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ABSTRACT

By considering the spacecraft as an extended, rigid body with a prior known attitude

instead of a point mass, the attitude-restricted orbital dynamics can improve the precision

of the classical point-mass orbital dynamics in close proximity to an asteroid, because

it includes the perturbation caused by the gravitational orbit–attitude coupling of the

spacecraft (GOACP). The GOACP is defined as the difference between the gravity acting

on a non-spherical, extended body (the real case of a spacecraft) and the gravity acting

on a point mass (the approximation of a spacecraft in classical orbital dynamics). In-

plane equilibrium points that are within the principal planes of the asteroid have been

investigated for the attitude-restricted orbital dynamics in previous studies, including

equatorial and in-plane non-equatorial equilibrium points. In this study, out-of-plane

equilibrium points outside the principal planes of the asteroid were examined. Out-of-

plane equilibrium points cannot exist in the classical point-mass orbital dynamics but do

exist in the attitude-restricted orbital dynamics owing to the effects of the GOACP. The

previously investigated in-plane equilibrium points and the out-of-plane ones examined

in this study provide a complete map of the equilibrium points in close proximity to an

asteroid with the GOACP. Equatorial and in-plane non-equatorial equilibrium points have

extended the longitude and latitude ranges of the classical equilibrium points without

the GOACP, respectively, while the out-of-plane ones examined in the present study

extend both the longitude and latitude ranges. Additionally, the invariant manifolds of

out-of-plane equilibrium points were calculated, and the results indicated that the attitude

of spacecraft significantly affects the invariant manifolds. In practice, these equilibrium

points can provide natural hovering positions for operations in proximity to asteroids, and

their invariant manifolds can be used for transfers to or from the equilibrium points.

KEYWORDS

asteroid mission

attitude-restricted orbital

dynamics

gravitational orbit–attitude

coupling perturbation

(GOACP)

out-of-plane equilibrium points

invariant manifolds

Research Article

Received: 11 July 2020

Accepted: 5 June 2021

© Tsinghua University Press

2021

1 Introduction

The attitude-restricted orbital dynamics refers to a newly

proposed orbital model for the high-precision modeling of

the translational motion of spacecraft in close proximity

to an asteroid [1, 2]. In contrast to the classical orbital

dynamics where the spacecraft is approximated as a

point mass, the spacecraft in the attitude-restricted

orbital dynamics is considered as an extended, rigid body

with a prior known relative attitude with respect to the

asteroid. Through this improvement, the new orbital

model includes the gravitational orbit–attitude coupling

perturbation (GOACP), which is neglected in the classical

point-mass orbital dynamics. The GOACP is defined

as the difference between the gravity acting on a non-

spherical, extended body (the real case of a spacecraft)

and the gravity acting on a point mass (the approximation

of a spacecraft in classical orbital dynamics). Therefore,

the attitude-restricted orbital dynamics can improve

the precision of classical point-mass orbital dynamics,

particularly in the case of significant gravitational orbit–
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attitude coupling.

Usually, the orbit–attitude coupling of spacecraft

is negligible in astrodynamics and space engineering.

Therefore, the orbital and attitude motions of spacecraft

near asteroids have been studied separately in the

orbital dynamics [3–7] and attitude dynamics [8–15],

respectively. However, for a large spacecraft in proximity

to a small asteroid, the gravitational orbit–attitude

coupling is significant owing to the large ratio of

the spacecraft’s characteristic dimension to the orbit

radius [16, 17]. To include the orbit–attitude coupling,

the six-degree of freedom (6-DOF) gravitationally coupled

orbit–attitude dynamics (also called full dynamics),

where the spacecraft is modeled as an extended, rigid

body, have been proposed and studied in different types

of gravity fields [18–28], as well as with the solar radiation

pressure (SRP) [29, 30]. The coupled orbit–attitude

dynamics has already been adopted in studies on guidance

and control of operations in proximity to asteroids [31–

34], and related control problems [35].

Although the gravitational orbit–attitude coupling

can be included naturally in the 6-DOF coupled orbit–

attitude dynamics, from the perspective of the 3-DOF

orbital motion, the coupling causes an extra orbital

perturbation—the GOACP—in addition to the non-

spherical gravity of the asteroid, SRP, solar tide, etc.

It has been shown that the ratio of the GOACP to the

non-spherical gravity is on the order of (ρ/ae)
2, where ρ

represents the characteristic dimension of the spacecraft

and ae represents the mean radius of the asteroid [1].

