G+H)

·
√
G2 −H2 cos θ2 (12)

H3 = −15

32
CSM(3cos2(ε− α)− 1)

1

G2
(L2 −G2)

· (G2 −H2) cos θ3 (13)

H4 = −15

32
CSM sin 2(ε− α)

1

G2
(L2 −G2)(G−H)

·
√
G2 −H2 cos θ4 (14)

and

H5 = −15

64
CSMsin2(ε− α)

1

G2
(L2 −G2)(G−H)2 cos θ5

(15)

The resonant terms in the Hamiltonian that represent

the lunar node resonances with critical arguments θ6 =

2h− τ and θ7 = h− τ are given by

H6 = − 3

64
CM sin(ε− α)(1 + cos(ε− α)) sin 2iM

·
(
5
L2

G2
− 3

)
(G2 −H2) cos θ6 (16)

and

H7 = − 3

32
CM(2 cos(ε− α)− 1)(cos(ε− α) + 1) sin 2iM

·
(
5
L2

G2
− 3

)
H
√

G2 −H2 cos θ7

− 3

128
CM(1 + cos(ε− α))2sin2iM

(
5
L2

G2
− 3

)
· (G2 −H2) cos(2θ7) (17)

When the satellite is locked inside a certain resonance, the

corresponding resonant term in the Hamiltonian function

becomes secular, and the remaining periodic terms are

called nonresonant terms. The nonresonant terms can

be removed from the Hamiltonian using the von Zeipel

method [22, 23] or the Hori–Deprit method [24, 25].

To formulate the resonant model, we retain only the

secular and resonant terms in the Hamiltonian function

as follows: H∗
j = Hsec +Hj , j = 1, 2, 3, · · · , 7.

Consequently, the resonant model becomes a single-

degree-of-freedom integrable system.

3.3 Secular resonances occurring at the
critical inclinations

Five secular resonances occur at the critical inclinations,

and their critical arguments are denoted by σ = 2g + 2h,
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σ = 2g + h, σ = 2g, σ = 2g − h, and σ = 2g − 2h. The

method used in this section is similar to that shown in

Ref. [8].

3.3.1 2g + 2h resonance

To study the secular resonance with critical argument σ =

2g+2h(= 2ω+2Ω), we introduce a new set of conjugate

variables (Σ1,Σ2,Σ3, σ1, σ2, σ3), which are defined as
Σ1 = G−H, σ1 = g

Σ2 = 1
2H, σ2 = 2g + 2h = σ

Σ3 = 2T, σ3 = 1
2τ

(18)

which is a canonical transformation with the generating

function S = g(Σ1 + 2Σ2) + 2hΣ2 +
1
2τΣ3.

Consequently, the resonant Hamiltonian can be written

as

H = − 1

16
CJ2

(3 cos 2α+1)

[
12Σ2

2

(Σ1+2Σ2)
5 − 1

(Σ1+2Σ2)
3

]

− 1

32
CSM(3cos2(ε− α)− 1)

[
5L2

(Σ1 + 2Σ2)
2 − 3

]
· [12Σ2

2 − (Σ1 + 2Σ2)
2
]

− 15

64
CSMsin2(ε− α)

[
L2 1

(Σ1 + 2Σ2)
2 − 1

]
· (Σ1 + 4Σ2)

2 cosσ2 (19)

In the resonant model governed by Eq. (19), the angular

coordinates σ1 and σ3 are cyclic, and thus their conjugate

momenta Σ1 and Σ3 become the motion integral. This

resonant model has one degree of freedom and is a totally

integrable system with σ2(= σ) as the unique angular

coordinate. Thus, the global dynamics can be revealed by

the phase portraits (i.e., the level curves of the resonant

Hamiltonian in phase space).

