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Non-equatorial equilibrium points around an asteroid with gravitational
orbit–attitude coupling perturbation

Yue Wang (�), Shijie Xu

School of Astronautics, Beihang University, Beijing 102206, China

ABSTRACT

A recently proposed orbital dynamics model in the close proximity of an asteroid, which

is called “attitude-restricted orbital dynamics”, includes the perturbation caused by the

spacecraft’s gravitational orbit–attitude coupling. This orbital model improves the precision

of classical point-mass orbital model with only the non-spherical gravity. Equatorial

equilibrium points have been investigated in the previous paper. In this paper, the in-

plane non-equatorial equilibrium points, which are outside the asteroid’s equatorial plane

but within its longitudinal principal plane, are further studied for a uniformly-rotating

asteroid. These non-equatorial equilibrium points are more diverse than those in the classical

point-mass orbital dynamics without gravitational orbit–attitude coupling perturbation

(GOACP). Two families of them have been found. The equatorial equilibrium points studied

before and the non-equatorial ones studied here give a complete map of equilibrium points

in the asteroid’s principal planes. Compared with the classical point-mass orbital dynamics

without GOACP, the equatorial equilibrium points have extended the longitude range of

equilibrium points around an asteroid, while the non-equatorial ones studied here will extend

the latitude range. These equatorial and non-equatorial equilibrium points provide natural

hovering positions for the asteroid close-proximity operations.
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1 Introduction

Driven by great interests of the space community in

asteroid missions, spacecraft dynamics about asteroids

has been an active research area in recent years. In

the close proximity of a small asteroid, due to the

large ratio of the spacecraft’s dimension to the orbit

radius, significant gravitational coupling may exist

between the orbital and attitude motions of a large-sized

spacecraft. This issue was first raised by Scheeres [1]

and was assessed by Wang and Xu through numerical

simulations [2]. The precision of the traditional modeling

approach, in which the spacecraft is treated as a point

mass in orbital dynamics [3–8], and the attitude motion

is studied restrictedly on a predetermined orbit [9–12],

can be improved by including the gravitational orbit–

attitude coupling.

The gravitationally coupled orbit–attitude dynamics

(also called “full dynamics” in some previous papers),

� ywang@buaa.edu.cn

in which the spacecraft is modeled as an extended rigid

body, has been proposed to include the gravitational

orbit–attitude coupling. Qualitative properties of

gravitationally coupled orbit–attitude dynamics (full

dynamics) of a rigid spacecraft, including the relative

equilibria and stability, have been studied in a spherical

gravity field [13–17], in the gravity field of a spheroid

asteroid truncated on the second zonal harmonic J2
[18], and in the gravity field of an asteroid truncated

on the second degree and order harmonics C20 and C22

[19]. Besides, the gravitationally coupled orbit–attitude

dynamics has been used in the studies of navigation

and control of the close-proximity operations [20–22].

From the perspective of orbital dynamics, the

gravitational orbit–attitude coupling causes another

orbital perturbation besides the asteroid’s non-spherical

gravity, solar radiation pressure (SRP), and solar tide.

It has been shown that the ratio of gravitational orbit–

attitude coupling perturbation (GOACP) to the non-
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spherical gravity of the asteroid is the order of (ρ/ae)
2,

where ρ is the spacecraft’s characteristic dimension and

ae is the asteroid’s mean radius [23]. Thus, GOACP

needs to be considered for a large-sized spacecraft.

Due to this reason, the attitude-restricted orbital

dynamics has been proposed to include GOACP in close-

proximity orbital dynamics [24]. In this model, the

spacecraft is assumed to be kept at a given attitude

with respect to the asteroid, and the orbital motion

perturbed by both the asteroid’s non-spherical gravity

and GOACP is studied. The word “restricted” means

that the orbital motion is studied as a restricted

problem at a given attitude. As stated by Wang and

Xu [24], the traditional spacecraft dynamics and the

attitude-restricted orbital dynamics are two different

approximations of the exact motion. Wang and Xu

have shown that GOACP makes the phase space of

the system quite different from the classical point-

mass orbital dynamics without GOACP [24]. In that

paper, two kinds of equatorial equilibrium points were

obtained: on and off the asteroid’s equatorial principal

axes, which extends the longitude range of classical

equilibrium points without GOACP.

In this paper, we used the same dynamical model as

in Wang and Xu [24], to further investigate the in-plane

non-equatorial equilibrium points about a uniformly-

rotating asteroid. These non-equatorial equilibrium

points will extend the latitude range of classical

equilibrium points without GOACP, and will provide

more natural hovering positions for the close-proximity

operations. The paper is organized as follows: the

equations of motion and equilibrium conditions are

given in Section 2 and Section 3, respectively, followed

by iteration methods for solving equilibrium points in

Section 4. Then, in-plane non-equatorial equilibrium

points are calculated and analyzed in details in Section

5. Finally, the paper is concluded in Section 6.

2 System description and equations of

motion

The system studied here is the same as that in Wang

and Xu [24]. Here we will give a brief description about

the dynamical model.

As described by Fig. 1, the orbital motion of a

rigid spacecraft B moving around a small asteroid P

is considered. It is assumed that the asteroid is rotating

Fig. 1 Spacecraft moving around a small asteroid. Reproduced

with permission from Ref. [24], © Springer Science+Bussiness

Media Dordrecht 2015.

uniformly around its maximum-moment principal axis

at angular velocity ωT . The body-fixed principal-axis

reference frames of the asteroid and the spacecraft are

given by SP = (u,v,w) and SB = (i, j,k) with O and

C as their origins, respectively. The origin of the frame

SP is fixed at the center of mass of the asteroid, and

the coordinate axes are chosen to be aligned along the

principal moments of inertia of the asteroid. Then, the

asteroid’s gravity field up to the second degree and order

can be represented by the harmonic coefficients C20 and

C22 with other harmonic coefficients vanished [25].

The attitude of spacecraft is described with respect

to the asteroid by A:

A = [α, β, γ]T ∈ SO(3) (1)

where vectors α, β, and γ are coordinates of u,

v, and w expressed in the spacecraft’s frame SB,

respectively. The spacecraft’s position vector expressed

in the asteroid’s frame SP is denoted by r = [x, y, z]T,

and r̄ = [x̄, ȳ, z̄]T is the unit vector along r. The

spacecraft’s mass and inertia tensor expressed in the

body-fixed frame SB are denoted by m and I =

diag{Ixx, Iyy, Izz}, respectively.
Equations of orbital motion expressed in the body-

fixed frame of the uniformly rotating asteroid are given

by Scheeres [4]

r̈ + 2ωT × ṙ + ωT × ωT × r = αs/c (2)

where αs/c is the spacecraft’s acceleration and ωT =

[0, 0, ωT ]
T.