Therefore, the GOACP must be considered for a large

spacecraft. The attitude-restricted orbital dynamics were

proposed for this reason, where the word “restricted”

indicates that the orbital motion is treated as a restricted

problem at a prior known attitude.

The traditional spacecraft dynamics, where the

attitude motion is treated as a restricted problem on

the predetermined orbit, and the attitude-restricted

orbital dynamics, where the orbital motion is treated

as a restricted problem at the predetermined attitude,

are two different approximations of the 6-DOF motion

of spacecraft. Because the orbital control is usually

weaker than the attitude control, the natural orbital

dynamics, which can be utilized for saving fuel, are more

important than the natural attitude dynamics. Therefore,

the attitude-restricted orbital dynamics with the GOACP

are reasonable and useful from the perspective of space

engineering [1].

Wang and Xu have shown that the GOACP makes the

phase space of the system complex and makes equilibrium

points more diverse than those in the classical point-

mass orbital dynamics without GOACP [1, 2]. Two

types of equatorial equilibrium points and two families

of in-plane non-equatorial equilibrium points have been

obtained numerically, which extend the longitude and

latitude ranges of the classical equilibrium points without

GOACP, respectively. In this study, on the basis of our

previous results, we investigated out-of-plane equilibrium

points and their invariant manifolds, which are outside

the principal planes of the asteroid. These out-of-plane

equilibrium points extend the longitude and latitude

ranges of classical equilibrium points simultaneously.

Compared with our previous results, this study provides

more details on the phase space of the system, as well as

more natural hovering positions and transfer trajectories

for asteroid missions.

The remainder of this paper is organized as follows. The

equations of motion are presented in Section 2, followed

by the equilibrium conditions in Section 3. Out-of-plane

equilibrium points are calculated in Section 4, and their

invariant manifolds are analyzed in Section 5. Finally,

the paper is concluded in Section 6.

2 Equations of motion

The system studied by Wang and Xu is examined here [1,

2]. As shown in Fig. 1, the principal-axis body-fixed

reference frames of the asteroid and spacecraft are given

by SP = {u,v,w} and SB = {i, j,k}, respectively. The
asteroid rotates uniformly at a constant angular velocity

Spacecraft
B

Asteroid
P

Fig. 1 Spacecraft moving in close proximity to a small
asteroid.
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ωT , and its non-spherical gravity field is described by the

harmonic coefficients C20 and C22. The relative attitude

of the spacecraft with respect to the asteroid is described

by A:

A = [α,β,γ]T ∈ SO(3) (1)

where α, β, and γ represent the coordinates of u, v,

and w in the body-fixed frame of the spacecraft SB,

respectively. r = [x, y, z]T represents the position of the

spacecraft in the body-fixed frame of the asteroid SP

with the unit vector r̄ = [x̄, ȳ, z̄]T along it. m and I =

diag{Ixx, Iyy, Izz} represent the mass and inertia tensor

of the spacecraft, respectively.

The equations of orbital motion of the spacecraft

expressed in the body-fixed frame of the asteroid SP

are given by

r̈ + 2ωT × ṙ + ωT × (ωT × r) = αs/c (2)

where αs/c represents the acceleration acting on the

spacecraft and ωT = [0, 0, ωT ]
T.

In the attitude-restricted orbital dynamics, the non-

spherical gravity perturbation of the asteroid and the

GOACP are considered, while the perturbations of the

SRP and solar tide are neglected [1]. Accordingly, the

acceleration αs/c is given as

αs/c = αKepler +αNSG +αOAC (3)

where αKepler represents the Kepler two-body

acceleration.

αKepler = − µ

r2
r̄ (4)

Here, µ = GM , M represents the mass of the asteroid,

and G is the gravitational constant. αNSG represents the

non-spherical gravity perturbation of the asteroid up to

the second order:

αNSG =
3µ

2r4
{[τ0(1− 5z̄2)− 10τ2(x̄

2 − ȳ2)]r̄

+ 2τ0z̄e3 + 4τ2(x̄e1 − ȳe2)} (5)

where τ0 = a2eC20, τ2 = a2eC22, ae represents the

mean equatorial radius of the asteroid, e1 = [1, 0, 0]T,

e2 = [0, 1, 0]T, and e3 = [0, 0, 1]T. αOAC represents the

GOACP up to the second order:

αOAC =
3µ

2r4

{[
5r̄TA

(
I

m

)
ATr̄ − tr

(
I

m

)]
r̄

− 2A

(
I

m

)
ATr̄

}
(6)

In the gravitational acceleration αs/c, αKepler is the

zeroth-order term, and αNSG and αOAC are the second-

order terms [1].