The integral of motion Σ1 can be expressed in terms

of the orbital elements as Σ1 = L
√
(1− e2)(1− cos i) =

const, which indicates that coupled oscillation occurs

between the eccentricity and inclination in the long-term

evolution. For convenience, the motion integral Σ1 can be

characterized by the minimum inclination, Imin, which

corresponds to the inclination when the eccentricity is

assumed to be zero; that is, the relation Σ1 = L(1 −
cos Imin) holds. For a given Imin, the phase portrait in

the (σ2,Σ2) space can be replaced by the pseudo-phase

portrait in the (e cos (σ2/2), e sin (σ2/2)) space.

In Fig. 6, we take Imin = 46◦ as an example and present

the phase portraits for MEO and GSO satellites. The

level curves passing through the coordinate center are

(a)

(b)

Fig. 6 Phase portraits of the 2g+2h resonance (σ = 2g+2h).
Red lines represent the dynamical separatrices (the same as
the ones in Figs. 7–11).

shown as red lines. We can observe that (i) the dynamical

separatrix stemming from the coordinate center divides

the phase space into regions of libration and circulation,

(ii) the resonant center is located at σ = 0, and (iii) the

islands of libration are bounded by the separatrices. A

comparison of the top and bs reveals that the libration

zone for GSO satellites is larger than that for MEO

satellites.

3.3.2 2g + h resonance

Similarly, the following linear transformation is

introduced to characterize the resonance with σ = 2g+

h(= 2ω +Ω):
Σ1 = G− 2H, σ1 = g

Σ2 = H, σ2 = 2g + h = σ

Σ3 = T, σ3 = τ

(20)
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It is not difficult to demonstrate that the relation given by

Eq. (20) is a canonical transformation with the generating

function S = g(Σ1 + 2Σ2) + hΣ2 + τΣ3.

Thus, the resonant Hamiltonian can be written as

H = − 1

16
CJ2

(3 cos 2α+1)

[
3Σ2

2

(Σ1+2Σ2)
5 − 1

(Σ1+2Σ2)
3

]

− 1

32
CSM(3cos2(ε− α)− 1)

[
5L2

(Σ1 + 2Σ2)
2 − 3

]
· [3Σ2

2 − (Σ1 + 2Σ2)
2
]

+
15

32
CSM sin 2(ε−α)

[
L2 (Σ1+3Σ2)

(Σ1+2Σ2)
2 −(Σ1+3Σ2)

]
·
√

Σ2
1+3Σ2

2+4Σ1Σ2 cosσ2 (21)

The angular coordinates σ1 and σ3 are both cyclic;

therefore, their conjugate momenta Σ1 and Σ3 are the

integral of motion. Thus, the dynamical model described

by the Hamiltonian of Eq. (21) has one degree of

freedom. The global dynamics are revealed by phase

portraits characterized by the motion integral Σ1. Σ1

can be expressed in terms of the orbital elements as

Σ1 = L
√
1− e2(1− 2 cos i) = const.

This equation shows that the eccentricity and

inclination undergo coupled oscillation during the long-

term evolution. For a given Σ1, the inclination takes its

maximum value Imax when the eccentricity is assumed

to be zero. Thus, there is a one-to-one correspondence

between Σ1 and Imax, which indicates that we can use

the maximum inclination Imax to represent the motion

integral Σ1. Note that the resonance with σ = 2g+h was

studied by Ref. [26] in the geocentric equatorial reference

frame (please refer to their paper for details).

In practical simulations, we take Imax = 55.8◦ as an

example. The level curves of the resonant Hamiltonian

associated with σ = 2g+h in the (e cos (σ/2), e sin (σ/2))

space are presented in Fig. 7 for MEO and GSO satellites.

The level curves passing through the coordinate center are

shown in red lines. We can observe that (i) the libration

centers are located at σ = 0, (ii) the dynamical separatrix

stemming from the coordinate center divides the phase

space into domains of libration and circulation, (iii)

the islands of resonance are bounded by the dynamical

separatrices, and (iv) GSO satellites have a larger

libration zone than MEO satellites.