As in Wang and Xu [24], in the attitude-restricted

orbital dynamics, the perturbation of the asteroid’s non-

spherical gravity and GOACP are considered, and the

less significant perturbations of the SRP and solar tide

are neglected.
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According to Wang et al. [23], a very large spacecraft

(ρ > 100 m), such as a gravity tractor, actually has a

lower area-to-mass ratio (AMR) than a standard-size

spacecraft, because, as ρ increases, the area increases

with ρ2 but the mass increases with a ratio between ρ2

and ρ3. As a result, the SRP effect of a large spacecraft

is weaker than that of a standard-size spacecraft. Based

on the results in Wang et al. [23], it can be estimated

that, for cases considered in this paper, a very large

spacecraft (ρ > 100 m) with a distance of about

400 m w.r.t. a small asteroid, the GOACP can be two

orders of magnitude larger than the SRP. Therefore,

we will neglect the SRP effect and then an analytical

investigation will be possible.

Then, the acceleration αs/c is given by

αs/c = αKepler +αNSG +αOAC (3)

where αKepler is the Kepler two-body acceleration:

αKepler = − μ

r2
r̄ (4)

where μ = GM,M is the asteroid’s mass, and G is the

gravitational constant; the second-order approximation

of the asteroid’s non-spherical gravity perturbation

αNSG is given by

αNSG =
3μ

2r4

{ [
τ0
(
1− 5z̄2

)− 10τ2
(
x̄2 − ȳ2

)]
r̄

+ 2τ0z̄e3 + 4τ2 (x̄e1 − ȳe2)
}

(5)

where τ0 = a2eC20, τ2 = a2eC22, ae is the asteroid’s mean

equatorial radius, e1 = [1, 0, 0]
T
, e2 = [0, 1, 0]

T
, and

e3 = [0, 0, 1]
T
; the spacecraft’s GOACP αOAC up to

the second-order terms is given by Wang and Xu [24]:

αOAC =
3μ

2r4

{[
5r̄TA

(
I

m

)
ATr̄ − tr

(
I

m

)]
r̄

− 2A

(
I

m

)
ATr̄

}
(6)

From the point of view of two bodies interacting through

the mutual potential, the Kepler two-body acceleration

αKepler is the zeroth-order term, or second-order term in

1/r, while the non-spherical gravity perturbation αNSG

and the GOACP αOAC are both second-order terms,

or fourth-order terms in 1/r. See Wang and Xu [24]

for detailed discussions on the gravitational force model

αs/c.

For an irregular-shaped asteroid, the higher-order

terms of non-spherical gravity are also of importance in

the close proximity of the asteroid. According to Wang

et al. [23], the ratio of GOACP to the second-order non-

spherical gravity of the asteroid is the order of (ρ/ae)
2,

where ρ is the spacecraft’s characteristic dimension and

ae is the asteroid’s mean radius. Therefore, for a very

large spacecraft (ρ > 100 m) near a small asteroid with

a similar size, the GOACP can have the same order of

magnitude with the second-order non-spherical gravity.

Among the higher-order non-spherical gravity, the third-

order terms will be the most significant. Based on the

results in Wang et al. [23], it can be found that, the ratio

of the GOACP to the third-order non-spherical gravity

is the order of (ρ/ae)
2(r/ae), where r is the distance

of the spacecraft w.r.t. the asteroid. Usually, we have

r/ae > 1, and then the GOACP will be more significant

than the third-order non-spherical gravity for a very

large spacecraft. Therefore, we will neglect higher-order

terms of the non-spherical gravity in this study.

The perturbation αOAC depends on the parameter

I/m, which actually can be described by three

parameters: the mass distribution parameters σx and

σy, and the characteristic dimension ρ. σx and σy are

defined as

σx = (Izz − Iyy) /Ixx, σy = (Izz − Ixx) /Iyy (7)

with ranges −1 � σx � 1 and −1 � σy � 1. The

characteristic dimension ρ, which is an estimation of

the spacecraft’s size, is defined by ρ2 = 2Ixx/m. The

GOACP αOAC will be more significant in the case of a

larger ratio of ρ to the orbital radius r or a more non-

spherical mass distribution.

3 Conditions for non-equatorial equili-

brium points

The equilibrium point means that the spacecraft is

stationary in the asteroid’s body-fixed frame, i.e.,

moving on a stationary orbit. Setting r̈ = 0 and ṙ = 0

in the equations of motion (2), we obtain the equilibrium

condition

ωT × ωT × r = αs/c (8)

which means that the gravitational force balances the

centrifugal force of the circular orbital motion. By using

Eqs. (3)–(6), the equilibrium condition in Eq. (8) can be
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written as

ωT ×ωT ×r=− μ

r2
r̄+

3μ

2r4

{[
τ0
(
1−5z̄2

)−10τ2
(
x̄2−ȳ2

)]
r̄

+ 2τ0z̄e3 + 4τ2 (x̄e1 − ȳe2)
}

+
3μ

2r4

{[
5r̄TA

(
I

m

)
ATr̄ − tr

(
I

m

)]
r̄

− 2A

(
I

m

)
ATr̄

}
(9)

As for the stability of equilibrium points, we have given

the stability conditions in the previous paper [24]. It is

found that the linear stability requires all eigenvalues of

the linearized system matrix at the equilibrium point

to be purely imaginary. Since the gradient of the

gravitational acceleration is tedious, it is hard to obtain

the characteristic polynomial of the linearized system

matrix. Besides, the stability depends on parameters of

both the asteroid and the spacecraft. Therefore, it will

need a lot of work to investigate the stability thoroughly

with respect to all the system parameters. In this paper,

we will only focus on locations of equilibrium points,

and the detailed study of stability will be given in the

future.

3.1 Equilibrium points without GOACP

Howard [26] has studied both the equatorial and non-

equatorial equilibrium points of classical point-mass

orbital dynamics in the close proximity of an asteroid,

the non-spherical gravity of which is described by

harmonic coefficients C20 and C22. In his study, only

the perturbation of asteroid’s non-spherical gravity was

considered, i.e., the spacecraft’s acceleration is given by

αs/c = αKepler+αNSG. Then, the equilibrium condition

is given by

ωT × ωT × r = − μ

r2
r̄ +

3μ

2r4

{[
τ0
(
1− 5z̄2

)
− 10τ2

(
x̄2 − ȳ2

) ]
r̄

+ 2τ0z̄e3 + 4τ2 (x̄e1 − ȳe2)
}

(10)

Based on the equilibrium condition in Eq. (10), Howard

[26] has determined both the equatorial and non-

equatorial equilibrium points of the system. Consistent

with the results by Hu [25], the equatorial equilibrium

points are located at four longitudes: 0,π/2, π, and

3π/2, which can be divided into two groups, and lie on

the u-axis and lie on the v-axis, respectively.

However, the existence of non-equatorial equilibrium

points is quite limited: the non-equatorial equilibrium

points can only exist within the asteroid’s principal

plane spanned by w-axis and the shorter equatorial

principal axis when some other conditions are satisfied.

That is to say, non-equatorial equilibrium points, if

exist, are located within the u–w plane in the case of

a negative C22 or within the v–w plane in the case

of a positive C22. Besides, non-equatorial equilibrium

points, if exist, will appear as a quadruplet, which have

the same orbital radius and the same absolute value

of latitude. The latitude of non-equatorial equilibrium

points is determined by the asteroid’s parameters μ, ωT ,

τ0, and τ2. Therefore, in the classical point-mass orbital

dynamics without GOACP, non-equatorial equilibrium

points, if exist, can only exist at two longitudes (0,π)

or (π/2, 3π/2), depending on the sign of the ellipticity

C22, and can only exist at one absolute value of latitude,

which is determined by the asteroid’s parameters. It is

impossible to have non-equatorial equilibrium points at

other longitudes or latitudes.