From the perspective of rigid-body dynamics, the

spacecraft’s parameter I/m is essential for the GOACP

αOAC, because I/m determines the difference between

the spacecraft and a point mass (or a homogenous sphere).

I/m is determined by the mass distribution parameters

σx and σy, as well as the characteristic dimension ρ of

the spacecraft, which are defined as Eq. (7) [26]:

σx = (Izz − Iyy)/Ixx, σy = (Izz − Ixx)/Iyy, ρ
2 = 2Ixx/m

(7)

The GOACP αOAC is more significant in the case of a

more non-spherical mass distribution or a larger ratio ρ/r.

3 Equilibrium condition

At the equilibrium points, the spacecraft remains

stationary in the body-fixed frame of the asteroid. The

equilibrium condition can be obtained by simply letting

r̈ = 0 and ṙ = 0 in equation of motion (2):

ωT × (ωT × r) = αs/c (8)

Thus, the gravitational force αs/c balances the

centrifugal force of the orbital motion. By using Eqs. (3)–

(6), the equilibrium condition (8) can be written as

ωT × (ωT × r) =

− µ

r2
r̄ +

3µ

2r4
{[τ0(1− 5z̄2)− 10τ2(x̄

2 − ȳ2)]r̄

+ 2τ0z̄e3 + 4τ2(x̄e1 − ȳe2)}

+
3µ

2r4

{[
5r̄TA

(
I

m

)
ATr̄ − tr

(
I

m

)]
r̄

− 2A

(
I

m

)
ATr̄

}
(9)

3.1 Classical results without GOACP

Howard studied the equilibrium points of the classical

point-mass orbital dynamics in proximity to an

asteroid [36]. Without the GOACP, the acceleration of

the spacecraft is given by αs/c = αKepler +αNSG. Thus,

the equilibrium condition is

ωT × (ωT × r) = − µ

r2
r̄ +

3µ

2r4
{[τ0(1− 5z̄2)

− 10τ2(x̄
2 − ȳ2)]r̄ + 2τ0z̄e3 + 4τ2(x̄e1 − ȳe2)} (10)

Using Eq. (10), Howard determined the in-plane

equilibrium points that are within the principal planes

of the asteroid, including the equatorial and in-plane

non-equatorial equilibrium points [36]. However, by

performing simple analyses, we found that out-of-plane

equilibrium points that are outside principal planes of the

asteroid cannot exist in the classical point-mass orbital
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dynamics. All the terms in Eq. (10) except 4τ2(x̄e1 − ȳe2)

are naturally within the plane spanned by ωT and r.

Thus, Eq. (10) requires that 4τ2(x̄e1 − ȳe2) is also within

the plane spanned by ωT and r, that is, parallel to

x̄e1 + ȳe2, implying that x̄ = 0 or ȳ = 0. Therefore, the

equilibrium points must be within the principal planes

of the asteroid and cannot be out-of-plane ones.

3.2 Equilibrium condition with GOACP

Owing to the GOACP αOAC, out-of-plane equilibrium

points may exist in the attitude-restricted orbital

dynamics. For out-of-plane equilibrium points, we have

x̄ȳz̄ ≠ 0; the equilibrium condition (9) cannot be

simplified further. In contrast to the in-plane equilibrium

points reported by Wang and Xu [1, 2], there is not a

specific geometric relationship between principal planes

of the asteroid and the spacecraft. Thus, for out-of-

plane equilibrium points, three Euler angles are needed

to describe the relative attitude of the spacecraft with

respect to the asteroid, making it tedious to determine

the equilibrium condition.

The sequence of rotation from the frame SP to the

spacecraft body-fixed frame SB is as follows: the yaw

angle ψ around k-axis, the pitch angle θ around j-

axis, and the roll angle ϕ around the i-axis. Then, the

relative attitude matrix A, which is also the coordinate

transformation matrix from frame SB to frame SP, is

given by

A = [α,β,γ]T

=

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 ·

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


·

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 (11)

The equilibrium condition (9) can be rewritten as

ωT × (ωT × r) = − µ

r2
r̄ +

3µ

2r4

[
τ0(1− 5z̄2)

− 10τ2(x̄
2 − ȳ2) + 5r̄TA

(
I

m

)
ATr̄ − tr

(
I

m

)]
r̄

+
3µ

r4

[
τ0z̄e3 + 2τ2(x̄e1 − ȳe2)−A

(
I

m

)
ATr̄

]
(12)