3.3.3 2g resonance

The resonant Hamiltonian for the secular resonance with

(a)

(b)

Fig. 7 Phase portraits of the 2g+h resonance (σ = 2ω+Ω).

critical argument of σ = 2g can be written as

H = − 1

16
CJ2

(3 cos 2α+ 1)
1

G5
(3H2 −G2)

− 1

32
CSM(3cos2(ε− α)− 1)

(
5L2 1

G2
− 3

)
· (3H2 −G2)

− 15

32
CSM(3cos2(ε− α)− 1)

(
L2 1

G2
− 1

)
· (G2 −H2) cosσ (22)

which describes a resonant model with one degree of

freedom. The action variable H is the integral of motion:

H = L
√
1− e2 cos i = const.

Similarly, H can be replaced by the maximum

inclination Imax (which is the inclination when the

eccentricity is taken to be 0). For a given Imax, the global

dynamics of the resonance can be determined from the

corresponding phase portrait.

In practical simulations, we take Imax = 63◦ as an

example. The phase-space structures for MEO and GSO
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satellites are shown in Fig. 8, where the level curves

passing through the coordinate center are shown as

red lines. It is observed that (i) the libration center is

located at σ = π, (ii) the separatrix stemming from the

coordinate center divides the libration and circulation

regions, and (iii) GSO satellites have a larger libration

zone than MEO satellites.
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Fig. 8 Phase portraits of the 2g resonance (σ = 2g).

This resonance with σ = 2ω corresponds to the well-

known Kozai resonance [23]. The structures of the phase

portraits shown in Fig. 8 are similar to those of the

conventional Kozai resonance [27].

3.3.4 2g − h resonance

To study the resonance with σ = 2g − h(= 2ω − Ω), we

introduce the following linear transformation:
Σ1 = G+ 2H, σ1 = g

Σ2 = −H, σ2 = 2g − h = σ

Σ3 = −T, σ3 = −τ

(23)

which is a canonical transformation with the generating

function S = g(Σ1 + 2Σ2)− hΣ2 − τΣ3.

For the transformation given by Eq. (23), the resonant

Hamiltonian is of the form

H = − 1

16
CJ2(3 cos 2α+ 1)

1

(Σ1 + 2Σ2)
5

· [3Σ2
2 − (Σ1 + 2Σ2)

2
]

− 1

32
CSM(3cos2(ε− α)− 1)

[
5L2 1

(Σ1 + 2Σ2)
2 − 3

]
· [3Σ2

2 − (Σ1 + 2Σ2)
2
]

− 15

32
CSM sin 2(ε− α)

[
L2

(Σ1 + 2Σ2)
2 − 1

]

· (Σ1 + 3Σ2)

√
(Σ1 + 2Σ2)

2 − Σ2
2 cosσ2 (24)

which describes a single-degree-of-freedom system with

σ2(= σ) as the unique angular coordinate. Because σ1

and σ2 do not appear in the resonant Hamiltonian, their

conjugate variables Σ1 and Σ3 are the integral of motion.

The motion integral Σ1 can be expressed in terms of the

orbital elements as Σ1 = L
√
1− e2(1 + 2 cos i) = const.

Consequently, Σ1 can be replaced by the maximum

inclination Imax (the value of the inclination when the

eccentricity is taken as zero).

We take Imax = 69◦ as an example. The phase-space

structures of the 2g − h resonance for MEO and GSO

satellites are shown in Fig. 9, where the level curves

passing through the coordinate center are shown as

red lines. The structures in the phase portraits for the

resonance with σ = 2g− h are similar to those for the 2g

resonance (see Fig. 8).

3.3.5 2g − 2h resonance

To study the resonance with σ = 2g − 2h(= 2ω − 2Ω), a

new set of variables is denoted by (Σ1,Σ2,Σ3, σ1, σ2, σ3).