3.2 Equilibrium points with GOACP

As shown by Eq. (9), the GOACP introduces several

new parameters into the system, including the attitude

A and parameter I/m. Therefore, the system is more

complicated than the classical system in Eq. (10), and

the equilibrium points will be more diverse.

After the work by Wang and Xu [24], we want

to further study the non-equatorial equilibrium points.

In the present paper, we will focus on the in-plane

non-equatorial equilibrium points, which are located

in the asteroid’s longitudinal principal plane, i.e., the

u–w plane or v–w plane. These non-equatorial

equilibrium points will extend the latitude range of

equilibrium points compared with the classical orbital

dynamics without GOACP, and provide more potential

for asteroid close-proximity operations, such as the

asteroid body-fixed hovering.

Without loss of generality, we assume that the non-

equatorial equilibrium point is located within the u–w

plane. The case within the v–w plane can be converted

into this case easily by changing the arrangement of u

and v axes of the asteroid’s body-fixed frame SP. If

the spacecraft is located within the u–w plane, we have

x̄ �= 0, ȳ = 0, z̄ �= 0, and r̄ = [x̄, 0, z̄] in the equilibrium

condition (9), and then the new equilibrium condition
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is given by

ω2
T x̄e1 =

μ

r3
r̄ − 3μ

2r5

{[
τ0
(
1− 5z̄2

)− 10τ2x̄
2

+ 5r̄TA (I/m)ATr̄ − tr (I/m)
]
r̄

+ 2τ0z̄e3 + 4τ2x̄e1 − 2A (I/m)ATr̄
}

(11)

4 Iteration methods

Although in-plane non-equatorial equilibrium points can

be solved based on Eq. (11) by using a numerical method,

such as fsolve in the software MATLAB, in most cases

it is difficult to have a satisfying result due to the

significant nonlinearity and high sensitivity of the system.

Therefore, we develop two iteration methods based on

the equilibrium condition to determine equilibrium points

with a higher accuracy.

4.1 Iteration method I

We first assume that the orbit radius r is already known,

and then the equilibrium condition in Eq. (11) can be

rearranged as

μ

r3
r̄ − 3μ

2r5

{[
τ0
(
1− 5z̄2

)− 10τ2x̄
2 + 5r̄TA (I/m)ATr̄

− tr (I/m)
]
r̄ + 2τ0z̄e3 +

[
4τ2 + 2ω2

T r
5/(3μ)

]
x̄e1

− 2A (I/m)ATr̄
}
= 0 (12)

which requires that τ0z̄e3 +
[
2τ2 + ω2

T r
5/(3μ)

]
x̄e1 −

A (I/m)ATr̄ is parallel to the position vector r̄. Notice

that the position vector r̄ is within the u–w plane

spanned by e1 and e3, and therefore, A (I/m)ATr̄

should also be within the u–w plane. Then, we can

know that the u–w plane is the principal plane of the

spacecraft’s inertia tensor A (I/m)AT expressed in the

asteroid’s frame SP. That is to say, one of the i–j

plane, j–k plane, and i–k plane of the spacecraft is

within the u–w plane of the asteroid. Without loss of

generality, we assume that the i–k plane is within the

u–w plane of the asteroid, and the unit vectors j and v

have the same direction. Other cases can be converted

into this case easily by changing the arrangement of axes

of the spacecraft’s body-fixed frame SB. That is to say,

the relative attitude of spacecraft with respect to the

asteroid is just a single axis rotation around the v-axis,

i.e.,

A =

⎡
⎢⎣ cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

⎤
⎥⎦ (13)

where θ is the rotational angle. Therefore, we have

A (I/m)AT =

⎡
⎢⎣ cos2 θIxx/m+ sin2 θIzz/m 0

0 Iyy/m

sin θ cos θ (Izz/m− Ixx/m) 0

sin θ cos θ (Izz/m− Ixx/m)

0

sin2 θIxx/m+ cos2 θIzz/m

⎤
⎥⎦ (14)

and

τ0z̄e3 +
[
2τ2 + ω2

T r
5/(3μ)

]
x̄e1 −A (I/m)ATr̄

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− [cos2 θIxx/m+ sin2 θIzz/m−
ω2
T r

5/(3μ)− 2τ2
]
x̄−

sin θ cos θ (Izz/m− Ixx/m) z̄

0

− sin θ cos θ (Izz/m− Ixx/m) x̄−(
sin2 θIxx/m+ cos2 θIzz/m− τ0

)
z̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

Then, the condition that τ0z̄e3 +
[
2τ2 + ω2

T r
5/

(3μ)
]
x̄e1 − A (I/m)ATr̄ is parallel to the position

vector r̄ is equivalent to{ [
cos2 θIxx/m+ sin2 θIzz/m− ω2

T r
5/(3μ)− 2τ2

]
x̄

+ sin θ cos θ (Izz/m− Ixx/m) z̄
}/

[sin θ cos θ (Izz/m− Ixx/m) x̄

+
(
sin2 θIxx/m+ cos2 θIzz/m− τ0

)
z̄
]

=
x̄

z̄
(16)

which can be further simplified as{ [
cos2 θ + sin2 θIzz/Ixx − 2ω2

T r
5/
(
3μρ2

)− 4τ2/ρ
2
]
x̄

+ sin θ cos θ (Izz/Ixx − 1) z̄
}/

[sin θ cos θ (Izz/Ixx − 1) x̄

+
(
sin2 θ + cos2 θIzz/Ixx − 2τ0/ρ

2
)
z̄
]

=
x̄

z̄
(17)

We can see that Eq. (17) is affected by the

mass distribution parameter Izz/Ixx, the characteristic

dimension ρ, and the attitude angle θ of the spacecraft.
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These parameters are all introduced into the system by

the GOACP αOAC.

After some rearrangements, Eq. (17) can be simplified

as

sin θ cos θ (Izz/Ixx − 1)
(
z̄2 − x̄2

)
+
[(
cos2 θ − sin2 θ

)
(1− Izz/Ixx)− 2ω2

T r
5/
(
3μρ2

)
−4C22a

2
e/ρ

2 + 2C20a
2
e/ρ

2
]
x̄z̄ = 0 (18)

By using the relation x̄2 + z̄2 = 1, Eq. (18) can be

written as

x̄4 − x̄2 + c = 0 (19)

where

c =sin2 θ cos2 θ

(
1− Izz

Ixx

)2
/{

4 sin2 θ cos2 θ

(
1− Izz

Ixx

)2

+

[(
cos2 θ − sin2 θ

)(
1− Izz

Ixx

)
− 2ω2

T r
5

3μρ2

−4C22a
2
e

ρ2
+

2C20a
2
e

ρ2

]2 }
> 0 (20)