4 Out-of-plane equilibrium points

In this section, we present calculation examples for

the out-of-plane equilibrium points and investigate the

effects of the GOACP αOAC on their distributions. The

parameters of the asteroid are identical to those of the

example asteroid considered by Wang and Xu [1, 2]:{
µ = 5 m3/s2, C20 = −0.12, C22 = 0.01

ae = 250 m, ωT = 2.9089× 10−4 s−1
(13)

The mass distribution of the spacecraft is identical to

that used by Wang and Xu [2]:

Ixx : Iyy : Izz = 1.5 : 1.2 : 1 (14)

To show the effects of the GOACP, three large values are

chosen for the characteristic dimension of the spacecraft

ρ:

ρ = 50 m, ρ = 100 m, ρ = 160 m (15)

which represent larger spacecraft in future asteroid

missions, e.g., the asteroid deflection mission and asteroid

resource exploitation.

We calculate the out-of-plane equilibrium points by

solving equilibrium condition (12) via a numerical

method. The fsolve function in the software MATLAB is

used, which relies on an iteration procedure and requires

an initial guess.

The in-plane equilibrium points obtained in previous

studies can be adopted as starting points of the iterations.

With in-plane equilibrium points with a single nonzero

Euler angle ψ, θ, or ϕ obtained by Wang and Xu [1, 2],

we can calculate the out-of-plane equilibrium points when

the other two Euler angles, i.e., (θ, ϕ), (ψ, ϕ), or (ψ, θ)

increase gradually with small step sizes. The equilibrium

points corresponding to the last set of Euler angles can

be used as the initial guesses for the current set of Euler

angles. The considered ranges of all the Euler angles are

[0, π], because [π, 2π] is identical to [0, π] owing to the

symmetry of the spacecraft’s inertia tensor. Thus, we

can obtain the distributions of out-of-plane equilibrium

points with different sets of Euler angles (ψ, θ, ϕ).

Two types of starting points can be used for

the iterations during the calculation of out-of-plane

equilibrium points: the equatorial equilibrium points

with nonzero Euler angle ψ [1] and the in-plane non-

equatorial equilibrium points with a nonzero Euler angle

θ or nonzero Euler angle ϕ [2]. Among the two families

of in-plane non-equatorial equilibrium points obtained

by Wang and Xu [2], we only consider the out-of-plane

equilibrium points near the first family that is near

the equatorial principal axes of the asteroid, because
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the second family, which can exist only in the case of

a fictitious asteroid rotating around its intermediate-

moment principal axis, has limited practical significance.

4.1 To start with in-plane equilibrium points

The in-plane equilibrium points with the single nonzero

Euler angle [1, 2], including the equatorial equilibrium

points with nonzero Euler angle ψ [1] and the first family

of the in-plane non-equatorial equilibrium points with

nonzero Euler angle θ or ϕ [2], are shown in Figs. 2–

4 with three values of the characteristic dimension ρ,

respectively. The values of the nonzero Euler angle at the

equilibrium points are indicated by their colors. Because

the distributions of the equilibrium points are symmetric

with respect to the center of the asteroid, only two regions

are magnified in the figures.

The equatorial equilibrium points with nonzero Euler

angle ψ obtained by Wang and Xu [1] are represented by

the larger closed curves within the equatorial plane. The

first family of in-plane non-equatorial equilibrium points

with nonzero Euler angle θ or ϕ obtained by Wang and

Xu [2] are represented by the smaller closed curves within

the longitudinal principal plane, u–w plane, and v–w

plane, respectively. We see that the curves of equatorial

equilibrium points intersect with those of in-plane non-

equatorial equilibrium points at the points with three zero

Euler angles. In the following, the equatorial equilibrium

points with nonzero Euler angle ψ obtained by Wang and

Xu [1] are needed as starting points for the iterations

during the calculation of out-of-plane equilibrium points.

4.2 Out-of-plane equilibrium points with
nonzero ψ and ϕ

Choosing the equatorial equilibrium points with nonzero

Euler angle ψ [1] as starting points for the iterations,

we first calculate the out-of-plane equilibrium points

with {ψ ∈ [0, π], θ = 0, ϕ ∈ [0, π]} for three values of the

characteristic dimension ρ.