For the generating function given by S = g(Σ1 + 2Σ2)−
2hΣ2 − 1

2τΣ3, the following canonical transformation is

introduced:
Σ1 = G+H, σ1 = g

Σ2 = −1

2
H, σ2 = 2g − 2h = σ

Σ3 = −2T, σ3 = −1

2
τ

(25)

The resonant Hamiltonian thus has the following form:

H = − 1

16
CJ2

(3 cos 2α+1)

[
12Σ2

2

(Σ1+2Σ2)
5 − 1

(Σ1+2Σ2)
3

]

− 1

32
CSM(3cos2(ε− α)− 1)

[
5L2

(Σ1 + 2Σ2)
2 − 3

]
· [12Σ2

2 − (Σ1 + 2Σ2)
2
]
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(a)

(b)

Fig. 9 Phase portraits of the 2g−h resonance (σ = 2ω−Ω).

− 15

64
CSMsin2(ε− α)

[
L2

(Σ1 + 2Σ2)
2 − 1

]
· (Σ1 + 4Σ2)

2 cosσ2 (26)

which describes a resonant model with one degree of

freedom. The angular coordinates σ1 and σ3 are cyclic;

thus, their conjugate momenta are the integral of motion.

The motion integral Σ1 can be written in terms of the

orbital elements as Σ1 = L
√
1− e2(1 + cos i) = const.

Consequently, the motion integral Σ1 can be represented

by the maximum inclination Imax, which corresponds to

the inclination when the eccentricity is zero.

Taking Imax = 75◦ as an example, we show the phase

portraits of the 2g − 2h resonance in Fig. 10 for MEO

and GSO satellites. The figure shows that (i) the saddle

points are located at σ = 0, (ii) the libration center is

located at σ = π, and (iii) the dynamical separatrices

originating at saddle points (shown as red lines) divide

the regions of circulation and libration.

(a)

(b)

Fig. 10 Phase portraits of the 2g − 2h resonance (σ =
2ω − 2Ω).

3.4 Lunar node resonances

In this section, the lunar node resonances are discussed.

Their critical arguments are given by σ = 2h − τ(=

2Ω−ΩM) and σ = h− τ(= Ω−ΩM). As discussed above,

the nodal resonances have dynamical effects only on the

variation of the inclination, which changes the orbital

planes of satellites.

To study the resonance with σ = 2h− τ(= 2Ω− ΩM),

the following linear transformation is introduced:
Σ1 = G, σ1 = g

Σ2 =
1

2
H, σ2 = 2h− τ = σ

Σ3 = H + 2T, σ3 =
1

2
τ

(27)

which is a canonical equation with the generating function

S = gΣ1 + 2hΣ2 + τ
(
1
2Σ3 − Σ2

)
.

Thus, the resonant Hamiltonian can be written as

H = −τ̇ × Σ2 −
1

16
CJ2

(3 cos 2α+ 1)
12Σ2

2

Σ5
1
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− 1

32
CSM(3cos2(ε− α)− 1)

(
5L2 1

Σ2
1

− 3

)
(12Σ2

2 − Σ2
1)

− 3

64
CM sin(ε− α)(1 + cos(ε− α)) sin 2iM

·
(
5L2 1

Σ2
1

− 3

)
(Σ2

1 − 4Σ2
2) cosσ2 (28)

and defines a resonant model with one degree of freedom.

In this model, the actions Σ1 and Σ3 are conserved

quantities.

As for the resonance with σ = h− τ(= Ω− ΩM), the

following linear transformation is introduced:
Σ1 = G, σ1 = g

Σ2 = H, σ2 = h− τ = σ

Σ3 = H + T, σ3 = τ

(29)

which is canonical and has the generating function S =

gΣ1 + hΣ2 + τ(Σ3 − Σ2).