Therefore, we have

x̄2 =
1±√

1− 4c

2
(21)

which contains four solutions: if the terms sin θ cos θ·
(Izz/Ixx − 1) and

(
cos2 θ − sin2 θ

)
(1− Izz/Ixx) −

2ω2
T r

5
/(

3μρ2
) − 4C22a

2
e/ρ

2 + 2C20a
2
e/ρ

2 in Eq. (18)

have the same sign, z̄2 − x̄2 and x̄z̄ will have the

opposite signs, and then

x̄ = ±
√

1 +
√
1− 4c

2
, z̄ = ±

√
1−√

1− 4c

2

or x̄ = ±
√

1−√
1− 4c

2
, z̄ = ∓

√
1 +

√
1− 4c

2
(22)

if the terms sin θ cos θ (Izz/Ixx − 1) and
(
cos2 θ−

sin2 θ
)
(1− Izz/Ixx) − 2ω2

T r
5/
(
3μρ2

) − 4C22a
2
e/ρ

2 +

2C20a
2
e/ρ

2 in Eq. (18) have the opposite signs, z̄2 − x̄2

and x̄z̄ will have the same sign, and then

x̄ = ±
√

1 +
√
1− 4c

2
, z̄ = ∓

√
1−√

1− 4c

2

or x̄ = ±
√

1−√
1− 4c

2
, z̄ = ±

√
1 +

√
1− 4c

2
(23)

These four solutions are located in four quadrants

of the asteroid’s u–w plane, respectively. Due to the

system’s symmetry, equilibrium points in the first and

third quadrants are symmetrical with respect to the

asteroid center. The equilibrium points in the second

and fourth quadrants are symmetrical as well. These

have also been shown by Eqs. (22) and (23): the first

and second solutions have the opposite signs, and the

third and fourth solutions have the opposite signs, too

With Eqs. (20), (22), and (23), we can obtain the

position vector r̄ = [x̄, 0, z̄], i.e., the latitude of in-plane

non-equatorial equilibrium points. Then, according to

Eq. (12), the orbit radius of the equilibrium point can

be calculated by

μ

r3
− 3μ

2r5
[
τ0
(
1− 5z̄2

)− 10τ2x̄
2 + 5r̄TA (I/m)ATr̄

−tr (I/m) + a] = 0 (24)

where ar̄ = 2τ0z̄e3 +
[
4τ2 + 2ω2

T r
5 / (3μ)

]
x̄e1 −

2A (I/m)ATr̄, that is,

r =√
3

2

[
τ0 (1−5z̄2)−10τ2x̄2+5r̄TA

(
I

m

)
ATr̄−tr

(
I

m

)
+a

]
(25)

Equation (25) for the orbit radius r needs the value of

a, but, unfortunately, the calculation of a needs r first.

Therefore, here we have to use an iteration method by

repeating the procedure given by Eqs. (12)–(24) with

an initial guess of r until r converges. We can first

calculate the equilibrium points in the case of θ = 0,

which is simpler. Then, we calculate the equilibrium

points as θ increases gradually from 0 to π with a small

step size. The value of r for last value of θ can be used as

the initial guess for the current value of θ. Notice that

the considered range of θ is 0 � θ � π, since π � θ �
2π is actually the same case with 0 � θ � π because

of the symmetry of spacecraft’s inertia tensor. With

this method, we can obtain the loci of non-equatorial

equilibrium points in the u–w plane with respect to θ.

4.2 Iteration method II

The iteration method I in Section 4.1 begins with an

initial guess of the orbit radius r, then calculates x̄ and

z̄, and finally obtains a new value of r. However, in

the calculation of some equilibrium points, r cannot

converge. Therefore, a second iteration method, which

begins with an initial guess of x̄ and z̄, then calculates

r, and finally obtains new values for x̄ and z̄, is needed.

The procedure of iteration method II will be given in
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the following. Provided an initial guess of x̄ and z̄,

according to Eq. (18), the orbit radius r can be given

by

r =
( 3μρ2

2ω2
T x̄z̄

{
sin θ cos θ (Izz/Ixx − 1)

(
z̄2 − x̄2

)
+
[(
cos2 θ − sin2 θ

)
(1− Izz/Ixx)

− 4C22a
2
e/ρ

2 + 2C20a
2
e/ρ

2
]
x̄z̄
})1/5

(26)

Then the equilibrium condition in Eq. (12) can be

written as

μ

r3
− 3μ

2r5
[
τ0
(
1− 5z̄2

)− 10τ2x̄
2 + 5r̄TA (I/m)ATr̄

−tr (I/m) + a] = 0 (27)

where ar̄ = 2τ0z̄e3 +
[
4τ2 + 2ω2

T r
5 / (3μ)

]
x̄e1 −

2A (I/m)ATr̄. Equation (27) can be written as

5
(
cos2 θIxx/m+ sin2 θIzz/m− 2τ2

)
x̄2

+ 10 sin θ cos θ (Izz/m− Ixx/m) x̄z̄

+ 5
(
sin2 θIxx/m+ cos2 θIzz/m− τ0

)
z̄2

− 2

3
r2 + τ0 − tr (I/m) + a = 0 (28)

By using Eq. (28) and the relation x̄2 + z̄2 = 1, the

new value of x̄ and z̄ can be calculated. Repeat the

above procedure until x̄ and z̄ converge.

Similar to iteration method I in Section 4.1, we first

calculate equilibrium points in the case of θ = 0, and

then we calculate equilibrium points as θ increases from

0 to π with a small step size. The values of x̄ and z̄

corresponding to last value of θ can be used as the initial

guess for current value of θ.

5 In-plane non-equatorial equilibrium

points

5.1 In-plane non-equatorial equilibrium points

for θ = 0

In the case of θ = 0, Eq. (17) can be written as[
1− 2ω2

T r
5/
(
3μρ2

)− 4τ2/ρ
2
]
x̄

(Izz/Ixx − 2τ0/ρ2) z̄
=

x̄

z̄
(29)

which implies that x̄ = 0, or z̄ = 0, or 1 − 2ω2
T r

5/(
3μρ2

)− 4τ2/ρ
2 = Izz/Ixx − 2τ0/ρ

2

5.1.1 x̄ = 0, z̄ = ±1

In this case, the spacecraft is located on the w-axis of

the asteroid, and the equilibrium condition (11) can be

written as

μ

r3
− 3μ

2r5
(−2τ0 + 2Izz/m− Ixx/m− Iyy/m) = 0 (30)

which can be simplified as

r =

√
3

2
(−2τ0 + 2Izz/m− Ixx/m− Iyy/m) (31)

If the GOACP αOAC is neglected, these two polar

equilibrium points will be degenerated to be the classical

polar equilibrium points in the point-mass orbital model,

the orbit radius r of which is given by

r =
√−3τ0 = ae

√
−3C20 (32)

Equation (32) implies that only in the case of C20 <

−1/3 the two polar equilibrium points can be located

above the asteroid’s surface, but C20 < −1/3 is

unrealistic in the real physics. Besides, the equilibrium

points are located very close to the asteroid’s surface,

and the precision of the approximation by harmonic

coefficients C20 and C22 are questionable. Therefore,

these polar equilibrium points are unrealistic, and they

were not considered by Howard [26].

5.1.2 z̄ = 0, x̄ = ±1

In this case, the spacecraft is located on the u-axis of

the asteroid, and then the equilibrium condition (11)

can be written as

ω2
T =

μ

r3
− 3μ

2r5
(τ0 − 6τ2 + 2Ixx/m− Iyy/m− Izz/m)

(33)

by using which the orbit radius r can be determined.