For each value of ρ, the details of the process are as

follows. First, a series of equatorial equilibrium points

with a grid size of 3 degrees for ψ, i.e., the equatorial

equilibrium points with {ψ = 3ideg, θ = ϕ = 0}, i =

{0, 1, · · · , 59}, are selected. Then, with every equatorial

equilibrium point with {ψ = 3ideg, θ = ϕ = 0}, i ∈
{0, 1, · · · , 59} as the starting point, out-of-plane

equilibrium points with {ψ = 3ideg, θ = 0, ϕ ∈ [0, π]},
i ∈ {0, 1, · · · , 59} are calculated as the Euler

angle ϕ increases gradually from 0 to π with a

small step size via iteration processes. Finally, by

plotting all the out-of-plane equilibrium points with

{ψ = 3ideg, θ = 0, ϕ ∈ [0, π]}, i ∈ {0, 1, · · · , 59}, the loci

of out-of-plane equilibrium points with {ψ ∈ [0, π],

θ = 0, ϕ ∈ [0, π]} are obtained for the three values of

the characteristic dimension ρ, as shown in Figs. 5–7,

respectively. Because the distributions of the equilibrium

points are symmetric with respect to the center of the

direction

d
ir

ec
ti

o
n

direction

Fig. 2 Loci of in-plane equilibrium points with a single nonzero Euler angle and ρ = 50 m.
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Fig. 3 Loci of in-plane equilibrium points with a single nonzero Euler angle and ρ = 100 m.

Fig. 4 Loci of in-plane equilibrium points with a single nonzero Euler angle and ρ = 160 m.

asteroid, only two regions are magnified in the figures.

Each group of out-of-plane equilibrium points with

{ψ = 3ideg, θ = 0, ϕ ∈ [0, π]}, which are calculated via

iterations starting from the same equatorial equilibrium

point with {ψ = 3ideg, θ = ϕ = 0}, forms a closed curve.

Therefore, the loci of the out-of-plane equilibrium points

with {ψ ∈ [0, π], θ = 0, ϕ ∈ [0, π]} form a two-dimensional

(2D) surface consisting of infinitely many closed curves,

each of which is formed by out-of-plane equilibrium points

with {ψ = ψcurve, θ = 0, ϕ ∈ [0, π]}. ψcurve is the value of

the Euler angle ψ for the closed curve and is the value of ψ

for the closed curve’s starting point. Thus, the 2D surface
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Fig. 5 Loci of out-of-plane equilibrium points with {ψ ∈ [0, π], θ = 0, ϕ ∈ [0, π]} and ρ = 50 m.

of out-of-plane equilibrium points can be parameterized

by the pair of Euler angles {ψ, ϕ}. In the figures, the

values of the Euler angle ϕ at the equilibrium points are

represented by different colors.

Generally, the 2D surface surrounds the in-plane

equatorial equilibrium points, which can be regarded

as its framework. For a small characteristic dimension

ρ, the 2D surface is distributed near the equatorial axes

of the asteroid, as shown in Figs. 5 and 6, whereas for a

large characteristic dimension ρ, the 2D surface can be

distributed around the asteroid at any longitude owing

to the significant GOACP, as shown in Fig. 7.

As mentioned previously, the second family of in-

plane non-equatorial equilibrium points with the nonzero

Euler angle θ or ϕ reported by Wang and Xu [2] can

be calculated together with the out-of-plane equilibrium

points. As expected, the second family of in-plane non-

equatorial equilibrium points with nonzero Euler angle θ

or ϕ can be identified in Figs. 5–7 as the two closed

curves near the v-axis with {ψ = 0, θ = 0, ϕ ∈ [0, π]}
and the other two closed curves near the u-axis with

{ψ = 90deg, θ = 0, ϕ ∈ [0, π]}.
Importantly, the two closed curves near the u-axis

with {ψ = 0, θ = 0, ϕ ∈ [0, π]} and the other two closed

curves near the v-axis with {ψ = 90deg, θ = 0, ϕ ∈ [0, π]}
degenerate into four points, as shown in the figures. This

is because in these cases, the rotational axis of ϕ—the

i-axis of the spacecraft—is parallel to the u-axis or v-axis

of the asteroid, on which the starting points of the closed

curves are located, and the Euler angle ϕ only affects

higher-order terms of the gravitational force, having no

influence on the locations of the equilibrium points, as

reported by Wang and Xu [1].

4.3 Out-of-plane equilibrium points with
nonzero ψ and θ

By using a process similar to that described in Section 4.2,
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Fig. 6 Loci of out-of-plane equilibrium points with {ψ ∈ [0, π], θ = 0, ϕ ∈ [0, π]} and ρ = 100 m.

we can calculate the out-of-plane equilibrium points with

{ψ ∈ [0, π], θ ∈ [0, π], ϕ = 0} for the three values of the

characteristic dimension ρ. First, the same equatorial

equilibrium points with {ψ = 3ideg, θ = ϕ = 0}, i =

{0, 1, · · · , 59} selected in Section 4.2 are chosen.