When this linear transformation is used, the resonant

Hamiltonian becomes

H = −τ̇ × Σ2 −
1

16
CJ2

(3 cos 2α+ 1)
3Σ2

2

Σ5
1

− 1

32
CSM(3cos2(ε− α)− 1)

(
5L2 1

Σ2
1

− 3

)
(3Σ2

2 − Σ2
1)

− 3

32
CM(2 cos(ε− α)− 1)(cos(ε− α) + 1) sin 2iM

·
(
5L2Σ2

Σ2
1

− 3Σ2

)√
Σ2

1 − Σ2
2 cosσ2

− 3

128
CM(1 + cos(ε− α))2sin2iM

(
5L2 1

Σ2
1

− 3

)
· (Σ2

1 − Σ2
2) cos 2σ2 (30)

which describes a single-degree-of-freedom system. The

actions Σ1 and Σ3 are again conserved quantities.

For both nodal resonances, the action variable Σ1 = G

is the integral of motion: G = L
√
1− e2 = const. Thus,

G can be represented by the eccentricity e.

The case of e = 0.1 is taken as an example, and the

level curves of the resonant Hamiltonian are presented in

Fig. 11 for MEO satellites. The dynamical separatrices

originating at saddle points are shown as red lines. The

libration centers of both resonances, σ = 2h − τ and

σ = h− τ , are located at σ = π, and their saddle points

are located at σ = 0. Note that these two lunar node

resonances were studied by Zhu [5] under the geocentric

equatorial reference frame using perturbation theory

based on Lie series transformation.

4 Resonance width

The Hamiltonian functions associated with the secular

(a)

(b)

Fig. 11 Phase portraits of the lunar node resonances with
critical arguments of σ = 2Ω − ΩM (a) and of σ = Ω − ΩM

(b).

resonances of interest were explicitly presented in the

previous section, and their phase portraits were briefly

analyzed. The Hamiltonian for a resonance with σ as the

resonant angle can generally be written as

H = D0 +D1 cosσ +D2 cos 2σ (31)

where the coefficients D0, D1, and D2 depend on the

action variable Σ, which is conjugate to the resonant

angle σ. Note that for all the resonances considered in the

preceding section, D2 is non-zero only for the resonance

with σ = h− τ .

Using the method presented in Ref. [8], the

Hamiltonian can be expanded around the resonant center

at Σ = Σ∗ in a Taylor series of ∆Σ = Σ−Σ∗. Neglecting

those terms with order higher than 3, we obtain the

pendulum-like model governed by

H(σ,∆Σ) =
1

2

∂2D0

∂Σ2
∆Σ2 +D1 cosσ +D2 cos 2σ (32)
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where the terms ∂2D0

∂Σ2 , D1, and D2 are evaluated at Σ =

Σ∗. According to the resonant model given by Eq. (32),

the eigenfrequency at the resonant center (σ∗,Σ∗) is

ω0 =

√
∂2D0

∂Σ2
(D1 + 4D2) (33)

and thus the timescale of the resonance can be estimated

as

T =
2π

ω0
(34)

It is known that the distance between the separatrices

stand for the resonant width. Thus, the resonant half-

width in terms of ∆Σ is given by

∆Σ = 2

√√√√∣∣∣∣∣ D1(Σ)
∂2D0(Σ)

∂Σ2

∣∣∣∣∣
Σ=Σ∗

(35)

Based on the relationship between ∆Σ and the elements e

and i (which is different for different resonances), it is not

difficult to derive the resonant half-width in terms of the

variation of the eccentricity or inclination (∆e or ∆i) for

each resonance. In practical simulations, the distribution

of the resonance width is produced in two cases.

In the first case, the eccentricity is fixed at e0 = 0.1.

Figure 12 presents the resonance widths in the (i, a) space

for secular resonances occurring at the critical inclinations

(a) and for the nodal resonances (b). The corresponding

critical arguments are marked in each plot for clarity.