The two equilibria given by Eq. (33) are actually the

on-axis equatorial equilibrium points given previously

by Wang and Xu [24].

If the GOACP αOAC is neglected, these two on-axis

equilibrium points will be degenerated to be the classical

equatorial equilibrium points in the point-mass orbital

model in Howard [26], the orbit radius r of which is

given by

ω2
T =

μ

r3
− 3μ

2r5
(τ0 − 6τ2) (34)

In our study, due to the GOACP αOAC, the orbit

radius r given by Eq. (33) is different from the point-

mass orbital model Eq. (34). As the attitude angle θ

changes from 0 to π, these two equilibria, which can be

calculated by the iteration method, will move off the

u-axis but within the u–w plane.

5.1.3 1−2ω2
T r

5/(3μρ2)−4τ2/ρ
2 = Izz/Ixx−2τ0/ρ

2

If the GOACP αOAC is neglected, this case will be
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degenerated to be the classical non-equatorial

equilibrium points in Howard [26], that is, 2τ2+

ω2
T r

5/(3μ) = τ0. Then we have

r = 5

√
3μ (τ0 − 2τ2)/ω2

T (35)

Since τ0 is negative, 2τ2 + ω2
T r

5/(3μ) = τ0 means that

τ2 is also negative and then the u–w plane is the

asteroid’s principal plane spanned by w-axis and the

shorter equatorial principal axis. This is consistent with

the conclusion by Howard [26] that the classical non-

equatorial equilibrium points without GOACP can only

exist within the principal plane spanned by w-axis and

the shorter equatorial principal axis.

In this case, the equilibrium condition (11) is simpler

ω2
T x̄e1 =

μ

r3
r̄ − 3μ

2r5
{[

τ0
(
1− 5z̄2

)− 10τ2x̄
2
]
r̄

+2τ0z̄e3 + 4τ2x̄e1} (36)

which can be written as follows by using Eq. (35):

μ

r3
− 3μ

2r5
[
τ0
(
3− 5z̄2

)− 10τ2x̄
2
]
= 0 (37)

By using the relation x̄2 + z̄2 = 1, Eq. (37) has four

solutions:

x̄ =

√
2r2 + 6τ0

15 (τ0 − 2τ2)
, z̄ = ∓

√
9τ0 − 30τ2 − 2r2

15 (τ0 − 2τ2)

or x̄ = −
√

2r2 + 6τ0
15 (τ0 − 2τ2)

, z̄ = ±
√

9τ0 − 30τ2 − 2r2

15 (τ0 − 2τ2)

(38)

where the orbit radius r is given by Eq. (35). The

classical non-equatorial equilibrium points in Eq. (38)

appear as a quadruplet, which have the same orbital

radius and the same absolute value of latitude.

According to Eqs. (35) and (38), these classical non-

equatorial equilibrium points can exist when

τ0 > 2τ2 and 0 � 2r2 + 6τ0
15 (τ0 − 2τ2)

� 1 (39)

In our study, when θ = 0, due to the GOACP

αOAC, the relation in the classical point-mass orbital

model 2τ2 + ω2
T r

5/(3μ) = τ0 will be changed to 1 −
2ω2

T r
5/
(
3μρ2

)−4τ2/ρ
2 = Izz/Ixx−2τ0/ρ

2, as shown by

Eq. (29). Then, the orbit radius r in Eq. (35) will also

be changed as

r = 5

√
3μ

2ω2
T

[
ρ2
(
1− Izz

Ixx

)
+ 2τ0 − 4τ2

]
(40)

In this case, the equilibrium condition (11) will be

ω2
T x̄e1 =

μ

r3
r̄ − 3μ

2r5
{[

τ0
(
1− 5z̄2

)− 10τ2x̄
2

+ 5
(
x̄2Ixx/m+ z̄2Izz/m

)− tr (I/m)
]
r̄

+ 2τ0z̄e3 + 4τ2x̄e1 − 2 (x̄Ixx/me1

+ z̄Izz/me3)} (41)

which can be written as follows by using 1 − 2ω2
T r

5/(
3μρ2

)− 4τ2/ρ
2 = Izz/Ixx − 2τ0/ρ

2

5 (Ixx/m− 2τ2) x̄
2 + 5 (Izz/m− τ0) z̄

2

= 2r2/3 + tr (I/m) + 2Izz/m− 3τ0 (42)

By using the relation x̄2 + z̄2 = 1, Eq. (42) has four

solutions:

x̄=

√
2r2/3 + 2τ0 + tr (I/m)− 3Izz/m

5 (Ixx/m− Izz/m+ τ0 − 2τ2)
,

z̄=±
√

3τ0−10τ2−2r2/3+5Ixx/m−2Izz/m−tr (I/m)

5 (Ixx/m− Izz/m+ τ0 − 2τ2)

or x̄=−
√

2r2/3 + 2τ0 + tr (I/m)− 3Izz/m

5 (Ixx/m− Izz/m+ τ0 − 2τ2)
,

z̄=±
√

3τ0−10τ2−2r2/3+5Ixx/m−2Izz/m−tr (I/m)

5 (Ixx/m− Izz/m+ τ0 − 2τ2)

(43)

According to Eqs. (40) and (43), these equilibrium

points can exist when

ρ2
(
1− Izz

Ixx

)
+ 2τ0 − 4τ2 > 0 and

0 � 2r2/3 + 2τ0 + tr (I/m)− 3Izz/m

5 (Ixx/m− Izz/m+ τ0 − 2τ2)
� 1 (44)

The differences between the classical non-equatorial

equilibrium points described by Eqs. (35) and (38),

and the non-equatorial equilibrium points described by

Eqs. (40) and (43) are due to the GOACP with θ = 0.

As the attitude angle θ changes from 0 to π, the four

equilibria given by Eqs. (40) and (43), which can be

calculated by the iteration method, will move within

the u–w plane.

5.2 In-plane non-equatorial equilibrium points

for 0 < θ < π

Using equilibrium points in the case of θ = 0 given in
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Section 5.1 as the initial guess, we can calculate

equilibrium points for 0 < θ < π through the following

three methods:

(a) Solving the equilibrium condition, i.e., the algebra

equation system (11), by using a numerical method,

such as fsolve in the software MATLAB.

(b) Iteration method I in Section 4.1.

(c) Iteration method II in Section 4.2.

Actually, all these three methods rely on the iteration

procedure, and each of them needs an initial guess.

With the equilibrium points in the case of θ = 0 already

obtained in Section 5.1, we can calculate equilibrium

points as θ increases gradually from 0 to π with a small

step size.

According to the results in Section 5.1, by abandoning

the unrealistic equilibrium points in Section 5.1.1, the in-

plane non-equatorial equilibrium points can be divided

into two families:

(a) The first family is near the asteroid’s u-axis and

emerges from equilibrium points in Section 5.1.2 as θ

increases from 0 to π. This family is the generalization

of classical equatorial on-axis equilibrium points without

GOACP in Eq. (34).