Then, with every equatorial equilibrium point with

{ψ = 3ideg, θ = ϕ = 0}, i ∈ {0, 1, · · · , 59} as the

starting point, out-of-plane equilibrium points with

{ψ = 3ideg, θ ∈ [0, π], ϕ = 0}, i ∈ {0, 1, · · · , 59} are

calculated as the Euler angle θ increases gradually from

0 to π with a small step size via iteration processes.

Finally, the loci of the out-of-plane equilibrium points

with {ψ ∈ [0, π], θ ∈ [0, π], ϕ = 0} are obtained, as shown

in Figs. 8–10, for the three values of the characteristic

dimension ρ, respectively.

Similar to the results obtained in Section 4.2,

each group of out-of-plane equilibrium points with

{ψ = 3ideg, θ ∈ [0, π], ϕ = 0}, which are calculated via

iterations starting from the same equatorial equilibrium

point with {ψ = 3ideg, θ = ϕ = 0}, forms a closed curve.

In contrast to the results obtained in Section 4.2,

the closed curves overlap, making them difficult to

distinguish. Nonetheless, the basic properties are revealed

in the figures.

The loci of the out-of-plane equilibrium points with

{ψ ∈ [0, π], θ ∈ [0, π], ϕ = 0} form a 2D surface

consisting of infinitely many closed curves, each of

which is formed by out-of-plane equilibrium points with

{ψ = ψcurve, θ ∈ [0, π], ϕ = 0}, where ψcurve represents

the Euler angle ψ for the closed curve. The 2D surface of

out-of-plane equilibrium points can be parameterized by

the pair of Euler angles {ψ, θ}. In the figures, the values

of the Euler angle θ are represented by different colors.

Similar to the case of Section 4.2, the 2D surface

surrounds the in-plane equatorial equilibrium points,

which can be regarded as its framework. For a small

characteristic dimension ρ, the 2D surface is distributed

near the equatorial axes of the asteroid, whereas for

a large characteristic dimension ρ, the 2D surface can

be distributed around the asteroid at any longitude, as
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Fig. 7 Loci of out-of-plane equilibrium points with {ψ ∈ [0, π], θ = 0, ϕ ∈ [0, π]} and ρ = 160 m.

shown in Fig. 10.

The second family of in-plane non-equatorial

equilibrium points with nonzero Euler angle θ or ϕ

can be identified in Figs. 8–10 as the two closed

curves near the u-axis with {ψ = 0, θ ∈ [0, π], ϕ = 0}
and the other two closed curves near the v-axis

with {ψ = 90deg, θ ∈ [0, π], ϕ = 0}. The two closed

curves near the v-axis with {ψ = 0, θ ∈ [0, π], ϕ = 0}
and the other two closed curves near the u-axis

with {ψ = 90deg, θ ∈ [0, π], ϕ = 0} degenerate into four

points, for the same reason mentioned in Section 4.2.

Clearly, these phenomena are dual to those in Section 4.2.

The out-of-plane equilibrium points with three nonzero

Euler angles, i.e., with {ψ ∈ [0, π], θ ∈ [0, π], ϕ ∈ [0, π]},
can be calculated by using the same method, but the

computational burden is large, and the results are difficult

to display. Thus, we do not calculate them here. It

is expected that the loci of out-of-plane equilibrium

points with {ψ ∈ [0, π], θ ∈ [0, π], ϕ ∈ [0, π]} form a three-

dimensional (3D) geometric object consisting of infinitely

many 2D surfaces and can be parameterized by the three

Euler angles {ψ, θ, ϕ}.

5 Invariant manifolds of equilibrium
points with GOACP

Invariant manifolds are important dynamical structures of

equilibrium points and are useful for spacecraft trajectory

design. Similar to the equilibrium points, the invariant

manifolds with GOACP are distinct from those of classical

equilibrium points without GOACP. In this subsection,

we present calculation examples of invariant manifolds

and show their dependences on the spacecraft attitude.