In Fig. 12(a), we can observe that (i) the resonance

width increases with the semimajor axis, and (ii) among

the five resonances occurring at the critical inclinations,

the resonance 2ω has the largest width and thus is the

strongest.

In the second case, the semimajor axis is assumed

to be a0 = 4.38RE, which corresponds to the value for

MEO satellites in the Beidou Navigation Satellite (BDS)

system. Figure 13 shows the resonance widths in the (e, i)

space for the secular resonances occurring at the critical

inclinations (a) and for lunar node resonances (b). As

shown in Fig. 13(a), the resonance width first increases

and then decreases as the eccentricity changes from zero

to unity. In addition, in high-eccentricity regions the

resonance zones of two adjacent resonances may overlap,

resulting in chaotic motion [28].

5 Numerical validation

In this section, the equations of motion given by Eq. (6)

are numerically integrated with initial elements uniformly
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Fig. 12 Resonance widths in the space (a, i) for the secular
resonances occurring at the critical inclinations (a) and lunar
node resonances (b).

distributed in a certain domain. During the integration

period, we record the maximum and minimum values

of the eccentricity (emax and emin) and inclination (imax

and imin). To characterize the dynamical effects of secular

resonances, we introduce two indicators: (i) the variation

of the inclination, denoted by ∆i = imax − imin, and (ii)

the normalized variation of the eccentricity, defined by

∆e = |e0−emax|
|e0−ere-entry| , where e0 and ere-entry are the initial

eccentricity and the eccentricity that leads to re-entry for

a given semimajor axis, respectively. ere-entry is calculated

by a0(1 − ere-entry) = RE + 120 km. The indicator ∆e

has been widely used in previous studies to produce

dynamical maps [10, 29]. However, the indicator ∆i is

rarely used. In this study, both indicators are used.

According to Eq. (34), the timescale at the resonance

center can be estimated. In particular, it is ∼ 730 years

for the resonance associated with σ = 2g+2h, ∼ 846 years

for σ = 2g + h, ∼ 272 years for σ = 2g, ∼ 328 years for
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Fig. 13 Resonance widths in the space (e, i) for the secular
resonances occurring at the critical inclinations (a) and lunar
node resonances (b).

σ = 2g − h, and ∼ 846 years for σ = 2g + 2h (note that

the timescales are evaluated using a0 = 3RE and e0 = 0.1

and they may be slightly different for other parameters).

In addition, Zhu [5] showed that the timescales of the

lunar nodal resonances are shorter than 1000 years (see

Figs. 5, 6, and 8 in his paper). Thus, in our simulations,

the propagation time is taken as 1000 years, which covers

the timescales of the lunisolar resonances considered.

5.1 Dynamical maps at zero eccentricity

When the eccentricity is assumed as zero, the dynamical

model given by Eq. (6) reduces to a system with one and

half degrees of freedom (the degree of freedom associated

with the eccentricity disappears). Thus, the secular

resonances occurring at the critical inclinations disappear,

and only the nodal resonances exist. For the numerical

integration, the initial semimajor axis and inclination are

assumed to be distributed in the domain [3, 6]× [0◦, 90◦],

and the longitude of the ascending node and argument of

pericenter are taken as zero. As the eccentricity is always

zero, the indicator ∆e is not relevant. In this case, we

record the variation of the inclination ∆i as a function

of the initial semimajor axis and inclination. Thus, a

dynamical map with ∆i as an indicator can be produced.

In Fig. 14(a), we show the field of ∆i in degree

in the space (i, a), which overlaps the curves of the

nodal resonances. For comparison, the resonant widths

of the nodal resonances are shown in Fig. 14(b). We can

conclude that (i) in the region where nodal resonance

occurs, the inclination has a larger variation; (ii) the

structure appearing on the dynamical map is in good

agreement with the resonance curves, indicating that

the nodal resonances form the fundamental structures

in the phase space for satellites moving in circular or

quasi-circular orbits.
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Fig. 14 Dynamical map with ∆i as indicator (a) as well as
resonance width of the nodal resonances (b).