(b) The second family is near the classical non-

equatorial equilibrium points given by Howard [26] and

emerges from equilibrium points in Section 5.1.3 as θ

increases from 0 to π. This family is the generalization

of classical non-equatorial equilibrium points without

GOACP in Eqs. (35) and (38).

During the calculation, we have found that due to

the different local properties of different families, the

method (a) is more suitable for solving the first family

and the method (c) is more suitable for solving the

second family.

5.2.1 First family of non-equatorial equilibrium

points

We give some calculation examples of in-plane non-

equatorial equilibrium points and to investigate the

effect of GOACP αOAC on their locations. First, we

focus on the first family.

The parameters of the asteroid are chosen to be the

same as the example asteroid in Wang and Xu [24]:

μ = 5 m3/s2, C20 = −0.12, C22 = 0.01,

ae = 250 m, ωT = 2.9089× 10−4 s−1
(45)

which has a similar size with target of OSIRIS-REx

mission, asteroid 101955 Bennu (provisional designation

1999 RQ36), but has larger values for C20 and C22 than

the approximate values of Bennu. The period of the

asteroid’s uniform rotation is 6 h.

The mass distribution of spacecraft is set to be

Ixx : Iyy : Izz = 1.5 : 1.2 : 1 (46)

which is a common case in space engineering. As for

the spacecraft’s characteristic dimension ρ, we choose

five different values as follows:

ρ = 0 m, ρ = 2 m, ρ = 50 m, ρ = 100 m, ρ = 160 m

(47)

where ρ = 0 m corresponds to the classical point-mass

orbital dynamics without GOACP. As stated in Wang

and Xu [24], ρ = 2 m corresponds to a general asteroid

probe, and the maximum ρ = 160 m corresponds to

large spacecraft in future asteroid missions, such as a

big gravity tractor in asteroid deflection missions, or the

mothership in asteroid resource exploitation. The large

ρ seems to be extreme in the current deep space missions,

but perhaps will be common in future missions.

By using the method (a), fsolve in the software

MATLAB, the first family of non-equatorial equilibrium

points can be obtained through the iteration procedure

with equilibrium points in Section 5.1.2 as initial guesses.

We then plot the loci of the first family of non-equatorial

equilibrium points in the longitudinal principal plane,

i.e., the u–w plane of the asteroid, with respect to the

spacecraft’s attitude angle θ in the cases of different ρ.

The loci are given in Figs. 2–6, respectively.

Fig. 2 Classical equilibrium points in point-mass orbital dynamics

without GOACP.
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Fig. 3 Loci of the first family of non-equatorial equilibrium

points in the case of ρ = 2 m.

Fig. 4 Loci of the first family of non-equatorial equilibrium

points in the case of ρ = 50 m.

Fig. 5 Loci of the first family of non-equatorial equilibrium

points in the case of ρ = 100 m.

Fig. 6 Loci of the first family of non-equatorial equilibrium

points in the case of ρ = 160 m.

5.2.2 Discussions on the first family

In Figs. 2–6 we have calculated the first family of non-

equatorial equilibrium points only in the u–w plane of

the asteroid. Actually, in the v–w plane, the first family,

which is similar to that in the u–w plane in Figs. 2–6,

also exists and can be calculated with the same method.

Therefore, without loss of generality, we will discuss the

first family only in the u–w plane.

According to Figs. 2–6, some important conclusions

about the first family of non-equatorial equilibrium

points can be drawn:

(a) The first family refers ton on-equatorial

equilibrium points near the asteroid’s u-axis in Figs. 3–

6, which is the generalization of classical on-axis

equilibrium points without GOACP given by Eq. (34)

and Fig. 2.

(b) All the loci are symmetrical with respect to

the asteroid’s principal axes u-axis and w-axis due to

symmetries of mass distributions of the asteroid and the

spacecraft. Besides, for a given value of attitude angle θ,

non-equatorial equilibrium points are symmetrical with

respect to the asteroid’s center.

(c) As ρ increases, the effect of GOACP αOAC

becomes more significant, and the shift of the first family

from the asteroid’s principal axis u-axis gets larger.

When ρ = 2 m, the effect of GOACP αOAC is weak.

The system is close to the classical orbital dynamics

without αOAC, and the non-equatorial equilibrium

points are close to the classical ones without αOAC, as

shown by Figs. 2 and 3.

In Figs. 3–6, as ρ increases to 160 m, the loci of

the equilibrium points expand from the vicinity of the
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classical ones without αOAC, and the maximum shift

from the asteroid’s principal axes gets larger.

(d) As shown by Figs. 3–6, the loci of non-equatorial

equilibrium points are two closed curves around the

classical ones without αOAC. For a given value of

θ, there exist two non-equatorial equilibrium points.

These two equilibrium points are located on the two

closed curves, respectively, and are symmetrical with

respect to the asteroid’s center.

With the attitude angle θ changing from 0 to π, the

non-equatorial equilibrium point will move along the

closed curve for one cycle. When θ changes from 0

to π/2, the non-equatorial equilibrium point will move

off the asteroid’s principal axis, and after reaching the

maximum shift it will move back towards, and finally

return to, the asteroid’s principal axis when θ = π/2.

As θ changes further from π/2 to π, the non-equatorial

equilibrium point will move off the asteroid’s principal

axis in the opposite direction. The locus between θ =

π/2 and θ = π and that between θ = 0 and θ = π/2 are

symmetrical with respect to the asteroid’s principal axis.

The equilibrium point will return to the starting point

θ = 0 on the asteroid’s principal axis when θ = π. When

θ = 0 (π) and θ = π/2, the non-equatorial equilibrium

points are on the asteroid’s u-axis.

(e) Compared with classical equilibrium points

without GOACP, the equatorial off-axis equilibrium

points in Wang and Xu [24] have extended the longitude

range of equilibrium points around an asteroid, while

in-plane non-equatorial equilibrium points here have

extended the latitude range.

However, it is easy to find that the extension of

longitude range by the equatorial off-axis equilibrium

points in Wang and Xu [24] is larger than the extension

of latitude range by the non-equatorial equilibrium

points here. This is because it is only needed to null out

the second-order C22 term of the asteroid’s gravity to

extend the longitude range of equilibrium points within

the equatorial plane in Wang and Xu [24], whereas it

is needed to null out the zeroth-order Kepler two-body

term of the asteroid’s gravity to extend the latitude

range of equilibrium points within the longitudinal

principal plane in this paper.

5.2.3 Second family of non-equatorial equilibrium

points

Although the GOACP is considered in the attitude-

restricted orbital dynamics, our calculation has

suggested that the existence condition of the second

family of non-equatorial equilibrium points is not

changed much compared with the classical condition

without αOAC given by Eqs. (35) and (39). This is

because the GOACP is a higher-order term compared

with the zeroth-order Kepler two-body term of the

asteroid’s gravity.

Therefore, in the following we will give a calculation

example in the case of τ0 > 2τ2 and τ0 < 0, which

permits existence of the second family of non-equatorial

equilibrium points even when the GOACP is weak

with a small ρ. However, it deserves our special

attention that, according to the definition of τ0 and

τ2 in Wang and Xu [24], 0 > τ0 > 2τ2 means

IP,xx > IP,zz > IP,yy, i.e., the asteroid is rotating

around its intermediate-moment principal axis. This

case cannot exist in the solar system, since the asteroid

will be tumbling under arbitrarily small perturbative

torques. This point has been overlooked by Howard

[26] in his study on classical non-equatorial equilibrium

points. Although 0 > τ0 > 2τ2 is not a real case in

the solar system, our following study will still provide

some meaningful theoretical results on the in-plane non-

equatorial equilibrium points.