To calculate the invariant manifolds of equilibrium

points, we start with the linearized equations of motion
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Fig. 8 Loci of out-of-plane equilibrium points with {ψ ∈ [0, π], θ ∈ [0, π], ϕ = 0} and ρ = 50 m.

near the equilibrium point re. According to Wang and

Xu [1], the linearized equation near re is given by

d

dt

[
δr
δṙ

]
=

[
0 E

−ω2
T ê3ê3 +

∂αs/c

∂r

∣∣∣
e

−2ωT ê3

] [
δr
δṙ

]
(16)

where E represents the 3 × 3 identity matrix, and the

hat map “ˆ” is

ê3 =

0 −1 0
1 0 0
0 0 0

 (17)

The dynamics of the linearized system is determined

by the system matrix at re:

D(re) =

[
0 E

−ω2
T ê3ê3 +

∂αs/c

∂r

∣∣∣
e

−2ωT ê3

]
(18)

where the gradient of αs/c is given by

∂αs/c

∂r
= − µ

r3
(E − 3r̄r̄T)

− 3µ

2r5

[
5r̄TA

(
I

m

)
ATr̄ − tr

(
I

m

)

+ τ0(1− 5z̄2)− 10τ2(x̄
2 − ȳ2)

]
(7r̄r̄T −E)

− 3µ

r5

{[
tr

(
I

m

)
− τ0

]
r̄r̄T +A

(
I

m

)
AT

− τ0e3e
T
3 − 2τ2(e1e

T
1 − e2eT2 )

}
− 15µ

r5

{
−A

(
I

m

)
ATr̄r̄T − r̄r̄TA

(
I

m

)
AT

+ τ0z̄(e3r̄
T + r̄eT3 )

+ 2τ2[x̄(e1r̄
T + r̄eT1 )− ȳ(e2r̄

T + r̄eT2 )]

}
(19)

Because the system is conservative, there are only

even terms in the characteristic polynomial of the system

matrix D(re), and the eigenvalues are symmetric with

respect to both the real and imaginary axes. The

eigenvector with a positive real eigenvalue is the unstable

one, and the eigenvector with a negative real eigenvalue

is the stable one. The normalized (to 1) stable and

unstable eigenvectors are denoted as Y s(re) and Y
u(re),
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Fig. 9 Loci of out-of-plane equilibrium points with {ψ ∈ [0, π], θ ∈ [0, π], ϕ = 0} and ρ = 100 m.

respectively. The stable and unstable vectors tangent

to invariant manifolds can be obtained by perturbing

the equilibrium point re in the directions of Y s(re) and

Y u(re), respectively:

Xs(re) = [rTe , 0, 0, 0]
T + εY s(re) (20)

Xu(re) = [rTe , 0, 0, 0]
T + εY u(re) (21)

where ε represents a small displacement from re.

The stable and unstable manifolds can be obtained

by integrating the stable vector Xs(re) backwards and

the unstable vector Xu(re) forwards, respectively. As

a demonstration, we calculate the stable and unstable

manifolds for some of the out-of-plane equilibrium points

with {ψ ∈ [0, π], θ = 0, ϕ ∈ [0, π]} and ρ = 100 m given

in Section 4.2. The out-of-plane equilibrium points are

distributed in four regions consisting of closed curves. The

equilibrium-point groups near the v-axis all have three

pairs of imaginary eigenvalues, and there are no stable or

unstable manifolds for these points. The equilibrium-

point groups near the u-axis all have two pairs of

imaginary eigenvalues and a pair of real eigenvalues,

indicating that the stable and unstable manifolds exist.

Because the loci and stability of equilibrium points are

symmetric with respect to the center of the asteroid,

only the stable and unstable manifolds associated with

equilibrium points near the −u-axis are calculated here.

The loci of the out-of-plane equilibrium points of the

group near the −u-axis with {ψ ∈ [0, π], θ = 0, ϕ ∈ [0, π]}
form a 2D surface consisting of infinitely many closed

curves, each of which is formed by out-of-plane

equilibrium points with {ψ = ψcurve, θ = 0, ϕ ∈ [0, π]}.
The stable and unstable manifolds associated

with the closed curves formed by the out-of-plane

equilibrium points with
{
ψ = π

4 , θ = 0, ϕ ∈ [0, π]
}

and{
ψ = 3π

4 , θ = 0, ϕ ∈ [0, π]
}
are shown in Figs. 11 and 12,

respectively. The equilibrium points with manifolds

plotted in Fig. 11 are marked by black stars, and other

out-of-plane equilibrium points are marked by black

dots. The stable and unstable manifolds are shown in

blue and red, respectively.
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Fig. 10 Loci of out-of-plane equilibrium points with {ψ ∈ [0, π], θ ∈ [0, π], ϕ = 0} and ρ = 160 m.

Fig. 11 Stable and unstable manifolds associated with out-of-plane equilibrium points with
{
ψ = π

4
, θ = 0, ϕ ∈ [0, π]

}
.