5.2 Dynamical maps at non-zero eccentricity

When the eccentricity is different from zero, the
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dynamical model represented by Eq. (6) is of two and

half degrees of freedom. In the numerical integration, the

initial semimajor axis, eccentricity, and inclination are

taken in a certain range, and the angle variables, including

the longitude of the ascending node and argument of

pericenter, are assumed to be zero (simulations showed

that dynamical maps remained unchanged when non-zero

initial angular variables were used). The indicators ∆e

and ∆i are recorded as functions of the initial semimajor

axis, eccentricity, and inclination. For convenience of

display, we fix one of the parameters a0, e0, and i0 and

present the distribution of ∆e or ∆i in the space spanned

by the other two parameters.

In the practical simulations, the initial eccentricity

is fixed at e0 = 0.1. The indicators ∆e and ∆i are

distributed in the space (i0, a0), as shown in Fig. 15,

where the initial semimajor axis and inclination are

uniformly distributed in the domain [3, 6] × [0◦, 90◦].

The color index represents the magnitude of ∆e or ∆i.
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Fig. 15 Dynamical maps with ∆e as indicator (a) and with
∆i as indicator (b). In each panel, the resonance curves are
provided for the purpose of comparison.

For comparison, the resonance curves obtained by the

analytical method are plotted in Fig. 15. According to

the map of ∆e, the secular resonances at the critical

inclinations are well identified on the dynamical map,

and the structures are slightly distorted around the

intersection points of two resonance curves, where chaotic

motion occurs. In the field of ∆i, both the secular

resonances occurring at the critical inclinations and lunar

node resonances are well located, and the regions with

higher ∆i are in excellent agreement with the resonance

curves. Our simulations show that ∆i is a good dynamical

index for characterizing lunisolar secular resonances.

6 Conclusions

In this work, secular resonances of navigation satellites are

investigated under the dynamical model formulated under

the geocentric Laplace reference frame. Using the double-

averaging technique, an explicit expression is derived for

the double-averaged disturbing function, in which the

leading terms of the Earth’s oblateness perturbation and

of the lunisolar gravitational perturbations are taken into

account.

There are varieties of lunisolar resonances in the MEO

and GSO regions. Among these secular resonances, we

are interested in the secular resonances with critical

arguments of 2ω + 2Ω, 2ω +Ω, 2ω, 2ω −Ω, and 2ω − 2Ω

and the lunar node resonances with critical arguments of

Ω−ΩM and 2Ω−ΩM. The first five resonances are known

to occur at the critical inclinations. For each resonance of

interest, a linear transformation is made in order to obtain

a system with one degree of freedom. The phase portraits

for the considered resonances are provided. From the

phase portraits, the resonance centers and dynamical

separatrices are identified. Then, the resonance widths

in terms of the variation of the inclination are produced

in the space (i, a) with fixed eccentricity and in the

space (i, e) with fixed semimajor axis. For the resonances

occurring at the critical inclinations, it is found that (i)

when the eccentricity is fixed, the resonance width is an

increasing function of the semimajor axis, and (ii) the

resonance width first increases and then decreases when

the eccentricity changes from zero to unity. In addition,

when the eccentricity is higher than a certain value,

nearby resonances may overlap, leading to the occurrence

of chaotic motion.

To validate the analytical results, dynamical maps

are produced. In the production of dynamical maps, two



Secular dynamics of navigation satellites in the MEO and GSO regions 373

indicators are used: (i) variation of inclination ∆i, and (ii)

normalized variation of eccentricity ∆e. The structures

appearing in the dynamical maps are in good agreement

with the resonance curves. In addition, it is observed

that the dynamical maps of ∆e could locate only the

secular resonances occurring at the critical inclinations,

whereas the ones of ∆i could locate both the secular

resonances occurring at the critical inclinations and lunar

node resonances well.
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