The parameters of the asteroid are chosen as follows:

μ = 5 m3/s2, C20 = −0.15, C22 = −0.1,

ae = 250 m, ωT = 2.9089× 10−4 s−1
(48)

where the parameters are the same as in Section 5.2.1,

except C20 and C22.

As in Section 5.2.1, the mass distribution of the

spacecraft is set to be Ixx : Iyy : Izz = 1.5 : 1.2 : 1, and

the five values of spacecraft’s characteristic dimension ρ

are chosen as 0 m, 2 m, 50 m, 100 m, and 160 m, where

ρ = 0 m corresponds to the classical point-mass orbital

dynamics without GOACP.

By using method (c), iteration method II, the

second family of non-equatorial equilibrium points

can be obtained through the iteration procedure with

equilibrium points in Section 5.1.3 as the initial guesses.

We then plot the loci of the second family of non-

equatorial equilibrium points in the asteroid’s u–w

plane with respect to the attitude angle 0 � θ � π in

the cases of different ρ. The loci are given in Figs. 7–11,

respectively.
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Fig. 7 Classical non-equatorial equilibrium points in point-mass

orbital dynamics without GOACP.

Fig. 8 Loci of the second family of non-equatorial equilibrium

points in the case of ρ = 2 m.

Fig. 9 Loci of the second family of non-equatorial equilibrium

points in the case of ρ = 50 m.

Fig. 10 Loci of the second family of non-equatorial equilibrium

points in the case of ρ = 100 m.

Fig. 11 Loci of the second family of non-equatorial equilibrium

points in the case of ρ = 160 m.

5.2.4 Discussions on second family

Unlike the first family, the second family of non-

equatorial equilibrium points can only exist in the u–w

plane of the asteroid, i.e., the principal plane spanned

by w-axis and the shorter equatorial principal axis.

According to Figs. 7–11, as in Section 5.2.2, some

similar conclusions about the second family of non-

equatorial equilibrium points can be drawn:

(a) The second family of non-equatorial equilibrium

points in Figs. 8–11 is the generalization of classical

ones without GOACP given by Eqs. (35) and (38), and

Fig. 7. The loci of the second family are consisted of four

isolated parts, which are located within four quadrants

of the u–w plane, respectively.
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(b) The loci of the second family also have some

symmetries: The loci are symmetrical with respect to

the asteroid’s u-axis and w-axis due to the symmetries

of mass distributions of the asteroid and the spacecraft;

for a given value of attitude angle θ, four corresponding

non-equatorial equilibrium points are located on the

four isolated parts of loci within four quadrants of the

u–w plane, respectively. The equilibrium points in the

first and third quadrants are symmetrical with respect

to the asteroid’s center, and those in the second and

fourth quadrants are also symmetrical.

(c) The GOACP αOAC is weak in the case of ρ = 2 m,

and then the second family is close to the classical non-

equatorial equilibrium points without αOAC, as shown

by Figs. 7 and 8. In Figs. 8–11, as ρ increases to 160 m,

the GOACP αOAC becomes more and more significant.

Consequently, the loci of the second family expand

from the vicinity of classical non-equatorial equilibrium

points without αOAC, the latitude range of which is

extended by the second family.

(d) As shown by Fig. 8, in the case of a small ρ, the

loci of the second family are four closed curves around

the classical non-equatorial equilibrium points without

αOAC. As ρ increases, the closed curves become larger.

As θ changes from 0 to π, the equilibrium point will

move along the closed curve for one cycle.

(e) In Figs. 9–11, as ρ becomes larger than 50 m, the

GOACP αOAC is so significant that the second family

cannot exist in a subinterval near θ = π/2. Therefore,

the closed curves of the loci in the case of ρ = 2 m have

been pulled apart near θ = π/2, and the second family

can only exist in two subintervals at the beginning and

end of 0 < θ < π, as shown by Figs. 9–11. As ρ increases,

the sub interval near θ = π/2 becomes larger, and then

the closed curves become more apart near θ = π/2.

5.3 Attitude stabilization

The asteroid body-fixed hovering within a larger

latitude range can be achieved with active orbital

control at in-plane non-equatorial equilibrium points.

However, we will encounter the same issue as in Wang

and Xu [24]. In the attitude-restricted orbital dynamics,

the spacecraft has been assumed to be controlled ideally

to a given attitude with respect to the asteroid. At

in-plane non-equatorial equilibrium points, due to the

constant and biased attitude with respect to the nadir

direction, a constant gravity gradient torque will be

acted on the spacecraft, and the induced angular

momentum needs to be absorbed consistently by the

onboard attitude control system, i.e., the reaction

wheels. Fuel will be needed to unload the angular

momentum of reaction wheels when reaction wheels

reach saturation.

Therefore, as in Wang and Xu [24], it is necessary to

assess the effect of gravity gradient torque to see how

much fuel will be needed to unload angular momentum

of the reaction wheels. The second-order gravity

gradient torque acted on the spacecraft expressed in its

body-fixed frame SB can be given by

T =
3μ

R5
R× IR (49)

where R = ATr is the spacecraft’s position vector with

respect to the asteroid expressed in the spacecraft’s

body-fixed frame SB. Since the relative attitude A is

a single axis rotation around the v-axis, see Eq. (13),

R is within the spacecraft’s i–k plane, and the gravity

gradient torque T has non-zero component only on the

j-axis with components on the i-axis and k-axis both

equal to zero.

The magnitude of gravity gradient torque per unit

mass (kg) of the spacecraft for the first and second

families of non-equatorial equilibrium points in Figs. 3–

6, 8–11 have been calculated. Their curves versus the

attitude angle θ in the cases of different ρ are given in

Figs. 12 and 13.

According to Figs. 12 and 13, among the two

families of non-equatorial equilibrium points, the gravity

Fig. 12 Magnitude of gravity gradient torque per unit mass

(kg) of spacecraft at the first family of non-equatorial equilibrium

points.
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Fig. 13 Magnitude of gravity gradient torque per unit mass (kg)

of spacecraft at the second family of non-equatorial equilibrium

points (the part in the first quadrant).

gradient torque of the second family is larger since it

is nearer to the asteroid. Notice that some curves in

Fig. 13 are not complete since the second family cannot

exist in a subinterval near θ = π/2.

We can find that as the characteristic dimension

ρ increases, the magnitude of gravity gradient torque

increases. In the case of ρ = 2 m the gravity gradient

torque is too small to be seen in Figs. 12 and 13. In the

case of ρ = 160 m, the maximum magnitude of gravity

gradient torque per unit mass (kg) of the spacecraft,

which can be reached at the second family of equilibrium

points, is about 2.2 × 10−3 N · m/kg. In the worst

case, all the absorbed angular momentum needs to be

unloaded by thrusters, and the average acceleration

by thrusters to unload the angular momentum can be

roughly estimated as about 2.2× 10−3/ρ = 1.375 ×
10−5 m/s2, which is reasonable and practical. In a

better case, before the reaction wheels reach saturation,

the angular momentum can be stored temporarily and

be unloaded in later mission operations by the gravity

gradient torque in an opposite direction. Therefore,

the issue of consistently absorbed angular momentum

by reaction wheels can be solved by the momentum-

unloading thrusters.