For both cases, the stable and unstable manifolds

are similar to the manifolds associated with periodic

orbits. When the angle ϕ is close to 0 or π/2, the

directions of the manifolds are opposite those for other

values of ϕ. Another phenomenon is that most of the

stable manifolds associated with out-of-plane equilibrium

points with
{
ψ = π

4 , θ = 0, ϕ ∈ [0, π]
}
move away from

the asteroid, whereas most of the stable manifolds
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Fig. 12 Stable and unstable manifolds associated with out-of-plane equilibrium points with
{
ψ = 3π

4
, θ = 0, ϕ ∈ [0, π]

}
.

associated with out-of-plane equilibrium points with{
ψ = 3π

4 , θ = 0, ϕ ∈ [0, π]
}
approach the asteroid.

The stable and unstable manifolds associated with the

out-of-plane equilibrium points with {ψ = [0, π], θ = 0,

ϕ ∈ [0, π]} are shown in Fig. 13. Most of the stable

manifolds associated with the out-of-plane equilibrium

points with
{
ψ ∈

[
0, π2

)
, θ = 0, ϕ ∈ [0, π]

}
move away

from the asteroid, whereas most of the stable manifolds

Fig. 13 Stable and unstable manifolds associated with the
out-of-plane equilibrium points with {ψ = [0, π], θ = 0, ϕ ∈
[0, π]}.

associated with out-of-plane equilibrium points with{
ψ ∈

(
π
2 , π

]
, θ = 0, ϕ ∈ [0, π]

}
approach the asteroid.

These results indicate that in addition to the locations

of the equilibrium points, the attitude of the spacecraft

significantly affects the invariant manifolds of equilibrium

points, and it can provide more options for trajectory

design in close proximity to asteroids.

6 Conclusions

Out-of-plane equilibrium points of the attitude-restricted

orbital dynamics about an asteroid, which are outside

the principal planes of the asteroid, were investigated

via numerical calculations and subsequent analyses.

The attitude-restricted orbital dynamics in proximity

to asteroids were recently proposed, where the GOACP

is taken into account, in addition to the non-spherical

gravity of the asteroid.

According to the general equilibrium condition

containing all the three Euler angles, out-of-plane

equilibrium points were calculated via iterations by using

the equatorial equilibrium points with nonzero Euler

angle ψ as starting points. Two simplified cases were

considered: equilibrium points with {ψ ∈ [0, π], θ = 0,

ϕ ∈ [0, π]} and {ψ ∈ [0, π], θ ∈ [0, π], ϕ = 0}. The results

indicated that the loci of out-of-plane equilibrium points

with two nonzero Euler angles form 2D surfaces consisting

of infinitely many closed curves, which are obtained

by changing the Euler angle ϕ or θ gradually. The 2D

surface can be parameterized by the pair of Euler angles
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{ψ, ϕ} or {ψ, θ}. The 2D surface surrounds the in-plane

equatorial equilibrium points, which can be regarded as

its framework. For a small characteristic dimension, the

2D surface is distributed near the equatorial axes of the

asteroid, whereas for a large characteristic dimension,

the 2D surface can be distributed at any longitude of the

asteroid owing to the significant GOACP.

The invariant manifolds associated with out-of-plane

equilibrium points with {ψ ∈ [0, π], θ = 0, ϕ ∈ [0, π]} and

ρ = 100 m were calculated as a demonstration. Owing

to the symmetry of the equilibrium points, only the

stable and unstable manifolds associated with equilibrium

points near the −u-axis were examined in this study.

The stable and unstable manifolds associated with the

closed curve formed by out-of-plane equilibrium points

with {ψ = ψcurve, θ = 0, ϕ ∈ [0, π]} form tubes, but the

directions of these manifolds are opposite those of others

when the Euler angle ϕ is close to 0 or π/2. The Euler

angle ψ also affects the invariant manifolds. Most of

the stable manifolds move away from the asteroid with

ψ ∈
[
0, π2

)
, and most of the stable manifolds approach

the asteroid with ψ ∈
(
π
2 , π

]
.

Although out-of-plane equilibrium points with three

nonzero Euler angles were not calculated in this study, it

can be expected that the loci of out-of-plane equilibrium

points with {ψ ∈ [0, π], θ ∈ [0, π], ϕ ∈ [0, π]} form a 3D

geometric object consisting of infinitely many 2D surfaces,

which are formed by the loci of out-of-plane equilibrium

points with two nonzero Euler angles. The 3D geometric

object can be parameterized by the three Euler angles

{ψ, θ, ϕ}.
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