5.4 Dynamical simulation

In this subsection, we will show a dynamical simulation

to verify the in-plane non-equatorial equilibrium points

obtained above. The parameters of the asteroid and

spacecraft are chosen as Eqs. (45) and (46), and ρ =

160 m.

A non-equatorial equilibrium points in the u–w plane

of the asteroid obtained in Subsection 5.2.1 is selected.

The oscillating motion about the equilibrium point can

be used as the verification of the equilibrium. The

chosen non-equatorial equilibrium points in the u–w

plane are as follows:

re = [395.04, 0, 2.13]T m, θ = 4.5◦ (50)

The initial positions of the spacecraft are chosen to be

slightly away from the non-equatorial equilibrium points

as follows, respectively:

r0 = [394.5, 0, 2]T m, ṙ01 = [0, 0, 0]T (51)

The trajectory of spacecraft is shown in Fig. 14. The

non-equatorial equilibrium point is denoted by a star (*)

in the figure. The oscillation of the spacecraft’s position

has verified the non-equatorial equilibrium point.

Fig. 14 Trajectory of the spacecraft about the non-equatorial

equilibrium point.

6 Conclusions

In the present paper, we have investigated the in-plane

non-equatorial equilibrium points of attitude-restricted

orbital dynamics near asteroids, which are within the

asteroid’s longitudinal principal plane. The attitude-

restricted orbital dynamics is a recently proposed

proximity orbital dynamics model about asteroids, in

which the perturbation caused by GOACP is taken into

account besides the asteroid’s non-spherical gravity.

The in-plane non-equatorial equilibrium points

require that one of the spacecraft’s principal planes is

parallel to the asteroid’s longitudinal principal plane.

Based on the derived equilibrium condition, three

methods to calculate non-equatorial equilibrium points
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have been given, including solving the algebra equation

system by fsolve in the software MATLAB, iteration

method I, and iteration method II.

By using the three methods, we have determined two

families of in-plane non-equatorial equilibrium points,

and plotted their loci with respect to the attitude

angle. By taking GOACP into account, the first and

second families of non-equatorial equilibrium points

are generalizations of, and are located around, the

classical equatorial on-axis equilibrium points and non-

equatorial equilibrium points in the point-mass orbital

dynamics without GOACP, respectively.

The loci of non-equatorial equilibrium points have

shown that compared with the point-mass orbital

dynamics without GOACP, in-plane non-equatorial

equilibrium points have extended the latitude range of

classical equilibrium points. However, the extension

of latitude range here is smaller than the extension

of longitude range by equatorial off-axis equilibrium

points in the previous paper. This is because only

the C22 term of the asteroid’s gravity is needed to be

null out to extend the longitude range of equilibrium

points within the asteroid’s equatorial plane, whereas

the Kepler two-body term is needed to be null out to

extend the latitude range of equilibrium points within

the longitudinal principal plane.

It has been shown that the GOACP makes the

phase space of attitude-restricted orbital dynamics

more complicated than that of the classical point-

mass orbital dynamics. Equatorial equilibrium points

obtained before and in-plane non-equatorial equilibrium

points obtained here give a complete map of the

equilibrium points in the asteroid’s principal planes.

More importantly, non-equatorial equilibrium points

can provide natural hovering positions in a wider

latitude range. In the future, it will be of great interest

to study the orbital control via GOACP by the attitude

control system.

Acknowledgements

Yue Wang thanks the Editor-in-Chief Professor Bong

Wie and two anonymous reviewers for their constructive

comments and suggestions to improve this paper

signifi-cantly. This work has been supported by the

National Natural Science Foundation of China under

Grant Nos. 11602009, 11432001, and 11872007, the

Young Elite Scientist Sponsorship Program by China

Association for Science and Technology under Grant No.

2017QNRC001, and the Fundamental Research Funds

for the Central Universities.

References

[1] Scheeres, D. J. Spacecraft at small NEO. arXiv reprint,

physics/0608158, 2006.

[2] Wang, Y., Xu, S. J. Gravitational orbit-rotation

coupling of a rigid satellite around a spheroid planet.

Journal of Aerospace Engineering, 2014, 27(1): 140–

150.

[3] Scheeres, D. J. Orbit mechanics about asteroids and

comets. Journal of Guidance, Control, and Dynamics,

2012, 35(3): 987–997.

[4] Scheeres, D. J. Orbital mechanics about small bodies.

Acta Astronautica, 2012, 72: 1–14.

[5] Scheeres, D. J. Orbital motion in strongly perturbed

environments. Berlin, Heidelberg: Springer-Verlag

Berlin Heidelberg, 2012.

[6] Scheeres, D. J. Close proximity dynamics and control

about asteroids. In: Proceedings of the 2014 American

Control Conference, 2014.

[7] Russell, R. Survey of spacecraft trajectory design in

strongly perturbed environments. Journal of Guidance,

Control, and Dynamics, 2012, 35(3): 705–720.

[8] Jiang, Y., Yu, Y., Baoyin, H. X. Topological

classifications and bifurcations of periodic orbits in

the potential field of highly irregular-shaped celestial

bodies. Nonlinear Dynamics, 2015, 81(1–2): 119–140.

[9] Riverin, J. L., Misra, A. Attitude dynamics of

satellites orbiting small bodies. In: Proceedings of

the AIAA/AAS Astrodynamics Specialist Conference

and Exhibit, 2002: AIAA 2002-4520.

[10] Misra, A. K., Panchenko, Y. Attitude dynamics of

satellites orbiting an asteroid. The Journal of the

Astronautical Sciences, 2006, 54(3–4): 369–381.

[11] Kumar, K. D. Attitude dynamics and control of

satellites orbiting rotating asteroids. Acta Mechanica,

2008, 198(1–2): 99–118.

[12] Wang, Y., Xu, S. J. Equilibrium attitude and nonlinear

attitude stability of a spacecraft on a stationary orbit

around an asteroid. Advances in Space Research, 2013,

52(8): 1497–1510.

[13] Sincarsin, G. B., Hughes, P. C. Gravitational orbit-

attitude coupling for very large spacecraft. Celestial

Mechanics, 1983, 31(2): 143–161.



16 Y. Wang, S. Xu

[14] Wang, L. S., Krishnaprasad, P. S., Maddocks, J. H.

Hamiltonian dynamics of a rigid body in a central

gravitational field. Celestial Mechanics & Dynamical

Astronomy, 1990, 50(4): 349–386.

[15] Wang, L. S., Maddocks, J. H., Krishnaprasad, P. S.

Steady rigid-body motions in a central gravitational

field. Journal of the Astronautical Sciences, 1992,

40(4): 449–478.

[16] Sanyal, A. K. Dynamics and control of multibody

systems in central gravity. Ph.D. Dissertation. Ann

Arbor, MI: Department of Aerospace Engineering, the

University of Michigan, 2004
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